LINEAR OPERATORS FOR WHICH $T * T$ AND TT* COMMUTE III

Stephen L. Campbell

Let T be a bounded linear operator on a Hilbert space H. Let $[T]=T^{*} T-T T^{*}$. The structure of operators such that $T^{*} T$ and $T T^{*}$ commute and $\operatorname{rank}[T]<\infty$ is studied.

1. Introduction. Let T be a bounded linear operator acting on a separable Hilbert space H. Let $[T]=T^{*} T-T T^{*}$ and $(B N)=$ $\left\{T \mid T^{*} T\right.$ and $T T^{*}$ commute $\}$. As in [1] let $(B N)^{+}=\{T \mid T \in(B N)$ and T is hyponormal\}.

In [2] it is shown that if $T \in(B N)$ and rank [T] $=1$, (hence either T or T^{*} is in $\left(B N^{+}\right)$, then $T=T_{1} \oplus T_{2}$ where T_{1} is normal and T_{2} is a special type of weighted bilateral shift.

The purpose of this note is to examine the extension of this result to those $T \in(B N)$ for which rank $[T]<\infty$. The simple example [1]

$$
T=\left[\begin{array}{rrr}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right], \quad T T^{*}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right], \quad T^{*} T=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

of a $T \in(B N), T^{2} \notin(B N)$, shows that if rank [T] $=2$, then different behavior is possible.
2. Notation and preliminary results. The notation of this section will be kept throughout the paper. Suppose that $T \in(B N)$ and rank $[T]=r$. Then, for the correct choice of orthonormal basis we have

$$
T^{*} T=\left[\begin{array}{ll}
D_{1} & 0 \tag{1}\\
0 & P
\end{array}\right], \quad T T^{*}=\left[\begin{array}{ll}
D_{2} & 0 \\
0 & P
\end{array}\right]
$$

where $D_{1}=\operatorname{Diag}\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}, D_{2}=\operatorname{Diag}\left\{\beta_{1}, \cdots, \beta_{r}\right\}$ with $\alpha_{i} \neq \beta_{i}$ for all i. Let $T=U\left(T^{*} T\right)^{1 / 2}$ be the polar factorization of T. Thus U is a partial isometry with $R(U)=R(T), N(U)=N(T)$. Note that $U\left(T^{*} T\right)^{1 / 2}=\left(T T^{*}\right)^{1 / 2} U=T$ and $T^{*} T$ and $T T^{*}$ have identical spectrum except for zero eigenvalues. Also $U U^{*}$ is the orthogonal projection onto $R(T)=N\left(T^{*}\right)^{\perp}$ while $U^{*} U$ is the orthogonal projection onto $R\left(T^{*}\right)=N(T)^{\perp}$. Now $\left(T^{*} T\right)^{1 / 2}=U^{*}\left(T T^{*}\right)^{1 / 2} U$. Thus for any polynomial $p(\lambda)$,

$$
\begin{equation*}
p\left(\left(T^{*} T\right)^{1 / 2}\right)=U^{*} p\left(\left(T T^{*}\right)^{1 / 2}\right) U+p(0)\left(I-U^{*} U\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
p\left(\left(T T^{*}\right)^{1 / 2}\right)=U p\left(\left(T^{*} T\right)^{1 / 2}\right) U^{*}+p(0)\left(I-U U^{*}\right) \tag{3}
\end{equation*}
$$

Taking uniform limits shows that (2), (3) hold for any $p \in C\left[0,\|T\|^{2}\right]$.
Let p be such that $p(0)=p\left(\alpha_{i}\right)=p\left(\beta_{i}\right)=0, p(x)>0$ otherwise. By construction and (1)

$$
p\left(T^{*} T\right)=\left[\begin{array}{cc}
0 & 0 \tag{4}\\
0 & p(P)
\end{array}\right]
$$

But then from (1), $U p\left(T^{*} T\right)=p\left(T T^{*}\right) U$. Thus we have the following.
Proposition 1. If $T \in(B N)$ and T is completely nonnormal, rank $[T]=r$ and $T^{*} T$ and $T T^{*}$ are written as in (1) then $\sigma\left(T^{*} T\right) \cong$ $\sigma\left(D_{1}\right) \cup \sigma\left(D_{2}\right)$.

Proof. Proposition 1 follows immediately from the observation that for the p of (4), $\mathscr{M}=R\left(p\left(T^{*} T\right)\right.$) is a reducing subspace for T on which T is normal and $\sigma\left(\left(T^{*} T\right) \mid \mathscr{M}^{\perp}\right) \subseteq\left\{\alpha_{1}, \cdots, \beta_{r}, 0\right\}, \sigma\left(\left(T T^{*}\right) \mid \mathscr{M}^{\perp}\right) \subseteq$ $\left\{\beta_{1}, \cdots, \beta_{r}, 0\right\}$. If $0 \neq \alpha_{i}$ for all i, and $0 \neq \beta_{i}$ for all i, then $N\left(T^{*} T\right)=$ $N\left(T T^{*}\right)$ and $0 \notin \sigma\left(T^{*} T\right), 0 \notin \sigma\left(T T^{*}\right)$ by the complete nonnormality of T.

For a self-adjoint operator C, let $E_{c}(\cdot)$ denote its spectral measure.
We shall say $\alpha \sim \beta$ if $\alpha_{i}, \beta=\beta_{i}$ for some i. A web is a lattice of relations, for example

$$
\left.\begin{array}{l}
k \sim \\
\alpha \sim
\end{array}\right\} \beta \sim \gamma .
$$

The relation \sim is not an equivalence relation. A web is maximal if there is no larger web (larger in the sense of cardinality of elements or relations) that contains it as a subweb.

Proposition 2. Suppose that $T \in(B N), T$ is completely nonnormal, and rank $[T]=r . \quad$ Suppose that W is a maximal web. Let Δ be the set of all α_{i} and β_{i} that are elements of the web. Then
(i) $E_{T^{*} T}(\Delta)=E_{T T *}(\Delta)$, and
(ii) $R\left(E_{T^{*} T}(\Delta)\right)$ is a reducing subspace for T.

Proof. If $\Delta=\sigma\left(T^{*} T\right) \cup \sigma\left(T T^{*}\right)$, then the result is trivial. So suppose not. Rearranging the basis in (1) we get

$$
T^{*} T=\left[\begin{array}{cccc}
D_{1}^{\prime} & 0 & 0 & 0 \\
0 & P_{1} & 0 & 0 \\
0 & 0 & D_{1}^{\prime \prime} & 0 \\
0 & 0 & 0 & P_{2}
\end{array}\right] \quad T T^{*}=\left[\begin{array}{cccc}
D_{2}^{\prime} & 0 & 0 & 0 \\
0 & P_{1} & 0 & 0 \\
0 & 0 & D_{2}^{\prime \prime} & 0 \\
0 & 0 & 0 & P_{2}
\end{array}\right]
$$

where

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & P_{1} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & P_{2}
\end{array}\right]
$$

is the P of (1), $D_{1}^{\prime}, D_{1}^{\prime \prime}$ make up the D_{1} of (1) and $D_{2}^{\prime}, D_{2}^{\prime \prime}$ make up the D_{2} of (1). Furthermore, $\sigma\left(P_{1}\right) \subseteq \Delta, \sigma\left(P_{2}\right) \subseteq \Delta^{c}, \sigma\left(D_{1}^{\prime}\right) \cup \sigma\left(D_{2}^{\prime}\right) \subseteq \Delta$, and $\sigma\left(D_{1}^{\prime \prime}\right) \cup \sigma\left(D_{2}^{\prime \prime}\right) \subseteq \Delta^{c}$. Now only one of Δ or Δ^{c} can contain zero. Let Σ be the one that does not cotain zero. We shall show that the range of $E_{T^{*} T}(\Sigma)=E_{T T^{*}}(\Sigma)$ is a reducing subspace for T. Note that either

$$
E_{T^{*} T}(\Sigma)=E_{T T^{*}}(\Sigma)=\left[\begin{array}{cccc}
I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { or they equal }\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I
\end{array}\right]
$$

In either case, the fact that $E_{T^{*} T}(\Sigma)=E_{T T^{*}}(\Sigma)$ and $0 \notin \Sigma$, implies from (2) that $R\left(E_{T \cdot T}(\Sigma)\right)$ reduces U and hence T.

From Proposition 2, we now get the following.
Theorem 1. If $T \in(B N)$, rank $[T]<\infty$, and $T^{*} T, T T^{*}$ have distinct eigenvalues on the reducing subspace $R([T])$, then T is a sum of rank [T] copies of the weighted shift in [2]. In particular $T=S_{1} \oplus S_{2} \oplus N$ where S_{1} is hyponormal, S_{2} is cohyponormal, and N is normal.
3. An example. In some sense Theorem 1 is the strongest general result possible. Recall that an operator T is centered if $\left\{T^{n} T^{* n}, T^{* m} T^{m}\right\}$ is commutative. Centered operators have been studied in [3]. All weighted shifts are centered. A consequence of Del Valle's result is that if $T \in(B N)$ and rank $[T]=1$, then T is centered. (Actually, this is essentially equivalent to it.) We shall now given an example of an operator T, such that $T \in(B N)^{+}$(hence T^{2} is hyponormal), T isinvertible, $\operatorname{rank}[T]=2$, but $T^{2} \notin(B N)$. Hence T is not centered. That $T \in(B N)^{+}$does not imply $T^{2} \in(B N)$ is known [1]. However, the example of [1] has a self-commutator of infinite rank.

First we need a proposition.
Proposition 3. Let $P=\left(T^{*} T\right)^{1 / 2}, Q=\left(T T^{*}\right)^{1 / 2}, T=U P$ be the polar decomposition of T. Assume U is unitary. If $T \in(B N)$, then
$T^{2} \in(B N)$ if and only if $P^{2} Q^{2}$ commutes with $U^{2} P^{2} Q^{2} U^{* 2}$.

Proof. For operators X, Y. let $[X, Y]=X Y-Y X$. Assume that T satisfies the assumptions of Proposition 3. Note that $U P=$ $Q U$. Now $T^{2}=U P U P=U P Q U$, so that $T^{* 2}=U^{*} P Q U^{*}$. Hence $T^{2} \in$ ($B N$)

$$
\begin{aligned}
& \Longleftrightarrow\left[T^{2} T^{* 2}, T^{* 2} T^{2}\right]=0 \\
& \Longleftrightarrow\left[U P^{2} Q^{2} U^{*}, U^{*} P^{2} Q^{2} U\right]=0 \\
& \Longleftrightarrow\left[U^{2} P^{2} Q^{2} U^{* 2}, P^{2} Q^{2}\right]=0 .
\end{aligned}
$$

ExAmple. Let $\mathscr{C}=\boldsymbol{C} \oplus H \oplus \boldsymbol{C} \oplus H \oplus H$ where H is a separable Hilbert space. Let P, Q be the operators $P=\operatorname{Diag}\{3,3 I, 2,2 I, I\}$, $Q=\operatorname{Diag}\{2,3 I, 1,2 I, I\}$. Define the unitary operator U as follows, $U(\boldsymbol{C} \oplus H \oplus 0 \oplus 0 \oplus 0)=0 \oplus H \oplus 0 \oplus 0 \oplus 0, U(0 \oplus 0 \oplus 0 \oplus 0 \oplus H)=$ $0 \oplus 0 \oplus C \oplus 0 \oplus H$. Let ϕ be a vector in H. Let $U[0,0,1 / \sqrt{2}$, $\dot{\phi} / \sqrt{2}, 0]=[1,0,0,0,0]$. If M is the orthogonal complement of [0 , $0,1 / \sqrt{2,} 1 / \sqrt{2 \dot{\phi}}, 0]$ in $0 \oplus 0 \oplus C \oplus H \oplus 0$, let $U M=0 \oplus 0 \oplus 0 \oplus H \oplus$ 0 . Now let $T=U P^{1 / 2}$. It is easy to verify that $P=T^{*} T, Q=T T^{*}$, and $\operatorname{rank}[T]=2$.

To show that $T^{2} \notin(B N)$ we shall use Proposition 3 and show that $\left[P Q, U^{2} P Q U^{*}\right] \neq 0$. Suppose that $\left[U^{2} P Q U^{2 *}, P Q\right]=0$. Then every spectral projection of $P Q$ must be a reducing subspace of $U^{2} P Q U^{*}$. Now $P Q=\operatorname{Diag}\{6,9 I, 2,4 I, I\}$. Thus $\mathscr{M}=C \oplus 0 \oplus 0 \oplus 0 \oplus 0$ must be a reducing subspace. But

$$
\begin{aligned}
U^{2} P Q & U^{2}[1,0,0,0,0]=U^{2} P Q U^{*}[0,0,1 / \sqrt{2}, 1 / \sqrt{2 \dot{\phi}}, 0] \\
= & U^{2} P Q\left[0,0,0, \psi_{1}, \psi_{2}\right]\left(\left\|\psi_{1}\right\|=\left\|\psi_{2}\right\|=1 / \sqrt{2}\right)=U^{2}\left[0,0,0,4 \psi_{1}, \psi_{2}\right] \\
= & U[0,0,4 / \sqrt{2}, 1 / \sqrt{2 \phi}, 0]=U\{5 / 2[0,0,1 \sqrt{2}, 1 / \sqrt{2 \phi}, 0] \\
& +3 / 2[0,0,1 / \sqrt{2},-1 / \sqrt{2 \phi}, 0]\} \\
= & 5 / 2[1,0,0,0,0]+3 / 2\left[0,0,0, \psi_{3}, 0\right]
\end{aligned}
$$

where $\left\|\psi_{3}\right\|=1 / \sqrt{2}$. Which contradicts the fact that \mathscr{M} is reducing.
In a certain sense, Example 1 is a canonical example. We shall conclude by showing how to construct all $T \in(B N)^{+}$such that rank $[T]=2$. The generalization to rank $[T]<\infty$ is straightforward. A similar argument works for $T \in(B N), \operatorname{rank}[T]<\infty$, but the large number of cases would make the statement of the theorem unreasonably messy. Suffice it to say that the same type of analysis will handle $T \in(B N)$, rank [T] $<\infty$.

Suppose then that $T \in(B N)^{+}, \operatorname{rank}[T]=2, T$ is completely nonnormal, and there is a single maximal web. The possibilities are then $\left(\hat{\sigma}\left(T^{*} T\right)=\sigma\left(T^{*} T \mid R([T])\right), \hat{\sigma}\left(T T^{*}\right)=\hat{\sigma}\left(T T^{*} \mid(R[T])\right)\right)$
(I) $\hat{\sigma}\left(T^{*} T\right)=\{\alpha\}, \hat{\sigma}\left(T T^{*}\right)=\{\beta\}, \quad \alpha>\beta \geqq 0$
(II) $\hat{\sigma}\left(T^{*} T\right)=\{\alpha\}, \hat{\sigma}\left(T T^{*}\right)=\left\{\beta_{1}, \beta_{2}\right\}, \alpha>\beta_{1}>\beta_{2} \geqq 0$
(III) $\hat{\sigma}\left(T^{*} T\right)=\left\{\alpha_{1}, \beta_{2}\right\}, \hat{\sigma}\left(T T^{*}\right)=\{\beta\}, \quad \alpha_{i}>\beta \geqq 0, \alpha_{1}>\alpha_{2}>0$.
(IV) $\hat{\sigma}\left(T^{*} T\right)=\left\{\alpha_{1}, \alpha_{2}\right\}, \hat{\sigma}\left(T T^{*}\right)=\left\{\alpha_{2}, \beta\right\}, \alpha_{1}>\alpha_{2}>\beta \geqq 0$.

By assumption U is an isometry.
Case I. By the correct choice of orthonormal basis we have if $\beta \neq 0, H=\boldsymbol{C}^{2} \oplus H_{2} \oplus H_{3}$,

$$
T^{*} T=\left[\begin{array}{ccc}
\alpha I_{1} & 0 & 0 \tag{5}\\
0 & \alpha I_{2} & 0 \\
0 & 0 & \beta I_{3}
\end{array}\right], \quad T T^{*}=\left[\begin{array}{ccc}
\beta I_{1} & 0 & 0 \\
0 & \alpha I_{2} & 0 \\
0 & 0 & \beta I_{3}
\end{array}\right]
$$

where I_{1} is a 2×2 identity. Both I_{2}, I_{3} must operate on an infinite dimensional space since there exists an isometry of $C^{2} \oplus H_{2}$ onto H_{2} and on isometry of H_{3} onto $C^{2} \oplus H_{3}$.

Pick an orthonormal basis for \boldsymbol{C}^{2}. Forward iteration under V gives an orthonormal basis for H_{2}. Iteration under $V^{*}=V^{-1}$ gives an orthonormal basis for H_{3}. Thus V is just two copies of the bilateral shift and $T=T_{1} \oplus T_{2}$ where $T_{i} \in(B N)^{+}$, Rank $\left[T_{i}\right]=1$.

If $\beta=0$, then

$$
T^{*} T=\left[\begin{array}{cc}
\alpha I_{1} & 0 \\
0 & \alpha I_{2}
\end{array}\right], \quad T T^{*}=\left[\begin{array}{cc}
0 & 0 \\
0 & \alpha I_{2}
\end{array}\right],
$$

and $T=\sqrt{\alpha(}(\oplus S), S$ the unilateral shift.
Case II. In this case, if $\beta_{2} \neq 0$ on $\boldsymbol{C} \oplus \boldsymbol{C} \oplus H_{1} \oplus H_{2} \oplus H_{3}$.
(6) $T^{*} T=\left[\begin{array}{ccccc}\alpha & 0 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 \\ 0 & 0 & \beta_{1} I_{1} & 0 & 0 \\ 0 & 0 & 0 & \beta_{2} I_{2} & 0 \\ 0 & 0 & 0 & 0 & \alpha I_{3}\end{array}\right]$, $T T^{*}=\left[\begin{array}{ccccc}\beta_{1} & 0 & 0 & 0 & 0 \\ 0 & \beta_{2} & 0 & 0 & 0 \\ 0 & 0 & \beta_{1} I_{1} & 0 & 0 \\ 0 & 0 & 0 & \beta_{2} I_{2} & 0 \\ 0 & 0 & 0 & 0 & \alpha I_{3}\end{array}\right]$.

$$
U=\left[\begin{array}{ccccc}
0 & 0 & U_{13} & 0 & 0 \tag{7}\\
0 & 0 & 0 & U_{24} & 0 \\
0 & 0 & U_{35} & 0 & 0 \\
0 & 0 & 0 & U_{44} & 0 \\
U_{51} & U_{52} & 0 & 0 & U_{55}
\end{array}\right]
$$

where

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
U_{13} \\
U_{33}
\end{array}\right] \text { is an isometry of } H_{1} \text { onto } \boldsymbol{C} \oplus H_{1}} \\
{\left[\begin{array}{l}
U_{24} \\
U_{44}
\end{array}\right] \text { is an isometry of } H_{2} \text { onto } \boldsymbol{C} \oplus H_{2}} \\
{\left[\begin{array}{lll}
51
\end{array}\right.} \\
U_{52}
\end{array} U_{55}\right] \text { is an isometry of } \boldsymbol{C} \oplus \boldsymbol{C} \oplus H_{3} \text { onto } H_{3} . ~ l
$$

If $\beta_{2}=0$, the fourth row and column are deleted from both matrices in (6) and $H=\boldsymbol{C} \oplus \boldsymbol{C} \oplus H_{1} \oplus H_{3}$. The essential difference is that whereas (7) is unitary, U is only an isometry if $\beta_{2}=0$.

Case III. In this case, we have for $\beta \neq 0, H=\boldsymbol{C} \oplus \boldsymbol{C} \oplus H_{1} \oplus$ $H_{2} \oplus H_{3}$
(8) $T^{*} T=\left[\begin{array}{ccccc}\alpha_{1} I_{1} & 0 & 0 & 0 & 0 \\ 0 & \alpha_{2} I_{2} & 0 & 0 & 0 \\ 0 & 0 & \alpha_{1} I_{3} & 0 & 0 \\ 0 & 0 & 0 & \alpha_{2} I_{4} & 0 \\ 0 & 0 & 0 & 0 & \beta I_{5}\end{array}\right]$, $T T^{*}=\left[\begin{array}{ccccc}\beta I_{1} & 0 & 0 & 0 & 0 \\ 0 & \beta I_{2} & 0 & 0 & 0 \\ 0 & 0 & \alpha_{1} I_{3} & 0 & 0 \\ 0 & 0 & 0 & \alpha_{2} I_{4} & 0 \\ 0 & 0 & 0 & 0 & \beta I_{5}\end{array}\right]$.

Then

$$
U=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & U_{15} \tag{9}\\
0 & 0 & 0 & 0 & U_{25} \\
U_{31} & 0 & U_{33} & 0 & 0 \\
0 & U_{42} & 0 & U_{44} & 0 \\
0 & 0 & 0 & 0 & U_{55}
\end{array}\right]
$$

where

$$
\begin{aligned}
& {\left[\begin{array}{l}
U_{15} \\
U_{25} \\
U_{55}
\end{array}\right] \text { is an isometry of } H_{3} \text { onto } \boldsymbol{C} \oplus \boldsymbol{C} \oplus H_{3}} \\
& {\left[\begin{array}{ll}
U_{31} \\
U_{33}
\end{array}\right] \text { is an isometry of } \boldsymbol{C} \oplus H_{1} \text { onto } H_{1}} \\
& {\left[\begin{array}{ll}
U_{42} & U_{45}
\end{array}\right] \text { is an isometry of } \boldsymbol{C} \oplus H_{2} \text { onto } H_{2} .}
\end{aligned}
$$

If $\beta=0$, then the fifth column and row of the matrices in (9) are deleted and $T=T_{1} \oplus T_{2}$ where $T_{i} \in(B N)^{+}, \operatorname{rank}\left[T_{i}\right]=1$.

Case IV. In this case if $\beta \neq 0$.
(10) $T^{*} T=\left[\begin{array}{ccccc}\alpha_{1} & 0 & 0 & 0 & 0 \\ 0 & \alpha_{2} & 0 & 0 & 0 \\ 0 & 0 & \alpha_{1} I_{1} & 0 & 0 \\ 0 & 0 & 0 & \alpha_{2} I_{2} & 0 \\ 0 & 0 & 0 & 0 & \beta I_{3}\end{array}\right], \quad T T^{*}=\left[\begin{array}{ccccc}\alpha_{2} & 0 & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 & 0 \\ 0 & 0 & \alpha_{1} I_{1} & 0 & 0 \\ 0 & 0 & 0 & \alpha_{2} I_{2} & 0 \\ 0 & 0 & 0 & 0 & \beta I_{3}\end{array}\right]$
on $\boldsymbol{C} \oplus \boldsymbol{C} \oplus H_{1} \oplus H_{2} \oplus H_{3}$. If $\beta=0$, of course, $H_{3}=0$. However, there is no restriction at all on H_{2}. It may be zero, finite, or infinite dimensional. Suppose $\beta \neq 0$. Then

$$
U=\left[\begin{array}{ccccc}
0 & U_{12} & 0 & U_{14} & 0 \tag{11}\\
0 & 0 & 0 & 0 & U_{25} \\
U_{31} & 0 & U_{33} & 0 & 0 \\
0 & U_{41} & 0 & U_{44} & 0 \\
0 & 0 & 0 & 0 & U_{55}
\end{array}\right]
$$

where

$$
\begin{aligned}
& {\left[\begin{array}{ll}
U_{12} & U_{14} \\
U_{41} & U_{44}
\end{array}\right] \text { is an isometric map of } \boldsymbol{C} \oplus H_{2} \text { onto } \boldsymbol{C} \oplus H_{2} .} \\
& {\left[\begin{array}{ll}
U_{31} & U_{33}
\end{array}\right] \text { is an isometric map of } \boldsymbol{C} \oplus H_{1} \text { onto } H_{1}} \\
& {\left[\begin{array}{l}
U_{25} \\
U_{55}
\end{array}\right] \text { is an isometric map of } H_{3} \text { onto } \boldsymbol{C} \oplus H_{3} .}
\end{aligned}
$$

If $\beta=0$, then the fifth row and column is deleted from the matrices in (10), (11). ($H_{3}=0$).

If one is interested in constructing a particular example then in (7), (9), (11), the indicated isometries are completely arbitrary as long as they have the correct initial and final spaces. The example was constructed in this way from (11).

References

1. S. L. Campbell, Linear operators for which $T^{*} T$ and $T T^{*}$ commute II, Pacific J. Math., 53 (1975), 355-361.
2. J. W. Del Valle, Operators with small self-commutators, Trans. Amer. Math. Soc., 240 (1978), 183-194.
3. B. Morrel, A decomposition for some operators, Ind. Univ. Math. J., 23 (1973), 497511.

Received October 18, 1978.
North Calolina State University
Raleigh, NC 27607

