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A QUANTITATIVE VERSION OF KRASNOSEL’SKII'S
THEOREM IN R?

MARILYN BREEN

This work concerns a quantitative version of Krasnosel’-
skii’s theorem in R2?, and the following result is obtained:
Let S be a nonempty compact subset of R? having 7 points
of local nonconvexity. Then the kernel of S contains an
interval of radius ¢ > 0 if and only if every f(n) = max {4, 2n}
points of S see via S a common interval of radius . The
number f(n) in the theorem is best possible for every
n=1.

We begin with some preliminary definitions: Let S be a subset
of R°. A point x in S is said to be a point of local conwvexity of
S if and only if there is some neighborhood N of x such that SN N
is convex. In case S fails to be locally convex at point ¢ in S, then
q is called a point of local nonconvexity (Inc point) of S. For points
yand zin S, we say y sees v zia S if and only if the corresponding
segment [y, 2] lies in S. Set S is called starshaped if and only if
there is some point p in S such that, for every « in S, p sees x via
S, and the set of all such points p is ecalled the (convex) kernel of
S, denoted ker S.

A well-known theorem of Krasnosel’skii [3] states thatif S+ @
is a compact set in R?, then ker S is nonempty if and only if every
d + 1 points of S see a common point via S. Furthermore, quanti-
tative analogues in [6, Theorem 6.19] and in [2] reveal that for S
compact in R% ker S contains a d-dimensional neighborhood of radius
e >0 if and only if every d + 1 points of S see via S such a d-
dimensional e-neighborhood. While other versions of the Krasnosel’-
skii theorem have been obtained for sets whose kernel is k-dimen-
sional, 1 £ k =< d — 1 [2], these provide little information concerning
the size of the kernel, and quantitative theorems for such sets
promise to be difficult to formulate.

Here the problem is studied for starshaped sets in R?, and a
quantitative version of the Krasnosel’skii theorem involving the
number n of Inc points of S is obtained. Finally, two examples
reveal that the result in the theorem is best possible for every
n=1.

The following familiar terminology will be used throughout the
paper: Conv S, cl S, and relint S will denote the convex hull, closure,
and relative interior of set S, respectively. For z #y, R(z, y) will
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represent the ray emanating from z through y, while L(x, v) will be
the line determined by z and .

2. The results. We start with two lemmas which will be
helpful in proving the main result of the paper. The first is a
variation of a result by Valentine [7, Corollary 2].

LEMMA 1 (Valentine’s lemma). Let S be a closed set in R*. If
[z, y]U[y, 21= S and mo Inc point of S lies in conv {z, y, 2} ~ [z, 2],
then conv {z, y, 2} = S.

LEMMA 2. Let S be a nonempty compact set in R:. For 1=
k=<d, ker S contains a k-dimensional neighborhood of radius ¢ > 0
if and only if every finite subset of S sees via S a k-dimensional
netghborhood of radius e.

Proof. The necessity of the condition is obvious. Proof of its
sufficiency will require the Hausdorff metric defined on the collection
of compact subsets of S. Let % = {4: A compact and A<= S}, and
let d denote the Hausdorff metric for .#. By arguments given in
Valentine [6, pp. 37-38] and in Nadler [4], .# is bounded with respect
to d, and (%, d) has the Bolzano-Weierstrass property. That is,
every infinite subset of & has a limit point F in &, and F # .

For each z in S, define &, = {A: A is the closure of a k-dimen-
sional neighborhood of radius ¢ and x sees A via S}. Using our
hypothesis for the compact set S, it is easy to see that the collection
of sets &, has the finite intersection property. Furthermore, we
assert that each &, set is compact, and clearly it suffices to show
that every infinite subset {4,} in &, has a limit point in &,. By
our earlier remarks, {A4,} has a limit point A # @ in &, and by an
argument in [2, Lemma], A€ %&,.

Hence {&,: z in S} is a collection of compact sets having the
finite intersection property, so N{&,: # in S} # @. For B in this
intersection, B is the closure of a k-dimensional ¢-neighborhood and
BC ker S, finishing the proof of Lemma 2.

THEOREM 1. Let S be a nonempty compact set in R* having n
Inec points. The kernel of S contains an interval of radiuse > 0 if
and only if every f(n) = max {4, 2n} (or fewer) points of S see via
S a common interval of radius . The number f(n) is best possible
for every n = 1.

Proof. By Lemma 2, it suffices to prove that for F' any finite
subset of S, F sees via S an interval of radius e.
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Clearly we may assume that the set @ of Inc points of S is
nonempty, for otherwise the closed connected set S will be convex
by Tietze’s theorem [5], and the result will be trivial. Hence let
Q=1g, -+, @.}.

We begin with the case in which S clintS. By [1, Theorem
1], ker S is at least 1-dimensional, so we let L be a line which con-
tains a 1-dimensional subset of ker S. The set S ~ clint S must be
a nonempty subset of L. By hypothesis, ‘every 4 points of S see
via S a common interval of radius e. For ¢ in S~ clintS, a sees
via S only points on L, so every 3 (and hence every 2) points of S
see via S a common interval of radius ¢ on L. By results in [6,
Theorem 6.19] and in [2], ker S must contain an interval of radius
¢ on L, and the proof of the theorem is complete.

Throughout the remainder of the proof, we assume that S =
clint S. For convenience of notation, let ¢ = ¢q,. We show that for
some closed neighborhood N of q, NN S is a union of two convex
sets, each containing ¢q. Since ker S is at least 1-dimensional, we
may select a point b in ker S ~ @ = @. Let H be the line determined
by ¢ and b, with H, and H, distinct open halfplanes determined by
H. Since @ is finite, we may seleect a convex neighborhood U of
HNS so that @ N US H. Again using the fact that @ is finite,
choose a closed convex neighborhood N of ¢ such that NN Q = {q}
and NS U. We assert that N has the required property: Since
NC U, for points ¢ and d in NN SN H, conv{c, b, d} can contain
no member of @. Therefore, by Valentine’s Lemma, [¢, d] S S. Thus
NN SNH, is convex, as is NN SN H,. Since S=clintS, NnS =
d(NNSNH)Ucd(NNSNH,), and NN S is indeed a union of two
convex sets, each containing ¢. (In fact, the sets meet in an interval
at ¢.)

Select points ¢ and y in NN S such that (z, ¥) N S = @ and such
that no point of [z, ¢) sees any point of [y, ¢) via S. Since F is
finite, an inductive argument reveals that & and ¥ may be chosen
so that no point of F which sees ¢ lies in the open convex region
bounded by R(q, ) and R(q, ), and we assume that x and y satisfy
this requirement as well.

Let o, = 2 and y, = y, and for 2 < 7 < n, select points «, and y,
corresponding to ¢, in the manner described above. It is clear that
for each %, any point of S seen by both x, and ¥y, necessarily lies in
the closed convex region R, bounded by the rays R(z, q;) ~ [z, q.)
and R(y,, q¢) ~ [y;, ¢;). Hence ker SC N{R;: 1 i< n}=R. Fur-
thermore, by hypothesis, points x, ---, %,, v, -, ¥, see via S a
common interval I of radius ¢, and /S R. To complete the proof,
it suffices to show that for s in F' and ¢ in I, [s, t]< S.
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We will assume that this does not occur to reach a contradiction.
Now ker S has dimension at least 1, and we select point p in rel
int ker S. For future reference, notice that p cannot be an Inc point
for S. Also, observe that since p e ker S, each «; and y, point neces-
sarily sees the entire segment [p, ] via S, 1 £ 7 =< n. Because we
are assuming that [s, t] £ S, points s, ¢, » cannot be collinear, and we
let L, denote the open halfplane determined by the line L(s, p) and
containing ¢, L, the opposite open halfplane. Since [s, p]U[p, t]E S
but [s, {]£ S, there is some point » of (¢, p] closest to ¢ for which
[s, r1=S. Moreover, by Valentine’s Lemma, [s, ] must contain some
Ine point of el L, N S, and clearly this Inec point is a member of @,
say q,. Further, we assert that ¢, may be chosen distinet from s:
If s were the only such Inc point on [s, 7], then since the set Q" of
Ine points of el L, N S is finite, we could select a neighborhood of
[s, ] disjoint from Q" ~ {s}, and by Valentine’s Lemma, » would not
be the closest point to ¢ having the required property. Thus we
may assume that ¢, = s.

For convenience of notation, let ¢ = ¢q,, with 2 =z, and y = ¥,
the corresponding points selected previously. Recall that no point
of [z, q) sees any point of [y, q) via S. There are two cases to
consider.

Case 1. Assume that » = p. Points # and y cannot both lie in
the closed halfplane ¢l L;: Otherwise, since p € ker S< R, one of the
two points, say y, would satisfy ¢ e[p, y], and = could not see [p, t]
via S. Also, 2 and y cannot both lie in the opposite closed halfplane
cl L,, for then q could not be an Ine point for clL,NS. Thus we
may assume that xe L, and ye L,. By a previous observation, p is
not an Inc point for S so ¢ # p. Using this together with the fact
that peker S, it is not hard to see that ¥ and s necessarily lie in
the same open halfplane determined by L(x, ¢). However, this forces
s to lie in the open convex region bounded by rays R(q, ) and R(q, ¥).
Since se F' and s sees ¢ via S, this is impossible by our original
selection of # and y. We have a contradiction, and we conclude
that Case 1 cannot ocecur.

Case 2. Assume that » # p, and let M, denote the open halfplane
determined by L(s, ) and containing ¢, M, the opposite open halfplane.
As in Case 1, points z and % cannot both lie in el M, for then they
could not both see [p, t] via S. A similar argument reveals that «
and y cannot both lie in cl M,, so we may suppose that x <M, and
ye M, Using the fact that « and y both see [p, t] via S, it is easy
to show that y and s lie in the same open halfplane determined by
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L(x, q), just as in Case 1. However, by our earlier argument, this
contradicts the original choice of x and y, and Case 2 cannot occur
either.

Since neither Case 1 nor Case 2 can occur, the assumption that
[s, t]1£ S must be false. We conclude that [s, ¢{] does indeed lie in S,
and each point of F sees the interval I via S. By previous remarks,
this completes the proof of Theorem 1.

The following examples reveal that the number f(n) in the
theorem is best possible for every » = 1. In this setting, notice
also that no finite Krasnosel’skii number exists independent of the
number of Inc points of set S.

ExAMPLE 1. Set S be the set in Figure 1, with ¢ the corre-
sponding Ine point of S. Clearly for an appropriate ¢ > 0, every 3
points of S see via S some segment with endpoint ¢ having radius
e, yet ker S = {¢g}. Thus the number f(1) = 4 in Theorem 1 is best
possible.

FIGURE 1

ExAamMpPLE 2. For » = 2, consider the vertices of a regular 4n —
gon P, each vertex on the circumference of the unit circle U. Label
the vertices of P in a clockwise direction by o, 0, * -+, Dw = Do SO
that p, p, ---, »,, lie in the open upper halfplane. Assume that
segments T, T, - - -, T,,+, satisfy the following properties: T, contains
v, and p,, T, contains p,_, and p,, for 1 < 7 < 2n, and T,,., contains
0;, and P,,+,. Furthermore, for 0 < ¢ < n, segments T, and T,
share one endpoint, and each segment has its remaining endpoint
on U. Thus T, and T,.,:, determine a triangular region S, =
conv (T; U Tysprs)-

Define S’ = U{S;: 0 <1 < n} U P. Notice that S’ has exactly =»
Inc points ¢,, - -+, q,, where ¢, € T;4,N T;, 1 < 4 < n. Finally, intersect
S’ with an appropriate closed polygon to obtain a set S such that
the Inc points of S are ¢, ---, ¢., each point of SN S, fails to see
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via S at most one of »;, V;1n+, 1 £ 1= n — 1, and Dyu4y, -+, Pus € ker S.
Thus each point of S fails to see via S at most one of the points
Py ***, Pom- (In particular, S may be achieved by intersecting each
set S, with a suitable closed halfplane whose boundary contains
L(p;, Divs) N L(Dispisy Pitn):)

It is easy to see that every 2n — 1 points of S see via S a
common diameter of U containing one of the points p, :--, D,,.
Thus every 2n — 1 points of S see via S a common interval of radius
¢ =1. However, an appropriately chosen 2n points of S, one selected
from each segment T, ---, T,,, see no such interval. We conclude
that for » = 2, the number f(n) = 2n in Theorem 1 is best possible.

Figure 2 illustrates the construction when n = 3.

FIGURE 2

REFERENCES

1. Marilyn Breen, The dimension of the kernel of a planar set, Pacific J. Math., (to
appear).

2. ————, K-dimensional intersections of convex sets and convexr kernels, Discrete
Math., to appear.

8. M. A. Krasnosel’skii, Sur un critére pour qu'un domain soit étoilé, Math. Sb., (61)
19 (1946), 309-310.

4. S. Nadler, Hyperspaces of Sets, Marcel Dekker, Inc., New York, 1978.

5. H. Tietze, Uber Konvexheit im kleinen und im grossen und iber gewisse den
Punkten einer Menge zugeordnete Dimensionzahlen, Math. Z., 29 (1928), 697-707.



A QUANTITATIVE VERSION OF KRASNOSEL’SKII’'S THEOREM IN R? 37

6. F.A. Valentine, Convexr Sets, McGraw-Hill, New York, 1964.
7. ———, Local convexity and L, sets, Proc. Amer. Math. Soc., 16 (1965), 1305-1310.
Received September 18, 1979 and in revised form February 15, 1980.

UNIVERSITY OF OKLAHOMA
NorMaN, OK 73019








