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A QUANTITATIVE VERSION OF KRASNOSEL'SKIΓS
THEOREM IN R2

MARILYN BREEN

This work concerns a quantitative version of KrasnoseΓ-
skii's theorem in R2

9 and the following result is obtained:
Let S be a nonempty compact subset of E2 having n points
of local nonconvexity. Then the kernel of S contains an
interval of radius ε > 0 if and only if every f(n) = max {4,2ri}
points of S see via S a common interval of radius e. The
number f(n) in the theorem is best possible for every

We begin with some preliminary definitions: Let S be a subset
of Rd. A point x in S is said to be a point of local convexity of
S if and only if there is some neighborhood N of x such that S Π N
is convex. In case S fails to be locally convex at point q in S, then
q is called a point of local nonconvexity (lnc point) of S. For points
y and z in S, we say y sees v zia S if and only if the corresponding
segment [y, z] lies in £. Set S is called starshaped if and only if
there is some point p in S such that, for every x in S, p sees x via
S, and the set of all such points p is called the (convex) kernel of
S, denoted kerS.

A well-known theorem of KrasnoseΓskii [3] states that if S Φ 0
is a compact set in Rd, then ker S is nonempty if and only if every
d + 1 points of S see a common point via S. Furthermore, quanti-
tative analogues in [6, Theorem 6.19] and in [2] reveal that for S
compact in Rd

9 ker £ contains a d-dimensional neighborhood of radius
ε > 0 if and only if every d + 1 points of S see via S such a d-
dimensional ε-neighborhood. While other versions of the KrasnoseΓ-
skii theorem have been obtained for sets whose kernel is λ -dimen-
sional, 1 ^ k ^ d — 1 [2], these provide little information concerning
the size of the kernel, and quantitative theorems for such sets
promise to be difficult to formulate.

Here the problem is studied for starshaped sets in R2, and a
quantitative version of the KrasnoseΓskii theorem involving the
number n of lnc points of S is obtained. Finally, two examples
reveal that the result in the theorem is best possible for every
n ^ 1.

The following familiar terminology will be used throughout the
paper: Conv S, cl S, and rel int S will denote the convex hull, closure,
and relative interior of set S, respectively. For x Φyy R(x, y) will
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represent the ray emanating from x through y, while L(x, y) will be
the line determined by x and y.

2Φ The results* We start with two lemmas which will be
helpful in proving the main result of the paper. The first is a
variation of a result by Valentine [7, Corollary 2].

LEMMA 1 (Valentine's lemma). Let S be a closed set in Rd. If
[x, y] U [y, z] £ S and no lnc point of S lies in conv {x, y, z) ~ [x, z]9

then conv {x, y, z) £ S.

LEMMA 2. Let S be a nonempty compact set in Rd. For 1 5̂
k S d, ker S contains a k-dimensional neighborhood of radius ε > 0
if and only if every finite subset of S sees via S a k-dimensional
neighborhood of radius ε.

Proof. The necessity of the condition is obvious. Proof of its
sufficiency will require the Hausdorff metric defined on the collection
of compact subsets of S. Let J^— {A: A compact and AQS), and
let d denote the Hausdorff metric for ^ 7 By arguments given in
Valentine [6, pp. 37-38] and in Nadler [4], ^is bounded with respect
to d, and (^ d) has the Bolzano-Weierstrass property. That is,
every infinite subset of ^ has a limit point F in ^ and F Φ 0 .

For each x in S, define ^ = {A: A is the closure of a Λ-dimen-
sional neighborhood of radius ε and x sees A via S}. Using our
hypothesis for the compact set S, it is easy to see that the collection
of sets ^ has the finite intersection property. Furthermore, we
assert that each ^ set is compact, and clearly it suffices to show
that every infinite subset {AJ in ^ has a limit point in ^x. By
our earlier remarks, {An} has a limit point A Φ 0 in ^ 7 and by an
argument in [2, Lemma], A e ^ r

Hence {^i x in S} is a collection of compact sets having the
finite intersection property, so Π {^β: x in S} Φ 0 . For B in this
intersection, B is the closure of a A -dimensional ε-neighborhood and
BQkerS, finishing the proof of Lemma 2.

THEOREM 1. Let S be a nonempty compact set in R2 having n
lnc points. The kernel of S contains an interval of radius ε > 0 if
and only if every fin) = max {4, 2n] (or fewer) points of S see via
S a common interval of radius ε. The number f(n) is best possible
for every n ^ 1.

Proof. By Lemma 2, it suffices to prove that for F any finite
subset of S, F sees via S an interval of radius ε.
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Clearly we may assume that the set Q of lnc points of S is
nonempty, for otherwise the closed connected set S will be convex
by Tietze's theorem [5], and the result will be trivial. Hence let

Q = {Ql, •••, Qn}

We begin with the case in which S Φ cl int S. By [1, Theorem
1], ker S is at least 1-dimensional, so we let L be a line which con-
tains a 1-dimensional subset of ker S. The set S ~ cl int S must be
a nonempty subset of L. By hypothesis, every 4 points of S see
via S a common interval of radius ε. For a in S ~ cl int S, a sees
via S only points on L, so every 3 (and hence every 2) points of S
see via S a common interval of radius ε on L. By results in [6,
Theorem 6.19] and in [2], kerS must contain an interval of radius
ε on L, and the proof of the theorem is complete.

Throughout the remainder of the proof, we assume that S =
cl int S. For convenience of notation, let q — qx. We show that for
some closed neighborhood N of q, N Π S is a union of two convex
sets, each containing q. Since ker S is at least 1-dimensional, we
may select a point b in ker S ~ Q Φ 0 . Let H be the line determined
by q and 6, with H1 and H2 distinct open halfplanes determined by
H. Since Q is finite, we may select a convex neighborhood U of
H f] S so that Qfl Uξ^H. Again using the fact that Q is finite,
choose a closed convex neighborhood N of q such that N Π Q = {q}
and NQ U. We assert that N has the required property: Since
Nζ^U, for points c and c£ in N f] S Π iϊi, conv {<?, 6, d} can contain
no member of Q. Therefore, by Valentine's Lemma, [c, d] £ S. Thus
-ZV ΓΊ S Π i?i is convex, as is Nn S Π £Γ2. Since S = cl int S, iV Π S =
cl (Λ 7ίlSn iϊi) U cl (JVn S Π iϊ2), and i\Γn S is indeed a union of two
convex sets, each containing q. (In fact, the sets meet in an interval
at q.)

Select points x and y in N Π S such that (x, y) Γϊ S = 0 and such
that no point of [x, q) sees any point of [y, q) via S. Since .F is
finite, an inductive argument reveals that x and y may be chosen
so that no point of F which sees q lies in the open convex region
bounded by R(q9 x) and R(q, y), and we assume that x and y satisfy
this requirement as well.

Let x1 = x and yι = /̂, and for 2 <= i <, n, select points xi and T/̂
corresponding to qi in the manner described above. It is clear that
for each i, any point of S seen by both xi and yt necessarily lies in
the closed convex region Rt bounded by the rays R(xi9 qt) ~ [xi9 qx)
and R(yίf qτ) - [yi9 qt). Hence ker S^ Π {Rt: 1 S i ^ n) = R. Fur-
thermore, by hypothesis, points xl9 , α?Λ, i/j, — -, yn see via S a
common interval / of radius ε, and IQR. To complete the proof,
it suffices to show that for s in F and t in /, [s, t] Q S.
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We will assume that this does not occur to reach a contradiction.
Now kerS has dimension at least 1, and we select point p in rel
int ker S. For future reference, notice that p cannot be an lnc point
for S. Also, observe that since p e ker S, each xt and yi point neces-
sarily sees the entire segment [p, t] via S, 1 ^ i ^ n. Because we
are assuming that [s, t] §= S, points s, ί, p cannot be collinear, and we
let Ly denote the open halfplane determined by the line L(s, p) and
containing t, L2 the opposite open halfplane. Since [s, p] U [p, t]S=S
but [s, t] g£ S, there is some point r of (ί, p] closest to t for which
[s, r] C S. Moreover, by Valentine's Lemma, [s, r] must contain some
lnc point of cl Lx Π S, and clearly this lnc point is a member of Q,
say qx. Further, we assert that qx may be chosen distinct from s:
If s were the only such lnc point on [s, r], then since the set Qr of
lnc points of cl Lx fl S is finite, we could select a neighborhood of
[s, r] disjoint from Q' ~ {s}, and by Valentine's Lemma, r would not
be the closest point to t having the required property. Thus we
may assume that qx Φ s.

For convenience of notation, let q — q19 with x = xλ and y = τ/i
the corresponding points selected previously. Recall that no point
of [#, g) sees any point of [y, q) via S. There are two cases to
consider.

Case 1. Assume that r = p. Points x and y cannot both lie in
the closed halfplane cll^: Otherwise, since peker SQR, one of the
two points, say y, would satisfy q e [p, y]9 and x could not see [p, t]
via S. Also, x and y cannot both lie in the opposite closed halfplane
cl L2f for then q could not be an lnc point for cl Lx Π S. Thus we
may assume that x e Lλ and y 6 L2. By a previous observation, p is
not an lnc point for S so g Φ p. Using this together with the fact
that p 6 ker S, it is not hard to see that y and s necessarily lie in
the same open halfplane determined by L(x, q). However, this forces
s to lie in the open convex region bounded by rays R(q, x) and R(q, y).
Since sβF and s sees q via S, this is impossible by our original
selection of x and y. We have a contradiction, and we conclude
that Case 1 cannot occur.

Case 2. Assume that r Φ p, and let M1 denote the open halfplane
determined by L(s, r) and containing t, M2 the opposite open halfplane.
As in Case 1, points x and y cannot both lie in clil^ for then they
could not both see [p, t] via S. A similar argument reveals that x
and y cannot both lie in cl M2, so we may suppose that x e M1 and
y 6 M2. Using the fact that x and y both see [p, t] via S, it is easy
to show that y and s lie in the same open halfplane determined by
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L(x, q), just as in Case 1. However, by our earlier argument, this
contradicts the original choice of x and y, and Case 2 cannot occur
either.

Since neither Case 1 nor Case 2 can occur, the assumption that
[s, t]§=S must be false. We conclude that [s, t] does indeed lie in S,
and each point of F sees the interval I via S. By previous remarks,
this completes the proof of Theorem 1.

The following examples reveal that the number f(n) in the
theorem is best possible for every n ^ 1. In this setting, notice
also that no finite KrasnoseΓskii number exists independent of the
number of lnc points of set S.

EXAMPLE 1. Set S be the set in Figure 1, with q the corre-
sponding lnc point of S. Clearly for an appropriate ε > 0, every 3
points of S see via S some segment with endpoint q having radius
ε, yet ker S — {q}. Thus the number /(I) = 4 in Theorem 1 is best
possible.

FIGURE i

EXAMPLE 2. For n ^ 2, consider the vertices of a regular 4n —
gon P, each vertex on the circumference of the unit circle U. Label
the vertices of P in a clockwise direction by pl9 p2, , pin = pQ so
that plf p2, ••-,p2n lie in the open upper half plane. Assume that
segments TOf Tu , T2n+1 satisfy the following properties: TQ contains
p0 and pu Tt contains p^ and pi+1 for 1 <; i ^ 2n, and T2n+1 contains
p2n and p2n+1. Furthermore, for 0 <; i g n, segments Tt and Ti+n+1

share one endpoint, and each segment has its remaining endpoint
on U. Thus T€ and Ti+n+1 determine a triangular region Sέ =

Define S' = U {St: 0 ̂  i £ n) U P. Notice that S' has exactly w
lnc points qu , ?Λ, where î 6 2WΓI Γ̂ , 1 ̂  i ^ n. Finally, intersect
<S' with an appropriate closed polygon to obtain a set S such that
the lnc points of S are qί9 , #„, each point of S Π S< fails to see
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via S at most one of pi9 Pi+n+lf 1 ^ i ^ n — 1, and p2n+u *> P*» e ker S.
Thus each point of S fails to see via S at most one of the points
Pi, "mt Pzn- (In particular, S may be achieved by intersecting each
set Si with a suitable closed halfplane whose boundary contains
L(Pi9 Pi+i) Γl L(pi+n+ίf pi+j.)

It is easy to see that every 2n — 1 points of S see via S a
common diameter of Z7 containing one of the points pu , p2n.
Thus every 2n — 1 points of S see via S a common interval of radius
e = l. However, an appropriately chosen 2n points of S, one selected
from each segment Tlf •••, T2n, see no such interval. We conclude
that for n ^ 2, the number f(n) = 2^ in Theorem 1 is best possible.

Figure 2 illustrates the construction when n = 3.

P3

FIGURE 2
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