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MAPPING INTERVALS TO INTERVALS

M. B. ABRAHAMSE AND S. D. FISHER

We study the question of mapping intervals to intervals
by rational functions which map the real line into the ex-
tended real line and the upper half plane into the upper half
plane.

Let & be the set of rational functions which map the upper
half plane into the upper half plane and the real line into the
extended real line. A function in & is the upper half plane equi-
valent of a finite Blaschke product on the unit disk and is sometimes
referred to as a rational Cayley inner function. Let alf , αΛ and
bu ••-,&» be real numbers with ax < b1 < a2 < b2 < < an < bn and
let A be the set of points P = (Al9 , An, Bl9 , Bn) in R2n such
that there is a ψ in & with φ([ai9 6J) = [Aif B%] for i — 1, , n.
The purpose of this paper is to determine which points P lie in A.
In other words, we wish to describe those collections of those
intervals [Au Bλ], , [An, Bn] which are images under a rational
Cayley inner function of the intervals [alf 6J, , [an, 6J.

We note that it is always possible to map points to points, that
is, there is a ψ in & with ψ{a,) = Ai and ψφi) — Bύ for i = 1, , n.
However, this function ψ may have a pole in some (ajf bό) and so
ψ(ίas> &il) 2 R. The motivation for this research is the following
question due to J. Rovnjak (verbal communication): Is it always
possible to map intervals to intervals? In terms of the notation
above, the question is whether A contains every point P = (Aίf ,
An, Bly , Bn) with At < Bt for ί — 1, , n. The answer to this
question will be shown to be in the negative. For example, we will
show that if n ^ 2, if [Ai9 Bi\a[ai9 bt] for i = 1, •••,%, and if
[̂ 4̂ , i?J ^ [αί? &J for some ί, then there is no function φ in ^ with
9>(l><, &J) = Ui, -B<] for ΐ = 1, , n.

The main result of this paper describes the set A, the closure
of A, and the boundary of A in terms of functions in & with degree
less than n and in terms of certain ideal points. This theorem is
stated in §1 and three corollaries are established. The theorem is
proved in §2 and some further observations are made in §3. We
also include in §3 an elementary proof of the assertion mentioned
above that it is always possible to map points to points; more general
results can be found in [1; Article II].

We would like to point out that the analysis in this paper is
similar in certain respects to that of the moment space of a Tche-
bycheff system as developed in [3]. In particular, the use of the
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dual cone and the identification of the dual cone with a cone of
nonnegative functions are themes in [3]. However, the results here
are not consequences of the analysis in [3].

1* The main theorem* Let U = R\\j7=i [α*, &*] and let ^ be
the set of nonnegative purely atomic measures μ on U7U{°°} such
that the support of μ is a finite set. If (μ, c) is in ^ x JB, then
the function φ given by

(1) φ{z) = c + j(l + tz){t - zYιdμ{t)

is in & and, conversely, any function φ in & is of form (1) for
some pair (μ, c) in ^ x JB; see [2, Chapter II]. In equation (1) and
elsewhere in this paper, we adopt the following convention: if / is
a continuous function on U with \imx^oof{x) = A = \imx^_oof(x)9 and

if μ is in ^ then \ f(t)dμ(t) = μ(oo)A + [ f(t)dμ(t). Thus, the

expression for φ in (1) can be rewritten as

φ(z) = c + μ(°o)z + [ (1 + tz){t - z

Define a function Γ from ^ x J? into R2n by setting

M, c) =

where <p is given by (1). Since the derivative of φ is given by

( 2 )

the function <£> is nondecreasing on each interval [ai9 6J and therefore
φ([aif bj) = [9(α<), 9>(δi)]. These remarks show that the set A is
precisely the range of Γ.

The degree of a rational function φ is the maximum of the
degrees of the polynomials p and q where ψ = p/q and p and q have
no common zero. It is elementary to show that the degree of the
function φ in (1) is equal to the number of points in the support of
μ. We denote this integer by %μ.

We define an ideal point over the interval \ah bj] to be a point
/ of the form / = (Alf - , Anf Bl9 , Bn) where At = B, = 0 for
i Φ j and As ^ 0 ^ J55. For an ideal point / we write X(I) = 1 if
I ^ 0 and Z(JΓ) = 0 if I = 0.

The following theorem describes the set Λ, the closure of ^ and
the boundary of A in terms of those points of the form Γ(μ9 c) with
$μ ^ n — 1 and in terms of ideal points.
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THEOREM. Let P be a point in R2n.
( i ) The point P is in the closure of A if and only if

( 3 )
3=1

where (μ, c) is in ^ x R and I3 is an ideal point over [aό, bβ\. In
this case, the point P can be represented as in (3) with %μ ̂  n — 1
and %μ + Σy=i Wi) ^ n.

(ii) The point P is in the boundary of A if and only if it can
be represented as in (3) with

(iii) The point P is in both A and the boundary of A if and
only ίfP = Γ(μ, c) with (μ, c) in Λ X R and %μ<*n—\.

(iv) Finally, the representation for P in (3) is unique if and
only if P is in the boundary of A.

We now establish three corollaries to this theorem.

COROLLARY A. If P = (Alf ••-, An,Bu , Bn) with A, < Bt for
i — 1, , n and if Π?=i [Au Bt] Φ 0 , then P is in the interior of A.

Proof. Under these assumptions, the point P is of the form
Γ(0, c) + Σ?=i Ii where Iό Φ 0 for each j and the corollary follows
immediately from the theorem.

COROLLARY B. Let P = Γ(μf c) — Σy-i ίy witλ (μ, c) in ^£ x jβ,
%μ ̂  n — 1, and Iά an ideal point over [ah δ3]. Then P is in the
closure of A if and only if Ij = 0 for each j .

Proof If Ij = 0 for each j , then P is evidently in A and thus
in the closure of A. On the other hand, if P is in the closure of
Λ, then by the theorem, P = Γ(μ', cr) + Σ;=i iy with (μ\ c') in ^ x
R, %μ* ^ n — 1, and I] an ideal point over [aίf &,-]. Thus, Γ(μ, c) =
Γiff, c') + Σy=i( ίy + I'd an(l> by the uniqueness assertion of the
theorem, μ = μ\ c = c', and 7y + /ί = 0 for each j . It follows that
j \ = 0 for each j and this completes the proof of Corollary B.

COROLLARY C. Let P = (Λ, — 9An,B19 , 5 J &e α
[α̂  , δ j c [Â  , jBy] /or each j . Then (i) ίfeβ point P is in the closure
of A; (ii) the point P is in the interior of A if and only if[aif δ, ] Φ
[Ajf Bά] for at least n — 1 values of j ; (iii) the point P is in the
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boundary of A if and only if [ajf δ j = [Aύ9 Bά] for at least 2 values
of j; and (iv) the point P is in A if and only if [aj9 δy] = [Aύ9 Bj]
for all j or [ajf bά] Φ [Ajf Bά] for at least n — 1 values of j. On the
other hand, suppose that P satisfies [Aj9 Bj] c [ajt bj] for each j.
Then P is in the closure of A if and only if [Ajf Bβ] = [ajf bά] for
each j.

Proof If [aif 5J c [Aif J?y] for each j, then P = Γ(δ, 0) + Σ]=Jj
where δ is a unit point mass at infinity and I3 is an ideal point over
[ah bj\. Furthermore, Is = 0 if and only if [ajf bj] = [Ad, Bj\. Asser-
tions (i), (ii), (iii), and (iv) follow from this and the theorem. If
[Ajf Bj] c [aίΊ bs] for each j, then P = Γ(δ, 0) - Σ?=i Is a n d t h e result
follows from Corollary B.

2* Proof of the main theorem* The proof is based on a
number of propositions.

PROPOSITION 1. Every ideal point is in the closure of A.

Proof, Suppose that I is an ideal point over [ajf bd], that is,
I = (Al9 , An, Blf , Bn) with At = 0 = B, f or i Φ j and A,-^ 0 ^
Bό. Let δk be the unit point mass at aό — 1/&, let pk be a unit point
mass at bd + 1/k, and set

Λ = TTΓT*-*^" + unBl™P> ' * = 1, 2, 8, - .
a)) k(l + 5J)

Direct computation using the definition of Γ shows that Γ(μk, 0) —> I
as & -> oo and this proves the result.

PROPOSITION 2. // P is in the closure of A, then there is a point
P in the boundary of A and an ideal point I over [al9 6J such that

Proof Let P = (Aίf ••-, An, Bu , Bn), let J be the ideal point
( — 1, 0, 0, , 0), and let W be the set of nonnegative real numbers x
such that P — xJ is in the closure of A. If x is in W and if 0 <Ξ
y ^ xf then P — yJ = P — xJ + (x — y)J. Since (a; — j/)/ is in the
closure of A by Proposition 1 and A is a convex cone, it follows
that y is in W. Also, any number greater than Bx — Ax is not in
W; and W is evidently closed. Thus, the set W is of the form [0, x]
for a nonnegative number 5?. Let P = P — xJ and put / = xJ. Then
P is in the boundary of At I is an ideal point over [al9 δj, and P =
P + 7, as desired.
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In the proof of the following proposition and elsewhere in this
paper, the following notation will be useful. Let Flf — ,Fn and
GΊ, m, G~n be the continuous functions on U defined by Ft (t) ~
(1 + att)(t- α*)"1 and G%(t) = (1 + &««)(* - h)"1. Observe that if
Γ(μ, e) - (Λ, , An, J3lf , Bn), then

At = c +

( 4 )
B, = c + \G,ι

PROPOSITION 3. If P is in A, then there is a point (μ, c) in
^f? X R with Γ(μ, c) = P αwd # ^ ^ 2w - 1.

Proof, Let (μ0, c0) in ^ f x R be chosen so that Γ(μ0, c0) = P

and #μ0 ^ #i" for any pair (μf c) in ^ x Λ with Γ(/:ί, c) = P. Let

L]t(μ0) denote the real functions in L\μ0). Define functions Hu •••,

H2n^ in I/U^) by setting H2i^(t) = Ft{Jb) — G^ί) for i = 1, , % and

i?2.(£) = G,(ί) - JP< + 1(Q for i - 1, , n - 1. We now show that the

functions Hl9 , iίĝ ^x span Lι

R(μQ). For this, suppose to the contrary

that there is a nonzero function / in LTi(μ0) such that \f(t)Hi(t)dμo(t) — O

for i = 1, , 2n — 1. There is then a λ in .B such that the

measure dv{t) = (1 — Xf(t))dμo(t) satisfies v ^ 0 and #î  < #μ0. Let

c' = c + λ J ^ W / ω ^ o W and let / > , c') = P ' = {A[, , Ai, Si, , 5;).

Then it follows from (4) that

Al - B[= \Ft(t)dv(t) - [G^dvit)

t) - A, - B%

for i = 1, , n and similarly 5J — A + 1 — B%— Aί+1 for i — 1,
n — 1. Furthermore, by (4)

; - c r + J
- c + λ J^W/W^oW + \F,{t)dv{t)

Consequently P = P'. From the definition of μ0, it follows that
#/«0 ^ #v, a contradiction. Thus, the functions 1^, •• ,fl2n-i span
L)t(μ0) and therefore #j«0 ^ 2w — 1.

PROPOSITION 4. Lei (μ, c) δβ w ^€ x i2, ieί P = (Alf , An,
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Blf , Bn) = Γ(μ, c), let m be the maximum of \a1\ and |δ x | , and let
M be the maximum of \AX\ and \BX\. Then

(5) l i/ iH^d + m ' ) ^ " A l
^

h - a,

and

( 6 ) | c | ^ A f + | | i « | | J S Γ

where K is a constant which depends upon al9 , an and bu , bn

but is independent of the pair (μ, c).

Proof. By the mean value theorem, there is an x in (a1? 6J with

B±- A, =

Hence, by (2),

( 7 ) Bl2 Al = ί(l + *2X* - x)~2dμ(t) .

Elementary calculus shows for any x in [au 6J and for all t in R

(8) (1 + t*)(t - x)-2 ^ (1 + m2)-1 .

Combining (7) with (8) gives (5). Now let r = (αx + &i)/2. Since
the function 9> in (1) is nondecreasing on [alf &J, it follows that
I φ(r) I ̂  ikί and therefore

φ(r) - ((1 + tr)/(t - r)dμ{t)

where K = sup{|(l + ίr)/(ί — r)\: t in [/}. This completes the proof.
Let X be the closure of U in the one point compactification of

the real line. Thus,

X = {co} u ( - oo, α j U &, αj U U [b^l9 an] U [6., oo)

and a function / on X is continuous if it is continuous in the usual
sense at every finite point and if

In the following, we consider measures μfc in ^£ and a measure μ
with μk—>μ weak star. By this we mean that μ is a measure on
X and that \f(t)dμk(t)-> \f(t)dμk{t) for every continuous function /
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on X.

PROPOSITION 5. // {(μkf ck)} is a sequence of points in ^ x R
with $μk ^ 2n — 1, if μk—> μ weak star and ck —> c, and if'Γ(μk, ck) —>
P, then (μ, c) is in ^ X R and

P = Γ(JI, c) + ±1,

where I3- is an ideal point over [ajf bd].

Proof Let Γ{μh9 ck) = (A*, - , A*, Bf, • , B*) and let P =
(Alf , An, Bu - , Bft). First we must prove that μ is in .^C Since
%μk <: 2^ — 1, it follows that %μ<L2m,— \. It remains to show that
^(α <) = 0 = μφi) for i = 1, , n. We prove that μ(a±) = 0; a slight
alteration of the argument proves that μ(at) — 0 = ^(δj for each i.
Let α = a, and set JP(ί) = Fx(t) = (1 + ία)(ί - α)"1. Since F'(ί) = -
(1 + α2)/(£ — α)2, the function — F is strictly increasing and unbounded
on the interval (—oofa). Given ε > 0 choose s e ( - o o ? a ) so that
-F{t) ^ 1/ε for t in [s, a). Then

(l/s)Mβ, α]) ^ ί - F(t)dμk(t)
J[s,a)

= -\Fdμk + \ Fdμk

( Fdμk .
Jx\[

Since max{F(t): t in X\[s, a)} = F{b^)>

a/e)μk([8, a]) ^ -

Furthermore, since μk—> μ weak star, the sequence {||μfc||} is bounded.
Thus, there is a constant M which is independent of k, s, and ε such
that μk([s, a]) ^ sM. Let k -> ©o we deduce that μ((s, a]) <̂  sM. Then,
letting ε —> 0, we conclude that μ(a) — 0.

Let Γ(μ} c) = (AJ, , AJ», J5ί, , Bi). To show that P has the
form stated in the proposition, we must prove that A4 ^ A and
B ^ Bt for ΐ = 1, , n. Again we prove in detail only that A1 ^
A[. For this, let / be a continuous function on X with F ^ / .
Then by (4),

\fdμ - lim \fdμk ^ lim ί
J k—>oo J k—>oo j

= lim Af — cfc = Ax — c .

Since / is an arbitrary continuous function with F <Z f, it follows
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that A[ — c = \F{t)dμ ^ Ax — c and thus A[ ̂  At. This completes

the proof of Proposition 5.

The dual cone for A is the set Λ* of points Q in R2n such that
Q X ^ O for each X in A. The following result is routine and
establishes a useful criterion for a point in the closure of A to be
in the boundary of A.

LEMMA 6. Let P be a point in the closure of A. Then P is in
the boundary of A if and only if there is a Q in A* with Q P = 0.

As in [3], the dual cone for A corresponds to a cone of non-
negative functions. This correspondence is made explicit in the
following remarks and in Proposition 7.

For appoint Q — (uί9 •- ,un,v1, , vn) in R2n, define a rational
function Q by the equation

(9 ) Q(t) = ±{uJFJit) + v&M) = tUi—^ + Vi^
«=i i=ί\ t — at t — b

Observe that Q is continuous at ooy that

(10) Q(oo) = Σ (%<α< + vtbt) , and
i

(11)

If w(ί) = Π?=i(< - <*,)(« - 60 and p(t) = w(t)Q(t), then p is a real
polynomial with degree equal to or less than 2n, p(i)/w(i) is pure
imaginary, and

p(a%) = ut(l + aΐ)w'(at)

Conversely, if p is a real polynomial with degree less than or equal
to 2n, p(i)lw(ϊ) is pure imaginary and if Q = (%lf , %Λ, v^ , vn) is
defined by (9), then p{t) is equal to w(t)Q(t). (To see this, note that
p(t) — w(t)Q(t) vanishes at a5 and 6̂- for 1 ̂  j ^ n and so is a real
constant multiple 7 of w(t). However, p(ϊ)/w(i) — Q(i) = 7 and the
left hand side of the preceeding equation is pure imaginary. Thus,
7 = 0.) Finally, if (μ, c) is in ,s€ x JB, then

(13) Q*Γ(μ, c) = ciQ(i) + ψ{t)dμ{t) .

Equation (13) is an immediate consequence of (4), (9), and (11).
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PROPOSITION 7. Let Q be a point in R2n. Then Q is in A* if
and only if Q(t) ̂  0 for t in U and Q(i) = 0. In this case, the
point Q = (ul9 , un, vu , vn) has the property that ut ^ 0 <; vt

for i = 1, ---,n.

Proof. Suppose that Q is in Λ*. By (13), ciQii) = Q Γ(0, c) ̂  0
for each c in R and therefore Q(i) = 0. For t in U, let ^ be the
unit point mass at £. Then by (13), Q(t) = Q Γ(dt, 0 ) ^ 0 and thus
one direction of the proposition is proved. For the reverse assertion,
assume that Q(i) = 0 and Q(t) ̂  0 for t in U. It follows by continuity
at oo that Q(co) ^ 0. Hence, the point Q is in A* by (13). To show
that u3 ^ 0 <L %, let Ed be the vector in R2n with all zero entries
except for a —1 in the jth slot and let Fd be vector in R2n with
all zero entries except for a 1 in the (n + j)th slot. By Proposition
1, the vectors Έ5 and F, are in the closure of A, Hence, 0 <Ξ QΈό

and O^Q-Fj. These inequalities imply that uά ^ 0 ^ vά and this
completes the proof of the proposition.

PROPOSITION 8. If P = Γ(μ, c) + Σ ? = 1 Jy where Iβ is an ideal
point over [ajΊ bd] and if P is in the boundary of A, then %μ +

Proof. By Lemma 6, there is a point Q = (ul9 , un9 vί9 -,jvn)
in A* such that Q P = 0. Let p be the polynomial p(t) = w(t)Q(t)
where w(t) — Π?=i(ί ~ ^i)(ί ~ &i) The proposition is proved by
counting certain zeros of p. Equation (13) shows that Q-P~

\Q(t)dμ(t) + Σl^iQΊj Since each term on the right is nonnegative

and the sum is zero, each term must be equal to zero. Thus, (i)

^(oo)Q(oo) = 0, (ii)f Q(t)dμ(t) = 0, and (iii) Q /,. = 0 for each j = 1,

- -, n. Suppose that I3 Φ 0. Since u3- ̂  0 ^ v3 by Proposition 7, it

follows from (iii) that either u3 = 0 or vd = 0. Hence, by (12),

either p(a3) = 0 or p(b3) = 0. Since Q{t) ̂  0 for t in C7 and w(ί) > 0

for £ in U, it follows that p(ί) ̂  0 for £ in U. Thus, the polynomial

p must have at least two zeros, counting multiplicities, on [ajf b3].

If m is the number of nonzero //s, that is, if m = Σ?=i #(/,•), then

p has at least 2?π zeros counting multiplicities on (JΓ=i [α<, δ j .
Suppose for the moment that μ(°°) = 0 and set fc = #μ. Then

(ii) implies that p has at least k zeros on [7. Since p(t) ^ 0 for £
in U, each of these zeros is of even order. Thus, the polynomial p
has at least 2k zeros counting multiplicities on U. It follows from
Proposition 7 that p(i) = 0 = p( — i) and therefore the polynomial p
has at least 2m + 2Λ; + 2 zeros. However, the degree of p is equal
to or less than 2n. Hence 2m + 2k + 2 <: 2w and thus m + & + 1 ̂  w.
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This proves the proposition for the case j«(oo) = 0.
Assume now that /£(<*>) > 0. In this case, (ii) implies that p has

at least k — 1 zeros on U and, as before, each of these zeros has
even order. Thus, the number of zeros on U counting multiplicities
is at least 2k — 2. As before, p(i) = 0 = p( — i) and thus p has at
least 2m + 2k zeros. Since /<<*>)> 0, (i) implies that Q(°°) = 0. We
conclude that the degree of p is less than 2n. However, since p(t) ^> 0
for large | ί | , the degree of p is even. Thus, the degree of p is
equal to or less than 2n — 2. It follows that 2m + 2k <£ 2n — 2 or
m + k + 1 <; n, as before.

PROPOSITION 9. If P = Γ(μ9 c) + Σ?=i Jy wfcere j y ^ an ideal
point over [ad, bά] and %μ + Σy=i^Cy) ^ % — 1, ίftew there is point
Q in A* such that (i) Q-P — 0; (ii) /or # 6 U, μ(x) > 0 if and only if
Q(x) = 0; (iii) if I3 — 0, ί/̂ ê  % < 0 < ^- and (iv) i/ /^-^ 0, ίfee^
Uj = 0 = Vy.

Proof, Let â , , % be the points of support of μ in U, let
<̂ i, •••, am be the subscripts of the nonzero I/s, and define a poly-
nomial j> by the equation

k m

p(t) = (1 + ί2) Π (ί - XtY Π (ί - αβl)(ί - 6βi) .

Define Q — (ulf , un, vlf , vw) by (12). Since p(i) = 0, the remarks
preceeding Proposition 7 imply that p(t) = w(t)Q(t). It follows that
Q is in yl* by Proposition 7 and properties (i)-(iv) are straightforward
consequences of the construction of Q.

We turn now to the proof of the theorem. By Proposition 1
and the fact that A is a convex cone, every point of form (3) is in
the closure of Λ. To prove the reverse assertion, suppose that P is
in the closure of A. By Proposition 2, there is a point P in the
boundary of A and an ideal point I over [alf δj with P = P + /.
Since P is in the boundary of A, there is a sequence of points (μk, ck)
in ^ x R such that Γ(μk, ck) —> P. Furthermore, by Propositions
3 and 4, we may choose (μkf ck) with %μk<Z2n— 1, and we know
that there are constants K and L such that \\μk\\ ̂  K and \ck\ ^ L
for each k. By weak star compactness of the set of measures {v on
X: 0 <; v, \\v\\ ^ ΛΓ} and by the compactness of the interval [—L, L]f

we may assume there is a measure μ on X and a point c in /? such
that μk—>μ weak star and c& —• c. By Proposition 5, the pair (jt, c)
is in ^/ί x iί and P = Γ(/ ,̂ c) + Σ?=i ŷ where I y is an ideal point
over [ajf bj\. Since P is in the boundary of A, it follows from Pro-
position 8 that %μ + Σy=i Άh) ^ n - 1. Thus, P = Γ(μ, c) + (/+1,) +
Σy^ /y with %μ<,n-l and #/* + X(I + Λ) + Σi=2 Z(iy) ^ w. This
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proves that P is of form (3) and in fact that P can be represented
in form (3) with the additional properties asserted in the theorem.

If the point P of form (3) is in the boundary of A, then Pro-
position 8 implies that %μ + Σ ΉJ ϊ) ^ n ~ l The reverse assertion
is immediate from Lemma 6 and Proposition 9.

We prove next the uniqueness assertion of the theorem. Suppose
that P is in the boundary of A. Then P = Γ(μ, c) + Σ?=i I5 with I3

an ideal point over [ajf δ,-] and %μ + Σ l{Iό) <, n - 1. Let Q in J?2ίι

be the point constructed in Proposition 9. Assume now that P ==
Γ(μ'f c') + Σ*-i I'i where (μ', c') is in ^ x R and /,' is an ideal point
over [ajt 6J. Since Q is in Λ*, Q Γ(μ', c') ^ 0 and Q iJ ^ 0 for each
i. However, by (i) of Proposition 9, 0 = Q P = Q Γ{μ', c') + Σ/=iQ iί
and therefore Q-Γ(μf, c') = 0 and Q iJ = 0 for each i. From the
equation Q Γ(μ', c') — 0, from (13), and from (ii) of Proposition 9,
we deduce that the finite points in the support of μ' lie in the
support of μ. Hence, %μ* ^ %μ + 1. Let φ be defined by (1) with
respect to the pair (μ9 c) and let ψ be defined by (1) with respect to
the pair (//, c') Then the rational function φ — ψ has degree equal
to or less than 2k + 1 where k = %μ. If Iά = 0, then by (iii) of
Proposition 9 and the fact that Q-Ij = 0, we conclude that Ij — 0.
Hence, if I3 = 0, then φ{aά) — ψ{aά) and φ(Jbά) = ψ{bά). Since Iά = 0

for at least k + 1 values of j , the function φ — ψ has at least
2(fc -f 1) zeros. Thus, φ = ψ and it follows that μ = μf and c — c'.
From this, we learn immediately that Iά = /j for each i.

Now suppose that P is in the interior of A. Then P = Γ(μ, c)
for some pair (μ, c) in . ^ x R. Let x be a point in 27 U {°°} which
is not in the support of μ and let δ be the unit point mass at x.
Since P is in the interior of A, there is a y > 0 such that P +

— Γ(δ, 0)) is in the interior of A. Thus, there is a (ft, cx) in
x ]? with P + y(P- Γ(δ, 0)) - Γ(ft, cx). It follows that P =

Γ(v, c±) where v = (1 + T/)""1/̂ ! + #(1 + i/)"1^. Since sc is in the support
of v, the measures μ and v are different. This proves the nonuni-
queness of the representation in (3) for points P in the interior of A.

It remains to prove the assertion about points in both A and
the boundary of A. We have already shown that if P = Γ(μ, c) with
§μ ^ n — 1, then P is in the boundary of A and it is evidently in
A. Suppose, on the other hand, that the point P is in A and in the
boundary of A. Since P is in A, P = Γ(μ, c) for some (μ, c) in ^ ^ x
R. Since P is in the boundary of Λ, P = Γ(//, c') + Σ?=i /,• with
#// + Σ/=i^(^ ) = w ~™ l B11* the uniqueness assertion implies that
μ ~ μ\ c = d', and I,- = 0 for each j . Hence, %μ<,n— 1 and this
completes the proof of the theorem.

3* An example and some final comments*
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EXAMPLE. We work out in detail the case n = 2. To state the
result recall that for distinct extended complex numbers z2, z3, z4 and
for an arbitrary extended complex number zlf the cross ratio (zly z29

zSf 24> is the extended complex number Sfa) where S is the linear
fractional transformation determined by the conditions S(z2) = 1,
S(z8) — 0, and Sfa) = oo. In particular, if zu z2f z5, and z4 are finite,
then <zu z2f zs, z±) = (zt — zs)(z2 — z^{zx — z^)~\z2 — zB)~\ It follows that
given distinct extended complex numbers z2y zZy z± and distinct extended
complex numbers w2f wB, w4 and given the extended complex number
z19 then the extended complex number wx defined by the equation
(w19 w2t wH, w4} = (zu z2, zs, Zi) is the value at z1 of the linear fractional
transformation T satisfying T(z2) — w2, T(z3) == w3, and T(z4) = w4.

PROPOSITION 10. Let n = 2. For j = 1, 2, , 5 Zeί Λ, 6̂  the

set of points (Alf A2, Bu B2) satisfying condition j defined in the
following way:

( 1 ) Ax = A2 = Bx = B2y

( 2 ) {A1<B1 and A,^ A2 = B2S B,) or (A2 < B2 and A2 ^ A1 =

( 3 ) Λ < Blf A2 < B2 and [Al9 Bt] Π [A2, B2] Φ 0 ;
( 4 ) Λ < 5 l y A2 < 5 2, [Al9 B,] n [̂ 4.2, A] = 0 αwώ Λ = k where

( 5) Λ < iflf A2 < B2, [Alf B,] n [A2, B2] = 0
the closure of A is Λt U U Λ6; the interior of Λ is ΛZ\J Λ5; the
boundary of A is Λλ U Λ2 U AA; and A = Aλ U Az U AA U Λ

Proof Let (^, c) be a pair in ^ x J? and let Ilf I2 be ideal
points over [al9 &J, [α2, &2], respectively. Define conditions (Γ) through
(5') on the tuple (μ, c, Ilf I2) as follows:

( V) %μ = 0 and %(/,) = Z(72) = 0; (2') #A€ = 0 and %(/,) + Z(J2) = 1;
(30 %μ - 0 and %(!,) + Z(J2) - 2; (4') %μ - 1 and %(/,) = Z(I2) = 0;
(5') #ίi = 1 and !{!,) + Z(J2) ^ 1. Let Λ't be the set of points

P in J?4 such that there is a tuple (μ, c, Λ, I2) satisfying (i') with
p — Γ(μ, c) + /i + /2 The main theorem shows that the closure of
A is 41 U U A'6; the interior of Λ is A[ U -45; the boundary of A is
ΛJ U A2 U ill; and A = A[\J A[\J A[\J A!,. Thus, it is sufficient to prove
that At = 4 for i = 1, , 5. The equalities At = yl for ί = 1, 2, 3, 4
and the inclusion A* c ^5 are straightforward. The only inclusion
which requires any comment is A[ c Λ5. Let T be the (unique) linear
fractional transformation with T{a2) = A2, T(bx) = Bu T(b2) = B2. Then
T lies in ^ since T maps the real line into the extended real line
and T(a2) < T(b2) so that T is increasing on R. Note that k = T{a^
and the pole of T is not in [au &J U [α2, 62] Thus, there is a pair
(v, d) in ^ ^ x β with %v = 1 and
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Γ(v, d) = (TiaJ, Γ(α,), TφJ, T(b2)) .

Suppose, to reach a contradiction, that k ^ Ax. Then

Γ{v, d)=P + ϊι

where 7ί is an ideal point over [alf 6J. Thus,

/ > , d) = Γ(μ, c) + /x + J2 + I .

But the theorem implies Γ(v, d) lies in the boundary of A since #^ = 1
and thus by the theorem has a unique representation. This contra-
diction shows that k > A19 as desired.

We now prove the assertion in the introduction that it is always
possible to map points to points.

PROPOSITION 11. Let cu * ,c m be distinct points in R and let
Cu - , Cm be any points in R. Then there is a ψ in & with ψ(cj) =
= Cj for j = 1, •••, m.

Proof. Let Fd(t) = (1 + ίc5-)(ί - Cy)"1 for i = 1, , m and let Φ
be the convex cone of all positive measures on R\{cl9 , cm} with a
finite number of points of support. Map Φ into Rm by

The image of Φ is a convex cone in iί™. If it is not all of Rm, then
there are scalars r1} , rm not all zero with

0 ^ 2? r, \Fόdμ , ^ e Φ

so that Σ™r5Fό is nonnegative on R\{clf , cm}. However, limtUj.Fj =
— oo while l imί^ .^ — +oo. These imply that r5- = 0 for all j , and
hence the image of Φ is all of Rm.

Finally, we consider the following question: What is the smallest
integer qin) such that every point P is A is of the form P — Γ(μ, c)
for some pair (μ, c) in ^ x R with %μ ̂  g(Λ )̂? It is evident that
q(l) = 1, a careful study of Proposition 10 shows that g(2) = 2, and
Proposition 3 asserts that q(n) ^ 2n — 1. The following proposition
shows that q(n) ^ 2n — 2.

PROPOSITION 12. Tfce? e is powί P in A such that %μ ̂  2n — 2
7* every pair (μ9 c) in ^€ X i2 ^iί/t Γ(μ, c) = P.

To prove this proposition, we first establish the following lemma.
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L E M M A . Assume that (μk, ck) are in ^f x R, that μk —>0 weak

star, that ck-^c, and that Γ(μk, ck) -> P = (Alf •••, Anf Bu •••,!?„).

If there is an a e {1, , n) and an s < aa such that μk((s, aa)) = 0

for each k, then Aa = c. If there is a β 6 {1, •••,%} αweί an s > bβ

such that μk(φβ, s)) = 0 /or eαcfe k, then Bβ — c.

Proof. To simplify the notation, we prove in detail only the
case where there is an s < ax with μk((β, αj) = 0 for each k. Let
a = au let F(t) = F,(t) = (1 + ta)(t ~ a)-\ and let Γ(μk, ck) = (Λf, ,
Λ*,B*, •••,£*). Then by (4),

A* = ek + \ F(t)dμk(t) .

Letting k —> oo and recalling that μfc —> 0 weakstar, we deduce that
Ax = c, which proves the lemma.

Turning to the proposition, we may assume that n ^ 2. Let / =
(A, , An, Blf , BJ with Λ = - = An^ = - 1 , A. = 0, ^ = • • =
J?Λ_! = 1, and JBW = 0 and let Λ(2n — 3) be the set of points P in Λ
such that P — Γ(μ, c) for some pair (μ, c) in ^ ^ x i? with %μ <^
2n — 3. We prove the proposition by showing that / is not in the
closure of Λ(2n — 3). Since I is in the closure of A by the main
theorem, it then follows that Λ(2n — 3) does not equal A.

To show that / is not in the closure of A(2n — 3), assume that
it is and let (μk, ck) be points in ^ x JB with %μk ̂  2n — 3 and
Γ(μk9 ck) —> I. By Propositions 4 and 5, we may assume that there
is a pair (μf c) in ^£ x R with μk-+ μ weak star, cfc —> c, and / =
Γ(μ, c) + Σ?=i ^i where 7y is an ideal point over [aj9 6J. However,
since AΛ = 0 = 5%, it follows from (2) that μ = 0 and with jtβ = 0 it
follows that c = 0. Since the conclusion to the lemma fails for a =
1, , w — 1 and /3 = 1, , n — 1, the hypothesis also fails. In fact
the hypothesis must fail for any subsequence of the sequence {(μk9 ck)}.
It follows that for any ε > 0, there is a if such that μk((ak — ε, a)) > 0
and μk((bk, bk + ε)) > 0 for all i = 1, , n - 1 and all k ^ K. In
particular, one can choose ε small enough so that the intervals
(cii - ε, αj, , (αu_1 - ε, aJ, (6,, 6, + ε), , (bn_u 6%_1 + ε) are pairwise
disjoint. For this choice of ε and for k ^ K, it follows that $μk ^>
2n — 2, a, contradiction. Hence, the point I is not in the closure of
A(2n — 3) and this completes the proof of the proposition.

We have not been able to decide whether q(n) — 2n — 2 or 2n — 1
for n > 2.
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