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ϋΓ-THEORY FOR COMMUTANTS IN THE
CALKIN ALGEBRA

WILLIAM L. PASCHKE

Let A be a separable unital C*-algebra, and let Bc be
the commutant in the Calkin algebra of the image B of A
under a trivial extension. We show that KO(BC) is isomorphic
to the group of invertibles in (weak) Ext of A and that, in
the presence of an appropriate homotopy invariance assump-
tion, K^B0) is isomorphic to Ext of the reduced suspension
of A. These facts lead to an alternative approach to the
Pimsner-Voiculescu exact sequence for Ext of a crossed
product.

This paper originated from the following simple observation.
Let Θ be a *-automorphism of A, and suppose that the crossed product
of A by Θ is faithfully represented on (separable, infinite-dimensional)
Hubert space H as C*(A, Uθ)9 the C*-algebra generated by A and
^-implementing unitary Uθ, with C*(A, Uθ) Π (compacts) = 0. Let
π: L(H) —• Q(H) (Calkin algebra) be the Calkin map. Then any
unitary w in π(A)e (the commutant of π(A) in Q(H)) gives rise to a
*-homomorphism τ: C*(A, Uθ) -* Q{H) taking x in A to π(x) and Uθ

to π(Uθ)w. (This is because conjugation by π(Uθ)w has the same
effect on π(A) as conjugation by π(Uθ).) Direct-summing with a
trivial extension gives an extension of C*(A9 Uθ) corresponding to w.
When C*(A, Uθ) has the homotopy-invariance property (extensions
joinable by a path are equivalent), two unitaries which can be joined
by a path of unitaries commuting with π(A) give rise to equivalent
extensions.

The correspondence we have indicated here comes up (at least
implicitly) in the computation by Popa and Rieffel [9] of Ext of the
irrational rotation algebras. We will see below that it induces a map
from Kx{π{A)c) to Ext(C*(A, θ)) which, when properly decoded, is one
of the boundary maps in the Pimsner-Voiculescu exact sequence [6].

The only deep results that we will need are 1.5 and 1.6 of
Voiculescu's seminal paper [12] (see also [1]). In the language of
extensions, these say that any two trivial extensions (extensions
factorable through representations on H) are equivalent (conjugate
by an index-zero unitary in Q(H))f and that the direct sum of any
extension with a trival extension is equivalent to the given extension.
We will refer to these two facts together as "Voiculescu's theorem"
and make frequent use of them, generally without comment. All we
will use from iί-theory are the definitions of iΓ0(resp. iQ, for which
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we provide a reference (resp. reminder) at the appropriate moment.
Our main project is to identify K^πiA)6) in extension-theoretic

terms, but it will be helpful to consider Ko first. We assume
throughout that A is faithfully represented on H with A Π (compacts) =
(0). The commutant of the image of A in Q(H) under any trivial
extension is isomorphic to 7r(A)c by Voiculescu's theorem. In particular,
if we write Hn for the n-iold direct sum of H with itself and
πn: L(H) —> Q(Hn) for the map that takes T in L{H) to the image in
Q(Hn) of t the n-told direct sum of T with itself, then π\A)c and
π(A)c are isomorphic. Notice also that πn(A)c may be identified with
π{A)c (g) Mn9 the algebra of n x n matrices over ~π(A)e. For the
definition of KQ of a C*-algebra we refer the reader to §3 of [4]
Throughout this paper, Ext(A) will mean weak Ext, the semigroup
of weak equivalence classes of extensions of A. We write Ext*(A)
for the group of invertible elements of Ext(A).

LEMMA 1. The equivalence classes in K0(π(A)e) of projections
in π(A)c constitute all of K0(π(A)e).

Proof. Let p be a projection in π{A)c and let σ0: C*(π(A), p) -»
Q(H) be a trivial extension. By Voiculescu's theorem we may assume
that σo(π(x)) = π(x) for x in A; furthermore, σ0 is equivalent to σ0 0
σ0, so there is a v in Q(H2) such that v(π\x))v* = π(x)®0(x in A),
v(σo(p)Θσo(p))v* = σo(p)0O,Λ = l φ 1, and vv* = 1 0 0 . We have
vπ\x) = ττ2(a;)(l 0 0)v = τr2(cφ for α? in A, so [σo(i>)]o + K(p)]o = K(p)]o»
where [ ]0 denotes the equivalence class in KQ(π(A)c). Hence [σo(p)]o=
0. Applying this to ln = ττΛ(l) in πΛ(A), we have [1JO = 0 and so for
all projections q in π(A)c®Mn (which we identify with πn(A)c),
[ln — q]0 — — [q]0. That is, equivalence classes of projections in
πn(A)c(n ^ 1) form a group. Now take n > 1 and let q be a projec-
tion in πn(A)\ Let σ: C*(τrw(A), g) ~> Q(JET) be an extension equivalent
to the inclusion of this algebra in Q(Hn), and let σ0: C*(ττ*(A), q) —>
Q(ίfΛ-1) be a trivial extension. We may assume that ff(τrΛ(#)) = π(cc)
and σo(πn(x)) = τrΛ~1(ίc) for # in A. The equivalence of σ 0 σ0 with
the inclusion map yields a unitary w in πn(A)c such that w#w* =
o{q) 0 OO(g), so [q]0 = [cτ(g)]0 + K(g)]0 = |>(g)]0. This proves the lemma.

THEOREM 2. Le£ A 6e a separable unital C*-algebra. Then
K0(π(A)e) is isomorphic to Ext*(A).

Proof. The idea here is simply that invertible extensions of A
are cutdowns of π\A by projections in π(A)e. Let p be such a pro-
jection. Direct-summing p with 1 (and pulling back to π(A)c), we
may assume that x -* π(x)p is a *-monomorphism. Let v in Q(H) be
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such that v*v — 1 and vv* = p. Then τ: A —> Q(H) defined by
τ(x) = t;*;r(α!)tf is an extension of A. If px is another projection in
π{A)c with [p]0 = [pjo, then (direct-summing with 1Λ if necessary
and pulling back to π{A)c) we may assume that there is a w in π(A)d

w i t h w*w — p, ww* — px. Let r^a?) = v*π(x)v19 where vTvx = 1 and

^v* = p l β One checks that v*w*v1 is unitary and implements an
equivalence between τ1 and τ. Thus, the correspondence p —> τ gives
rise to a map /3: K0(π(A)c) —> Ext(A) with β([p]0) = [τ]. It is clear
that /3 is additive and takes 0 to 0, and hence β maps into the
group of invertibles in Ext(A). It is also clear that β maps onto
the group of invertibles. Finally, if β([p]0) = 0, then with τ and v
as above, there exists a unitary u in Q(H) such that uτ(x)u* —
uvπ(x)v*u* = τr(fic) for # in A, so [p]0 = [l]0 = 0 via uv in π(A)c.

We turn to the identification of KfaW). Write U{π{A)e) for
the unitary group of π(A)c and let I(π(A)c) be the quotient of U(π(A)c)
by the path-connected component of 1, with < >:£7(TΓ(A)C) —> I(π(A)c)
the quotient map. Most of the bookkeeping necessary for what
follows is taken care of in the following lemma. (The proof uses
much the same techniques as those in [9].)

LEMMA 3. Let A be as above.
(1) For u in U(π(A)c), let σ0: C*(π(A), u)-* Q(H) be a trivial

extension such that σo(π(x)) = π(x) for x in A. Then (σQ(u)} = <1>.
(2) The map (u) ->(wφl) from I(π(A)c)toI(π\A)c)is injective.
(3) I(π(A)c) is abelian.
(4) The map in (2) is surjective, hence an isomorphism.

Proof. (1) If p: C*(π(A), u) -> L{H) is a lifting for σ0, then p(σQ(u))
belongs to the von Neumann algebra p(π{A))f and hence has a logarithm
commuting with p(π(A)). This enables us to join p(σo(u)) to 1 by a
path of unitary operators commuting with p(π(A)). The image of
this path in the Calkin algebra joins σo(u) to 1 by a path in U(π(A)e).

(2) L e t - i n U(π(A)c) be such that ( u 0 1 ) = <101> in I(π2(A)e)f

and let σ0: C*(π(A), u) —• Q(H) be a trivial extension. We may assume
that σQ{π(x)) = π(x) for x in A, so if we set v = σo(u), we have (v) =
<1> by part (1). Moreover, the extension i(&σ0: C*(π(A), u)-*Q(H)2,
where i is the inclusion map, is strongly equivalent to i, so there
is a ^isomorphism φ: Q(H2) —> Q(H) (induced by a unitary map of H2

onto H) satisfying φ{π\x)) — π(x) for x in A and φ(u 0 v) — u. Now
< ^ 0 v ) = ( u © l ) = <101>, that is, there is a path in U{π\A)c)
joining uφv to 1 0 1 . The image of this path under φ joins u to
1 in U(π(A)c).

( 3 ) This follows from p a r t (2) by a s tandard a r g u m e n t . If

uίf u2 6 U(π(A)c) and S is t h e 2 x 2 scalar m a t r i x interchanging t h e
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standard basis vectors, then (%w2 0 1) = ((tti
((u, 0 1)S(^2 0 1)S> = (u, 0 u2) = (u2 0 O = <u2^ 0 1> because S
can be joined to 1 0 1 by a path of scalar matrices. By part (2),
then, (uyU^ = (u2u^.

(4) Take w in U{π\A)c). We must produce a w in U(π(A)e) such
that ( w 0 1 ) = (w). Let τ0 and τ: C*(π2(A), w) -> Q(.ff) be, respec-
tively, a trivial extension and an extension equivalent to the inclusion
i of this algebra in Q(H2). Since both τ0 and τ have trivial restrictions
to π\A), we may assume that they both send π\x) to π(x) for a? in
A. Set u0 = τo(w), u — τ{w). Now τ 0 τ0 is equivalent to ί, so there
is a unitary v in Q(iϊ2) such that Λ * = (r0ro)(ί)) for all 6 in
C*(π2(A), te;). In particular, v commutes with π\A), so by part (3),
(vwv*) = (w). But (ywv*) — (ttφwo)> and <̂ 0> = <1> by part (1),
so {w) = ( w φ l ) as required.

PROPOSITION 4. TΓίίfc A as above, the groups K^πiA)*) and
I(π(A)c) are isomorphίc.

Proof. Every invertible b in a unital C*-algebra B can be
joined by a path of invertibles to its "unitary part" δ|δ|-\ and two
invertibles can be joined by a path of invertibles if and only if their
unitary parts can be joined by a path of unitaries. The definition
in [11] thus gives KX{B) as the inductive limit of the system

where ψn,n+k((u)) = (u® 1*>. In our situation, π(A)e (g) Mn is iso-
morphic to πn(A)% which in turn is isomorphic to π{A)\ By the
previous lemma, all of the connecting maps in the system are iso-
morphisms, so taking the inductive limit simply produces I(π(A)c).

In light of Proposition 4, we will use (w) to denote the element
of Kx{π{A)c) represented by w in U(π(A)c).

Our next result in a straightforward consequence of Lemma 3
that may be of some general interest. Here, T is the unit circle.

PROPOSITION 5. Let A be as above and suppose that the map
from Ext(A (x) C(T)) to Ext (A) 0 Z induced by restriction to A ® 1
and 1 (x) C{T) is injective. Then any w in U(π(A)c) of index 0 can
be joined to 1 by a path in U(π(A)c).

Proof Let A®C(T) be faithfully represented, missing the
compacts, on H and let U in A! be unitary with A (x) C(T) = C*(A, U).
By the universal property of the tensor product, there is an extension
τ:C*(A, U)-^Q(H2) such that τ(x) = π\x)(x in A) and τ(£7) = w 0
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π(U). Because of our assumption on Ext(A (x) C(T)), τ is trivial.
There is thus a unitary v in π(A)c such that v(w®π(U))v* — π\U).
By parts (1) and (3) of Lemma 3, we have <wφl> = {w@π(U)) =
(v(w®π(U))v*) = <101>, so < » - <1> by part (2).

It follows from Theorem 7 below (see also [3] and 2.4 of [2])
that A — C(T) satisfies the condition of the proposition, so if u and
v are commuting index-zero unitaries in Q(H) and the spectrum of u
is T, then v can be joined to 1 by a path of unitaries commuting
with u. (This is also shown as part of the proof of the main result
in [9].)

Following the usage in [6] (as opposed to [8]), we say that A
has the homotopy-invariance property if whenever two extensions
τ0, τλ: A —* Q(H) can be joined by a (point-norm continuous) path of
extensions, we have τ0 strongly equivalent to τx. In [8], g.q.d.
algebras, among which are the quasidiagonal algebras of [10], were
defined and shown to have the homotopy-invariance property. There
are many g.q.d. algebras. Moreover, it is possible to establish
homotopy invariance for certain non-g.q.d. algebras on an ad hoc
basis; for instance, the computations in [5] or [7] show fairly readily
that the Cuntz algebras On have this property. In the theorem below,
ΩA is the reduced suspension of A, that is, the C*-algebra of con-
tinuous functions from T to A which are scalar-valued at 1.

THEOREM 6. Let A be a separable unital C*-algebra and suppose
that A (x) C(T) has the homotopy-invariance property. Then K^πίA)0)
is isomorphic to Ext*(i2A).

Proof. With the same set-up as in the proof of Proposition 5,
ΩA may be identified with a subalgebra of C*(A, U), namely the
subalgebra generated by 1 and {x(f( U) - /(I)): xeA, feC(T)}. (Notice
that U belongs to ΩA.) We will exhibit an isomorphism between
K0(π(ΩA)c) and K^πiA)0), using Theorem 2 to identify the former
with Ext*(J2A). Define 7: KQ(π(ΩA)c) ~> Kλ(π(A)c) by 7([p]0) = <w>,
where p is a projection in π(ΩA)e and w — pπ(U) + 1 — p. (Since
p commutes with τr(C7), w is unitary. For x in A, p commutes
with π(x)(π(U) — 1), so p(π(U) — 1) commutes with π(A), so w —
p(π(U) — 1) + 1 commutes with π(A).) In order to check that 7 is
well-defined, let q be another projection in π(ΩA)°, giving rise to a
unitary v in π(A)c as above, with [q]Q — [p]0. Since (w) is unchanged
by direct-summing π(U) with 1Λ, and p with ln or On, and then
pulling back to π(A)c (use Lemma 3 to see this), we may assume
that pq — 0 and that there is a partial isometry s in π(ΩA)e such
that s*s — p, ss* = q. Notice that {p, s, s*, q) is a system of 2 x 2
matrix units in π(ΩA)c, so p and q can be joined by a path of
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projections in π(ΩA)% whence it follows that (w) = (v). Since
{wx 0 w2) — (wxw^ in Ki(π(A)c) (see the proof of part (3) of Lemma
3), the map 7 is a homomorphism. We now show that 7 is in-
jective. Let p and w be as above and suppose that (w) = <1>. Direct-
summing p with 1 and w with π(U) if necessary, ([p]0 = [ p 0 l]0 by
the proof of Theorem 2, (π(U)) = <1> by Lemma 3), we use the
universal property of the tensor product to obtain an extension
τ: C*(A9 U) -> Q(H) with τ(α?) = π(x) for α in A and τ(t/) = w. Since
<(w> = <l), the direct sum of τ with a trivial extension can be
joined by a path to a trivial extension. Thus the assumed homotopy
invariance of C*(A, U) implies that τ is trivial. Let v in U(π(A)c)
be such that vwv* = vpπ(U)v* + t;(l — p)t;* = ττ(Z7). Multiplying by
vp on the right shows that vp commutes with π(U). In fact, vpe
π(ΩA)c because if / 6 C(T) with /(I) = 0 and x e A, then

vpπ(x)π(f(U)) = vπ{x)π{f{U))p = (π(x)v)(pπ(f(U))) = π(x)π(f(U))vp .

Thus [p]o = [vp^ l̂o in iΓ0(π(i2^4)c) and we may assume that
1 — p = 7r(£7). Set 9 = 1 — p, so π(U)q = q. It follows that π(y)q =

for yeΩA, where φ:ΩA->C is the (unique) character with
= 1. The extension of ΩA to which q corresponds is therefore

trivial and we have 0 = [q]0 = [1 — p]0 = — [p]0, so 7 is injective. To
check surjectivity, finally, take w in U(π(A)c). Direct-summing w with
π(U) if necessary, we may assume that there is an extension
τ: C*(A, J7) -> Q(fΓ) with τ(x) - π(x)(x in A) and τ(ϋ") = w. Since
<^0^*> = <10 1>, the homotopy invariance of C*(A, U) implies that
the extension σ: C*(A, U) -> Q(H2) defined by σ{x) = π\x) and α (ί7) =
w 0 w* is trivial, so there is a v e U(π\A)c) such that v(w 0 w*)v* —
π\U). Set p = vflLφOy, so p commutes with π\C*(A, U))9 hence
with τr2(42A). Furthermore, pπ2(U) + 1 — p = v*(w 0 l)v. Since
< v * ( ^ 0 1 » = <^01>, we have 7([p]0) == <^>

Theorem 6 yields a poor man's version of the exact sequence in
[6] with little effort. Let θ be an automorphism of A and C*(A, θ)
the crossed product of A by ί. We will consider the latter to be
faithfully represented on H, missing the compacts, as C*(A, Uθ),
where Uθ is a unitary on H with UθxUf = θ(x) for x in A. Write
Ωθ for the restriction of θ ® id. o n i ® C{T) to ΩA.

THEOREM 7. Let A be separable and unital, and suppose that
A ® C(T) and C*(A, θ) both have the homotopy invariance property.
There is an exact sequence

Ext*(i2A) — Ext* (ΩA) - ^ Ext*(C*(A, θ)) - ^ Ext* (A) — Bxt(A),

!([?]) = [ r o β r 1 ] - [τ] and ao([σ]) = [σoθ-1] - [σ].
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Proof. We use Theorem 6 to identify Ext*(J2A) with
the map at: K^πίA)0) —> K^πiA)0) is given by

To define <5, take w in JΓ^πίil)0) and define τw: C*(A, θ) -> Q(.if2) by
rw(a0 = τr2(x) and τw{Uθ) = π(Uθ)w (&π(Uθ). (The universal property
of the crossed product enables one to do this, since π( Uθ)w implements
θ on π(A).) If (w) = O>, then [ r j = [τυ] because C*(A, θ) has the
homotopy-invariance property, so 8: Kx{π(A)c) —> Ext(C*(A, #)) is well-
defined by δ«w}) = [r J . That S is additive follows from (w@v) =
( w φ l ) ; consequently, <? maps into Ext*(C*(A, β)). If we set

v = π(Uθ)*wπ(Uo)w* ,

then r,( ) = ( t p φ l M )(w01), so δαx = 0. Suppose δ(<^» = 0, i.e.,
that τw is trivial. Then there is a v in J7(τr2(A)c) such that
v*(π*(Uθ))(w®l)v = π2(Uθ), which means that <w> = «i«i;>). We
have established exactness at the second term. It is immediate from
the definition of d that ί*δ = 0. If ΐ*([τ]) — 0, then we may assume
that τ: C* (A, 0) -> Q(H) satisfies τ(x) = π(x) for cceA. Set w =
π(Uθ)*τ(Uθ), so wπ(x)w* = π{θ~ιθ{x)) = TΓ(»), i.e., weπCA)c. We have
[τ] = |YW], since τw is the direct sum of r with a trivial extension.
This establishes exactness at Ext*(C*(A, 0)). If τ: C*(A, 0) -> Q(H)
is an extension and σ its restriction to A (so [σ] = i*([τ])), then
σ(θ-\x)) = τ(Ue)*σ(x)τ(U9) for Φ in A and so σoi* = 0. If σ: A -> Q(jff)
is an extension and <xo([σ]) = 0, then there is a unitary v in Q(H)
such that v*σ(x)v = σ(β~\x)) for a? in A. If we define τ: C*(A, 0) ->
Q(Jtf2) by τ{x) = σ(x)®π(x)(x in A) and τ{Uθ) = v®π{U$), we then
have ΐ*([τ]) = [σ], so the sequence is exact at the fourth term.

Notice that if C*(ΩnA, Ωnθ) has the homotopy-invariance property
for all n ^ 1 (as would be the case if C*(A, θ) were g.q.d.), we obtain
a one-sided long exact sequence from the sequence in Theorem 7 by
appending to it

> Ext(ώ2A) > Ext(422A) > Ext(C*(βA, Ωθ))

on the left. Closing up the sequence in Theorem 7 via maps

Ext(A) > Ext(42C*(A, θ)) > Ext(i2A)

to obtain the cyclic sequence in [6] appears to be beyond the scope
of the methods used here, however.
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