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AUTOMORPHISMS OF DIMENSION GROUPS AND
THE CONSTRUCTION OF AF ALGEBRAS

CHAO-LIANG SHEN

Recent results of Edward G. Effros and the author show
that if a dimension group is simple, totally ordered and
with underlying group Zn, then we can construct explicitly
an AF C*-algebra with the given group as its Ko by using
the Jacobi-Perron algorithm. While the Jacobi-Perron
algorithm breaks down for nontotally ordered groups, we
study the construction problem via the consideration of
automorphisms of the dimension group. We find the neces-
sary and sufficient condition for a nontotally ordered simple
dimension group (Z3, Pa,a,β)) being stationary is that both
a and β lie in the same quadratic number field. We also
provide an explicit method for constructing Bratteli
diagrams (and hence corresponding AF C*-algebras) for
this type of groups.

Introduction* Since George Elliott introduced dimension theory
for approximately finite C*-algebras, considerable progress has been
made in the study of AF C*-algebras ([3], [4], [5], [6], [7], [8],
[2]). In [5] and [6], Effros and the author raised the question of
constructing AF algebras with given dimension groups as their K09

and answered it in the case when the given dimension group is
simple totally ordered and with underlying group Z% by using the
Jacobi-Perron algorithm. Based on this and some examples of non-
totally ordered simple dimension groups ([6, §4]). we conjectured
for any simple dimension group G with underlying group Zn, both
that there exists an inductive sequence

where φh e GL(w, Z) with nonnegative entries such that lim (Zn, φk) = G

and that there exists effective methods for constructing these φk'&.
In the meantime, our results have been applied by Cuntz, Krieger,
Pimsner and Voiculescu ([2], [11]) to problems in topological Markov
chains and to the irrational rotation C*-algebras.

While the recent work of Riedel [12] supports the first part of
conjecture, the construction problem still remains. Some dimension
groups which are certainly worth first consideration are those having
unique state (see [4] for definition). In this direction, as motivated
by the work of Cuntz and Krieger, we ask the following question
about existence and construction:
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Question EC: "Find a necessary and sufficient condition for a
given simple dimension group (Zn, P) to be the inductive limit of a
sequence (which shall be called a stationary Elliott system)

with constant connecting mapping ψ e GL(n, Z) of nonnegative entries,
and find a method for constructing the "Bratteli diagram" φ"
Dimension groups arising in this fashion are called stationary dimen-
sion groups. All stationary dimension groups have exactly one
state [6, Prop. 2.2].

In this paper we answer Question EC for the case n = 3 and
when (Z\ P) is not totally ordered (n — 2 case is completely answered
by [5]). In our study we find that the answer to this question is
closely related to the automorphism group of the given dimension
group. In fact, we show that the structure of AUT (Z3, P) contains
rich information, and the "Bratteli diagram" φ "hides" inside
AUT (Z\P) (see §2 for detail). While the Jacobi-Perron algorithm
breaks down for nontotally ordered groups (see [6, §4]), and no
periodicity condition for multidimensional continued fraction is
known, if our approach can be generalized to n ^ 4 case, it will be
of great interest for the construction theory of AF algebras. Such
a generalization might even solve the periodicity problem of simul-
taneous Diophantine approximation posed by Lagrange (see [10,
§10.12]). In §2 we state our philosophy for attacking the problem
and prove our main theorems. Finally we mention some open
problems motivated by our method. We refer readers to the paper
[3], [4], [5], [6], [7], [8], [13] and [14] for relevant results and
definitions.

1* Some preliminaries* Let G be a dimension group. An
automorphism of G is a group automorphism ψ such that ψ, ψ~λ are
positive homomorphisms. G is simple if it has no nontrivial order
ideal. Given a simple dimension group G with underlying group
Z2, then G is isomorphic to the dimension: group (Z2, Pa), where
a 6 R+\Q, Pa = {(%, v) e Z2: ax + y ^ 0} is the positive cone. Two
such groups (Z\ Pa), (Z2, Pβ) are isomorphic if and only if the con-
tinued fraction expansion of a and β agree after finite stage ([5]).

Let aeR+\Q, be a quadratic irrational, and let

[a0, alf , ant ]

be its simple continued fraction expansion [10, Ch. X]. Then it is
periodic. Replacing by equivalent irrational if necessary, we may
assume a > 1, and the period of the expansion is [aOf , αL_J. We
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have proved the following

THEOREM 1.1 ([13, Theorems 2.1, 2.3]). Given aeR+\Q. Then
the automorphism group AUT (Z2, Pa) is nontrivial if and only if a
is quadratic. Furthermore, if a is quadratic (and assume its
period starts from a0), then AUT (Z2, Pa) is cyclic and is generated
by the canonical automorphism

where pk, qό are

Po = a(

Qo "~~ -*-

defined

) , Pi

?1 =

f —
VL-I

JPL-2

inductively

= α^o + 1,

= au

QL-I

a '

by

= a Qn-1

n_γ + pΛ_2

// k > 0,

Z - 1 fffcL-1

Given a simple dimension group G with underlying group Z w .
Then G = H®tZ

p, where ^ ^ 0, where i ϊ is a dense subgroup of
i2d for some d ^ 1 (see [4, §4], [6]), and the ordering is given by
(h, z) 2> 0 if Λ, > 0, or h = z = 0. In particular, if G has underlying
group Z3, with unique state and is not totally ordered, then there
exists an a e R+\Q such that G = (Z\ Pa) @t Z.

The following proposition will be useful

PROPOSITION 1.2. Automorphisms of G = (Z2, Pa) φ e Z are of
the form

(1.0)

where ψ e GL (3, Z),

Proof. If

α 6 0

c d 0

6 AUT (Z\ Pa).

an α 1 2

α 2 1 α 2 2

0-81 ^32

G AUT (G) ,

then
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(x, y, z) e G+\{0}

<==> a(anx + any + aizz) + (a2lx + a22y + α232) > 0

<=> (ana + a21)x + (α12α + α22)2/ + (α13α + α23)z > 0 .

Thus we must have

(1.1) aL2a + α22 > 0 ,

(1.2) ( α " α + α 2 l ) = α ,

(α12α + α22)

(1.3) α13α + α23 — 0 .

Since a is irrational, (1.3) implies α13 = α23 = 0. Thus α33 = ± 1 , and

\an a ' 2 ] 6 A U T ^ P«) &14> L e m m a 4 ?]) Conversely if ψ is of the
form (1.0) with Γ^ ^ Ί e AUT (Z\ Pa), direct computation shows that
^ e A U T ( G ) . D

The following lemma is straight forward, and will be useful for
our discussion.

LEMMA 1.3. // G, H are dimension groups, and Φ:G—>H is
an isomorphism (in order sense), then AUT (H) = Φ AUT (G)Φ~ι.

Thus if AUT (G) is nontrivial, then so is AUT (H), and conversely.
Suppose we are given a stationary Elliott system

where φ is a strictly positive matrix in GL (n, Z). {From now on
we shall use the notation GL (n, Z)+ to denote the set of unimodular
matrices with nonnegative entries, GL (n, Z)++ to denote the subset
of φ in GL (n, Z)+ such that φm is strictly positive for sufficiently
large m.) Then the resulting stationary dimension group has uni-
que state, and we can express its positive cone as

jP(i,«2,-,«Λ) = {(Si, ••-,&*)£ Zn: xx + a2x2 + + anxn > 0}

U{(0, •••,0)},

where (1, a2, , α J is the eigenvector of the Perron eigenvalue of
φtr, at least one of at is irrational, and a2, - , an > 0. In fact the
same result is true if <£>eGL(w, Z)++. Since for φ nonnegative, φ
has an eigenvalue λ with λ >̂ | a \ for all other eigenvalues a (see
[9], Ch. Ill, §3). On the other hand, ψm is strictly positive, it has
an eigenvalue μ with μ>\β\ for all other eigenvalues β. Using
the fact that sp {φtr)m = (sp φtr)m, we conclude that μ = λTO; again
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(1, a2, , an) is the eigenvector of φm corresponding to the Perron
eigenvalue, and hence at > 0 for all i. Since the Perron eigenspace
is one dimensional, (1, a2y , an) must be the unique Perron vector
of φ of that form.

Although the following lemma is not difficult, we give a proof
here for completeness, φ e GL (3, Z)+.

LEMMA 1.4. // the stationary dimension group G = lim (Z3, φ)

is simple, and is not totally ordered, then the Perron eigenvalue X
of φ is a quadratic integral unit, i.e., it satisfies an equation of
the form x2 — bx + c — 0, where beZ, c = ± 1 .

Proof. It is easy to see (c.f. [1, Cor. 3.5]) that G is simple if
and only if ψ e GL (3, Z) + + . Write G = {Z\ P(lfβlfβ2>), where (1, al9 a2)
is the Perron eigenvector of φ. Then by computation we see that
αx = P(λ)/i?(λ), a2 = Q(λ)/i2(λ), where J2(o5) is a linear polynomial, and
one of P(x) and Q(x) is linear, and the other is quadratic. Since G
is not totally ordered, 1, aλ and a2 are rationally dependent. This
implies that the monic minimal polynomial m{x) of λ over Q is
quadratic, it divides the characteristic polynomial X(x) of φ, and
X(x)eZ[x] is monic. Write X(x) = m{x)q(x), q(x)eQ[x]. Since Z is
a normal integral domain, m(x) eZ[#]. On the other hand, since
the constant term of X{x) is ± 1 , the constant term of m(x) must
be 1 or —1. Thus we conclude that λ is a quadratic integral unit.
Further calculation shows that we can write at as rt + 8tλ, where
ri9 s,eQ. Π

2* The main theorems* We shall first state and prove one part
of Theorem 2.1. Then we explain our idea and prove a technical
lemma. The proof of the theorem and the construction of the
Bratteli diagram will be continued after Lemma 2.2.

THEOREM 2.1. The simple dimension group (Z2

fPa)φtZ is
isomorphic to a stationary dimension group if and only if a is a
quadratic irrational.

Proof. Here we prove the "only if" part. Suppose (Z2, Pa) φ* Z
is isomorphic to a stationary dimension group G = lim(Z3, φ), φe

GL (3, Z)++. Write ~^

G+ = {(x, y, z) eZ*:x + a2y + a2z > 0} U {0, 0, 0)} ,

where (1, α2, α3) is the Perron eigenvector of φtr. Then 1, α2, α3

are rationally dependent since (Z2, Pa) Φ* Z is not totally ordered.
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By Lemma 1.4, we can write at = rt + s*λ> where rif s^eQ, and
λ is the Perron eigenvalue of φtr, which is a quadratic integral unit.
Let

Φ = K , ]L =i: (Z2, P*)®tZ > G

be an isomorphism. Then (x, y, z) e [(Z2, Pa) φ * Z]+\{(0, 0, 0)} if and
only if (anx + a12y + α13z, a2ίx + a22y + α23z, azιx + aZ2y + azzz) 6 G+\{(0, 0, 0)},
i.e., ( α u + a2ίa2 + ^31^3)^ + (̂ 12 + 2̂2̂ 2 + 3̂2̂ 3)2/ + fe + 2̂3̂ 2 + ct?s^3)z > 0.

Since (x, y, z) e [(Z2, Pa) © t Z]+\{(0, 0, 0)}, we have α# + 2/ > 0. Hence
α13 + α23α2 + α33α3 = 0, α12 + α22α2 + α32α3 > 0 and (αu + α21α2 + α81α3)/
(αi2 + α22α2 + α32α3) = a. a2, α 3eQ(λ) imply that αeQ(λ). The fact
that λ being quadratic implies that a is a quadratic irrational. This
proves the "only if" part of the theorem.

Now suppose we are given the simple dimension group
(Z\ Pa) Φί Z, where a is quadratic. Our idea for proving that
(Z2, Pa) φ ί Z isomorphic to a stationary dimension group is first
to replace (Z2, Pa) φ^ Z by a suitable isomorphic dimension group
G = (Z3, P(i>α2>β3)), kwhere a2, az e R+\Q, and then to prove that the
automorphism group AUT (G) of G is nontrivial. Furthermore we
prove that AUT (G) contains an element φ e G L (3, Z)++, and for this
φ, (1, α2, as) is the Perron eigenvector of φtr. For our purpose, we
need the following

LEMMA 2.2. The dimension group H
to dimension groups of the form

(Z2, Pα) φ t Z is isomor-

where nlf n2, meZ, g.c.d. (nlf n2) = 1.

Proof. Choose u, v e Z such that nxu + = 1. Define

— mu 1 mn2

u 0 —n2

v 0 nι j

Then ^ e G L ( 3 , Z) (in fact det ψ = - 1 ) , and

1 m 0

_0 — v ^.

Now notice that if (x, y, z) e H+\{(0, 0, 0)}, then φ(x, y, z) e P\{(0, 0, 0)}.
This because (—mux + y-\-mn2z)+(n1a + m)(ux-- nzz)
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ax + y>0. On the other hand, if (x'f y\ z') eP\{(0, 0, 0)}, then
φ-\x', y\ z') e H+\{(0, 0, 0)}. This is because ψ~\x\ y\ zf) = \n&'+ n&\
xf + my', — vy' + uz')f and a(nxy' + n2z') + (xr + my') = a?' + (^α +
m)i/' + w2αz' > 0, Thus ψ: H-*(Z\ P(1,nia+m,ni«)) i s a n isomorphism.

D

As the "suitable isomorphic group", we will pick G = (Z3, P(1,α,α)),
namely we take n± = 1, n2 = lf m — 0. Furthermore, we choose
u =• X, v = 0, i.e., we choose

"0 1 01

α/r = 1 0 - 1

0 0 1

Now set [α0, α^ ] to be the continued fraction expansion of the
quadratic irrational a, and assume [α0, •• ,αL_1] is its period. By
Theorem 1.1 and Proposition 1.2

PkL-l QkL-1

PkL-2 QkL-2

a b
, Pa)φtZ),

where a,beZare arbitrary. By Lemma 1.3, 1 e AUT (Z\ P(1>αfβ,),

QkL-2

0 1

1 0 -

0 0

PkL-2

0 PkL-l QkL-1

PkL-2 QkL-2

a b

PkL-2

o-
0

1.

0

1

.0

1

0

0

1

0

1

kL-t - b p k L ^ - a p k L _ x — (α + 1)

Jb a a + 1

Now we can continue the proof of Theorem 2.1.

Proof of Theorem 2.1 {continued): If we can choose suitable
k, a, b such that Φlk;aιh) e GL (3, Z)++ and (1, a, a) is the Perron
eigenvector of Φ(&;α,δ)ίr> then we are done. For this purpose, we
first fix an α > 0 , a 6 > 0 , and then with respect to these a and 6,
we choose and fix a sufSciently large even number k (the reason for
choosing k even is to make the det Φ — pkL-iQkL~2 ~ PkL-2QkL-i — (—l) f c z

equal 1), such that pkL-i > α + 1, QkL^x > b. This choice is possible
since t h e sequences {pn}, {qn} a re increasing to infinity. Then
Φa,a>h) e GL (3, Z ) + + . On t h e other hand, since Φ ( J b ; β i 6 ϊ e AUT (Z\ P ( l i β | β ) ) ,
(x, y, z) e P(lfβfΛ,\{(0, 0, 0)} if and only if Φ(Jfc !βi6)(α, y, z) e P(lfβiβ,\{(0, 0, 0)},
i.e., (qkL-2X + PkL-2V + PUL-ZZ) + α[(gAZ_1 - b)x + (pkL^ - a)y + ( p ^ -

(α
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(VkL-2 + ocpkL^z > 0. T h i s i m p l i e s

( 2 1) (PkL-2 + aVkL-dKQkL-i + aqjcL-i) = α .

Since the characteristic equation X(λ) of Φ{k^a,h) is

X(λ) = λ3 - (gM_2 + p ^ + l)λ2 + (gfcL-2 + P*L-I

= W - (P«-I + ?*^2)λ + i](λ - l)

= P(λ)(λ - 1) ,

and by (2.1), P(<fcL_2 + aqkL^) = 0, X(gfcL_2 + aqkL_,) = 0. On the other
hand, since qkL_2 + aqkL-i > 1, it is the Perron eigenvalue of Φ(Λ;α,δ).
Further calculation shows that (1, a, a) is the Perron eigenvector of
&uc;a>b)tr> The proof is now complete. •

The proof of Theorem 2.1 also proves the following theorem
concerning the Bratteli diagram of the dimension group (Z\ Pa) φ* Z
for a a quadratic irrational.

THEOREM 2.3. Let the notation be as above, and let a be a
quadratic irrational. The dimension group (Z\ Pa) φ* Z is isomor-
phic to the stationary dimension group lim (2Γ3, Φ(A.;α,6)), (i.e., Φ(fc;α,6)

is a Bratteli diagram of (Z2, Pa) φ έ Z), where a and b are any
natural numbers, k is an even natural number such that pkL-ι >
(a + 1), qkL_x > 6.

Suppose we are given a nontotally ordered simple dimension
group G with unique state, say G — (Z3, P{lyβvβ2)). Then G =
(Z2, Pa) φe Z for certain a e R+\Q. It is easy to see that βl9 β2 e Q(a),
cceQ(βlf β2). Using this observation, we can rewrite Theorem 2.1
as

THEOREM 2.1'. The necessary and sufficient condition for a
nontotally ordered simple dimension group G = (Z3, Pα,^,^)) to be
stationary is that both βγ and β2 lie in the same quadratic number
field.

3. Open problems. Motivated by the discussion in §2, we
make the following

Conjecture. There exists a necessary and sufficient condition on
the tuple α2, , an, where a% > 0 for all ί, and where at least one
of them is irrational, for which the automorphism group
AUT (ZΛ, P(i,*2>...,αn)) is nontrivial and contains an element in GL(n, Z)++
whose transpose matrix has (1, α2, , aj as its Perron eigenvector.
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(In case when the group is totally ordered, we would believe that
the condition is a2, , aneQ(x), where λ > 0 is an integral unit of
degree n.)

For studying this conjecture, we think the following problem
should be considered first:

Problem. Find a necessary and sufficient condition for the
totally ordered simple dimension group (Zn, P(i,«2,...,αft)) to have a
nontrivial automorphism.

While people get stuck for a long time on the search of the
periodicity condition for multidimensional continued fraction expan-
sion, to attack this problem for simultaneous Diophantine approxima-
tion for a tuple of reals, I think we should, instead of using classi-
cal approach, consider the automorphism group of the dimension
group with the tuple of reals as the representative of its pure state.
Thus we think the answer to the above problems would bring some
light to this old periodicity puzzle posed by Lagrange.
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