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AN ERROR ESTIMATE UNIFORM IN TIME FOR SPECTRAL
GALERKIN APPROXIMATIONS OF THE

NAVIER-STOKES PROBLEM

JOHN G. HEY WOOD

I* Introduction. The existence theory for the nonstationary
Navier-Stokes equations can be developed, by the method of Galerkin
approximation, using any of a wide variety of possible systems of
basis functions. The basis functions used in the papers of Hopf [8]
and of Kiselev and Ladyzhenskaya [10] are merely assumed to belong
to and be complete in certain function spaces. However, to obtain
refinements in the theory by the Galerkin method, particularly re-
garding the regularity and decay of solutions, it often appears
essential to choose as basis functions the eigenf unctions of the Stokes
operator; see Ito [9], Lions [12], Prodi [14], Foias [3], Ladyzhenskaya
[11], Temam [17], and Hey wood [4, 5, 6].

In these and other works, the convergence of the Galerkin ap-
proximations is generally proved by a compactness argument, based
on α-priori bounds for the approximations. A notable exception is
the paper [3] of Foias, where (on page 324) the approximations
are shown to converge, uniformly over a time interval, in the
Dirichlet norm. Recently, Rautmann [15, 16] has drawn attention
to this type of result, and gone further, giving a systematic de-
velopment of error estimates, for the Galerkin approximations and
their time derivatives.

Rautmann's error estimates (and also Foias' convergence theorem)
are presented locally, valid on a finite interval determined by certain
norms of the data. At best, if one assumes the solution to be approxi-
mated is uniformly regular, for t e [0, c>o)? the method yields an error
estimate which grows exponentially with time. And, without further
assumptions, this is the best that can be expected. However, if one
assumes, additionally, the solution to be approximated is stable, then
it is reasonable to expect an error estimate which is uniform in
time. This is what is done in the present paper. It is hoped the
result may prove suggestive for future developments in the Navier-
Stokes theory. It should be mentioned, however, the original reason
for undertaking this work arose in the author's joint study [7] with
Rolf Rannacher, of finite element Galerkin approximations, a context
in which error estimates uniform in time have important implica-
tions for computations. While the present work served to fix some
ideas, in a simpler, purely theoretical context, it has turned out our
arguments in the finite element context are substantially different.
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334 JOHN G. HEYWOOD

We present here only the most basic result of its type. How-
ever, a number of elaborations seem possible, some of which are
being investigated with Rannacher in the numerical context. We
mention, the stability condition (A3) is formulated here in terms of
the Dirichlet norm, could be formulated in terms of the ZΛnorm.
Also, our error estimate is given in the Dirichlet norm; it should be
possible to obtain an improved rate of convergence in the IΛnorm.
Finally, in some situations, there exist "stable" solutions which do
not possess all the spatial symmetry of the domain and external
forces. Of course, in such situations, there is only stability modulo
shifts in the spatial symmetry. The definition of stability we work
with, here, is too strict to allow for this possibility. We think it is
possible to weaken our definition of stability, to be neutral relative
to drifts with respect to the spatial symmetry, resulting in error
estimates modulo shifts in the symmetry. Similarly, if the boundary
values and forces are time independent, stability and error estimates
may be considered modulo drifts and shifts in time.

After a short preliminary §2, our result is stated in §3, and
proved in §§4 through 7.

2. Preliminaries. Let Ω c Rn, n = 2 or 3, be a bounded domain
with smooth boundary dΩ, The function spaces customarily denoted
by LP(Ω), Hm(Ω), C?(Ω) are defined as usual, though we will not
distinguish in our notation between spaces of R and of i?re-valued
functions, the distinction always being clear from the context.
The L2 inner-product and norm are denoted by ( , •) and || || respec-
tively, and the Lp norm by ]] |L The following spaces of solenoidal
functions are, of course, i2n-valued:

D(Ω) = {φ:φe C0°°(ώ) and F-φ = 0} ,

J(Ω) is the completion of D{Ω) in U(Ω) ,

J,(Ω) is the completion of D(Ω) in H\Ω) .

We let P denote the orthogonal projection L2(Ω) —> J(Ω), and let
Δ — PΔ, where Δ is the Laplacean operator. We list, as lemmas,
some results which will be needed later.

L E M M A I . For ueH\Ω), \\Pu\\Hi <L c\\u\\Hi.

LEMMA 2. For every ueJ(Ω)f]H1(Ω)y there exists a function

ψeH2(Ω) such that curli/r = u, ψ\dΩ = 0, and | | ^ | U 2 ^ c!l^lii/i

LEMMA 3. For g e L2(Ω), the unique solution v e Jι(Ω), q e L2(Ω)/R
of the Stokes problem
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— Δq + Pυ = g a n d P-v — 0 i n Ω , v\dΩ — 0 ,

s a t i s f i e s \\v\\H2 + \\q\\ni/B<L c\\g\\. Hence, a l s o , \\v \\Π2 < ; c\\ Δv |! holds
f o r a l l v e J ^ Ω ) n l ϊ 2 C < 2 ) .

For proofs of Lemmas 1 and 3, see [17, p. 18] and [1], respec-
tively. In Lemma 2, if Ω is two-dimensional, it should be understood
that α/τ is scalar valued and that curl ψ = (dψ/dx2, — dψldxλ). The
proof in the more difficult three-dimensional case is as follows. By
a well-known construction [11, p. 25], u can be continued to all Rz

as a solenoidal function ueH\Rζ) with compact support. Hence it
can be expressed as u = curl φ, in terms of the vector potential

φ(x) = (47r)~1l(cur^)/r dy. Since (curl^) ^ = 0 on dΩ, a scalar function

p can be defined on component 3Ωh of dΩ by setting p(x) = I p ώs,
Jc

where C is any curve lying in dΩ joining x to a fixed point of 3i2A.Since φeH\Ω), we have p e W2

5/2(ώ3) and T72

3/2(9i2). It follows
that p can be continued into Ω as a function p e H%Ω) satisfying
dp/dn = φ-n on <5i2; see [13, p. 104]. Clearly Vp — φ on 9β, and thus
ψ = φ — Fp is & function with all the desired properties.

We denote by {ak(x)} and {λj the eigenfunctions and eigenvalues
of the Stokes operator 2 defined in JX(Ω) Π H\Ω), i.e., of the problem
— Δv + Fq = Xv a n d F-v = 0 i n Ω, v\dΩ = 0. T h u s — Δak — Xka

k. S o m e
well known results and elementary observations are collected in the
following lemma.

LEMMA 4. The eigenfunctions {ak} are orthogonal in the inner
products (u, v), (Fu, Pv), and (Δu, Δv), and complete in the spaces
J{Ω), Jλ{Ω) and J,{Ω) n H%Q). If Σ?=i ^ e JX{Ω), then

If Π

Ψ Σ -
II k = n

^ λ:

^ λ:

Σ
k

We list, in the following lemma, some Poincare and Sobolev
inequalities that will be needed, sometimes combined with the results
of Lemmas 3 and 4. We will use only the three-dimensional versions
of Sobolev's inequalities, these being, of course, also valid in bounded
two-dimensional domains.

LEMMA 5. Ifue Jλ(Ω) n H\Ω), then \\u\\ <, λr1/21|Fu|| ^ λΓ11|Δu||,
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| | w | | β £ c\\Pu\\ , s u p \u\ £ c\\Iu\\ , | | w | | 4 ^ c\\u\\^\\Fu\r ,

and \\Fu\\β tS e\\Δu\\.

3* Staterαent of the result* Let u(x, t), p(x, t) be a solution
of the Navier-Stokes problem:

ut — Δu -\- u-Δu -\- Vp — f and

( 1 ) V u = 0 in i2 x (0, oo) ,

u\t=0 = α , u|3 j2 = 0 .

We assume the data for problem (1) satisfies

(Al) a 6 UΩ) n H\Ω) , sup || / 1 | < - , sup | |/ t | | < - ,

and that the solution satisfies

(A2) |i Fu(t) || ^ M , for all t ^ 0 .

We further assume u is conditionally exponentially stablef in the
sense of condition (A3), below. The stability condition concerns the
behaviour of perturbations of u. A function ζ(x, t), defined on some
interval t ^ t0, is called a perturbation of u, if ζ + u is a solution
of the Navier-Stokes equations, and if ζ|3i2 = 0. Thus, setting ζ0 =
ζ( , ί0), ζ is a solution of the initial-boundary value problem:

ζt- Aζ + u-Vζ + ζ'Pu + ζ Fζ + Fg = 0 and

( 2 ) F ζ = O in β x (ί0, oo) ,

C||βί0 = Co , ζ U = 0 .

Our assumption, then, is:
(A3) There exist positive numbers α, A, δ such that for every

t0 ^ 0, and every ζ^eJ^Ω) ΓΊ H\Ω) with | |Fζ o | | < δ, ίΛβ perturbation
problem (2) is uniquely solvable and its solution satisfies | |Fζ(ί) | | ^
A| |Fζ o | |β- β ( ί" ' o ), /or αM t ^ tQ.

The ^ t h spectral Galerkin approximation

k=l

to the solution of problem (1) is uniquely determined by the conditions

3 K , ^ ) + (F^n, Vφn) + (w".Fw», ^ ) - (/, φ«) , for ί ^ 0 , and

«0)-α,f) = 0,

for all φn of the form φn(x) = Σϊ=i^*α*(»).

THEOREM. There exist constants N and K depending only on
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the domain Ω, the norms of the data referred to in (Al), and the
constants intrduced in (A2) and (A3), such that

(4) \\F(u - un)(t)\\ ̂ Kx^ϊ ,

for all t ^ 0, provided n ^ N.

4. Comparison of error with perturbations* Let u =
ΣΛU Cjb(ί)αfc(a?) be the eigenf unction expansion of the solution u of
problem (1). Let vn — yΣΛϊ=iCk(t)ak(x) be the nth partial sum of the
series for u. Let en = u — vn, and let ψ = un — vn, were un is the
nth Galerkin approximation. Then u — un = en — ηn.

LEMMA 6. The assumptions (Al), (A2) imply \\Δu(t)\\, \\ut(t)\\,

and e'Λ eτ\\Fut\\2dτ are uniformly bounded, for t ^ 0. Thus,
Jo

\\Fen(t)\\ < ; cX~^ a n d \\en(t)\\ < ; cX~+lf f o r t ^ O .

These α-priori estimates for u are proved in [7]; most of the
argument is repeated, in a slightly different context, in Lemma 8
below. The estimates for en follow, using Lemma 4.

It remains to estimate Ύ]n. Observe that vn satisfies the linearized
equations

( 5 ) (vϊ, Φn) + (Fvn, Fφn) + {U'Fu, φn) = (/, φn) , for t ^ 0 ,

for all φn of the form φn(x) = ^t=,ιdka
k(x). This is easily seen start-

ing with the weak Navier-Stokes equations for u and using the
orthogonality relations for the {ak}. Subtracting (5) from (3) gives

(Tit, Φn) + (Vψy ?Φn) = (u Pu, φn) - (un-Fun, φn)

+ (u Pen,φn) + (en Pun

9φ
n)

( 6 )
= —{u Fη71, φn) — (ψ-Fu, φn) — {ψ-Fψ, φn)

+ (ψ Fen, φn) + (en-Fηn, φn)

+ (u-Fen, φn) + (en Fvn, φn) .
This identity will be used, in § 5, to get an α-priori estimate for

\\Δr]n(t)\\. In order to compare ψ with a perturbation ζ, we must
rewrite (6) in a form valid for all test functions φ(x) e Jλ(Ω) n H\Ω).

Let Pn and Qn be the orthogonal projections of L2(Ω) onto
Span {au , an} and Span {αn+1, an+2, •}, respectively. Clearly P,
PTC and Qn all commute, P = Pn + Qn, etc. For φeJ(Ω), let us write
0 = Pnφ + Qn^ = φn + Qn^. Then, for any w e L\Ω),

(w, φn) = (Pww, ̂ ) = (w, φ) — (Qnw, φ) .
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Also, for φeJx(Ω),

(Fφ, Vφn) = -{Δψ, φn) = -{Δφ, φ) = (Fφ, Vφ) .

Using such obvious identities, we rewrite (6) as

(V7, Φ) + (Fφ, ?Φ) + (u Fφ, φ) + (φ Fu, φ) + (φ-Fφ, φ)

( = (QJLu ΓΦl Φ) + (QnlΦ ru], Φ) + (QnlΦ W, Φ)
+ (PulΨ Fe«], φ) + (Pn[β». Fφ], φ)

+ (Pn[w Fβn], (5) + (Pn[en Fvnl Φ) ,

which is valid for all φ e J(Ω), and t ^ 0. This is to be compared
with the weak form of (2), which is

(8) (ζ,, φ) + (Fζ, Fφ) + (tt Fζ, ̂ ) + (ζ Fu, φ) + (ζ Fζ, ̂ ) = 0 .

Let us denote the right side of (7) by (gn, φ), and let w = ψ — ζ.
Then, subtracting (8) from (7) gives

9 (wt, φ) + (Γw, F )̂ + (u Fw, φ) + (w Fw, φ)

for all ^ e J(Ω), and ί ^ ί0. The regularity of ψ and ζ, which is
implicitely assumed here and in Lemma 7 below, will be verified
later. Setting φ = — jfw, we obtain

!_ A| |F W | |2 + | |Jw| | 2 - (w Fw, Jw) + (w Fw, Δw)

(10) + (φ-Fw, Δw) + (w Fζ, /w) - (gn, Δw)

J w | | ||Δw\\ + c||^7"||-1|Fw||-1|Jw||
|Fw||.||ϋι;|| + | | ^ | | ||Δw\\ ,

or

A | | Vw !|2 + II Δw II2 ^ c ( | | J u II2 + II I φ II2 + II Δζ | | 2 ) | | Γ ^ II2 + II g ||2 ,
dt

and hence:

LEMMA 7. Lei ί0 ^ 0 α^d ζ be as in problem (2). Then, for w
and gn as above, and β(f) = c(| |Δu\\2 + \\Δψ\\2 + | | l ζ | | 2 ) , there holds

(11) | | F

for all t ^ ίo

REMARK. It is well to point out, here, why we don't assume
||ζ(t)| | ^ A\\ζ(to)\\e-a{t~to) in (A3), in place of the condition for the
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Dirichlet norm, and then try to use a continuous dependence theorem
in the L2 norm, in place of (11). The difficulty is that we would
still need to estimate \\gn\\ and hence ||ifyn]|, and this does not seem
possible, in three-dimensions, starting with an estimate for \\w(t)\\.
But we can, starting with an estimate for \\Vw(t)\\, because this
implies an estimate for \\Vrjn\\, which leads to an estimate for \\Δψ\\.

5* A-priori estimate of || fiψ(t)\\.

LEMMA 8. Suppose || Vψit) || < 7 holds on some interval 0 ̂  t ^ £*,
for some number 7 ^ δ. Then there also holds || Δr)n(t) |]2 < i?(72 + λ^+i),
for 0 <S t ^ t*f with a constant R dependent only on Ω, δ,

sup ί S 0 IIΔu(t)\\, sup ί S 0 | |^ί(ί) | | , and supt^oβ"*\ eτ\\Vut\fdτ, i.e., quantities
Jo

all bounded via Lemma 6 in terms of the assumptions (Al), (A2),
(A3).

Proof. What follows is based on the identity (6). Since the
Galerkin approximation un does not appear, there will be no ambiguity
in setting η = ηn, e = en, v = vn, φ = φn. Setting φ = — Δη in (6),
we obtain

and hence

(12) A \ \ Δ v ψ + \\2ηf ^c\\Δn\f \\Vηf + c\\Fy\\> + c λ ^ H Δ u

Multiplying (12) by e* and integrating gives

e~* [eτ\\Δηfdτ £ e~* Γer{τ2 + l
(13) J°

Setting ψ — 7]t in (6), we obtain

| | 5 7 ( | | 2 ^ l l ^ l l l l ^ l l + β l l ^ l l l l ^

+ c\\Δe\\.\\PV\\-\\Vt\\ + c\\Δu\\ \\Fe\\-\\Vt\\ ,

and hence

(14) | | ^ ] | 2 ^ C]|JV||2 + c| | ltt | | 2 !|F77||2 + c| |J>| | 2 | | ^ | | 2 + c

Multiplying by e* and integrating, and using (13), we get



340 JOHN G. HEYWOOD

(15) e~* ( V || Vt ψdτ ^ e~* \* e rc(γ

2 + KU)dτ .
Jo Jo

Now differentiating (6) with respect to t and setting φ = ηu we
obtain

l 2 = ~iUt'FV' Vt) ~ ̂ *'Vu' Vt) ~ {7]'VUt> Vt)

- (VfVV, Vt) + (VfFe, Vt) + (V ret, Vt)

+ (et-Frj, ηt) + (ut Fe, ηt) + (u Γet, Vt)

+ (et Vv,7]t) + (e Fvt,Vt)

+ e\\Fv\\ \ \ η t \ \ 1 / 2 \ \ F v t \ \ V 2 + l l ^ l

+ c | |Jw| | | | e ( | | | |F

and hence

I I ^ I P | | | M | V\f + c\\Δu\\κ\Wt\c
(17) d t

Multiplying by e* and integrating, using (13), and (15), we get

\\ηt{t)\\2 ^ e-ΊI

From (14), it is clear | |^(0) ||2 ^ cX^ | | i α | | 4 . Using this and the α-
priori estimates of Lemma 6, we get

(18)

Since

dt

(12) implies

(19) i l J ^ I I 2 ^ I I ^ H 2 + o I] Zu\\*.\\ry\\* + c \\Fy\\Q + c X ^ W A

Clearly (18), (19) and the assumption | | F ^ | | < 7 ^ δ imply

(20) Z

6. A-priori estimate of | |^n | |* The forcing term on the right
side of (7) is

gn = Qn[u Fψ] + Qn[η

+ Pn[ψ-Fen] + Pn[en-Vψ] + Pn[u Fen] + Pn[en-Fvn] .
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LEMMA 9. Whenever \\Iη(t)\\2 < R(δ2 + λj , there holds

(21) \\g\t)\\2 ^ θ(n)\\2fηn\\2 + VX-U f

with θ(ri) a function satisfying θ(n) —> 0 as n—*^. The function
θ and constant v depend only on δ, R, Ω and sup ί i 0

To prove Lemma 9, we need:

LEMMA 10. For any vector field w e H\Ω), there holds

(22) \\QM\*k

with θ(n) a function satisfying 6{n) —» 0 as n —» °o. The function
θ(ri) depends only on Ω.

To prove Lemma 10, we need:

LEMMA 11. For every 0 < ε < 1, there exists a continuously
differentiate, piecewise twice differentiate "cut-off" function λε(s),
defined for s 2> 0, such that λβ(0) = 1, λε(0) = 0, λβ(s) = 0 for s >̂ ε,
cmd ŝ c/z, ίfeαί everywhere |λe(s)| ^ min {ε/s, 1}, |λj(s)| ^ min {ε/s, Cε},
and |λ''(s)| ^ C£, tϋΐίfe constants Cε dependent only on ε.

The construction of λβ(s) is well-known; see [2]. We only remark,
it is probably easiest to start with the function

λ.(s) = Γ i - ( l - ^ W = ε(log ε - log β) + (s - ε) ,

defined for 0 < s ^ ε. Observing that | λe(s) | ^ ε/s, | λ'(s) | ^ ε/s, and
λ"(s) = ε/s2, it is clear how to proceed to construct λe(s).

Proof of Lemma 10. Let λβ(flc) = λε(s), where λε(s) is as in
Lemma 11 and s = distance (x, dΩ). For sufficiently small ε, this is
well-defined and the estimates for the derivatives of λε(s) are valid
for λ.(a?), i.e., |Fλ.(a?)| = \X[{s)\ and \Dlx£x)\ ^ c(|λ;#(s)| + |λKs)|).

Choose a vector field φ, in accordance with Lemmas 1 and 2,
such t h a t curl ψ = Pw, ψ\dΩ = 0, and || ψ \\H* ^ c \\ Pw \\πι ^ c \\ w \\πι.

Clearly,

(23) Pw - curl (xβψ) e J,(Ω) , curl (xeψ) e L\Ω) .

We have the following estimates:

\\Pw — curl(λ£ψ)||/fi = \\Pw — XεPw — (Fλβ) x

(24) ^ C.||Pw|Ui + ||(Fλ.) x ψ\\
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|curl(λeψ0|| ^ II ̂ ε x ^ | | + || λe curl ^ | |

cε| cε\\ψ\\H2 ^ cε\\w \\ui .

In (25) we have set Ωε ΞΞ {X e Ω: dist (x, dΩ) < ε} and used the
inequality

[ φ\s)/s2ds ̂  4 [ (φ'(s)Yds ,
Jo Jo

valid if $5(0) = 0, and also the inequality ||0||£2(.Qε) g ce||p||7/i(L)), valid
for φeH\Ω). Finally, using Lemma 4 and (23), (24), (25), we have

\\Qnw\\ = \\QnPw\\

£ I! Qn[Pw - curl (λεf)] || + || Qn curl (Xεψ) \\

^ λ-|i21| Pw - curl (Xεψ) || + || curl (λ,ψ ) ||

which clearly implies the result.

Proof of Lemma 9. Using Lemmas 4, 5 and 10 we dotain:

WQnίu FψW ^ Θ(n)\\u-Fvn\\h

\2 + \\Vu\\\\\Vψ\\\

g eθ{n)\\Δn\\2-\\Δψ\\2 ,

^ θ(n)(\\vnuxψ + ll^w.ll2 + I I ^ ^

e"| | 2 g c\\Δuψ

\Pn[en Vvn]f<ί \\en-

Fe" I Δu ||4 ,

7. Proof of Main Result. An α-priori estimate, similar to
Lemma 6, will be needed for solutions ζ of (2). If | |Fζ(ίo)| | < 8, (A3)
ensures that ||Fζ(ί)i| < Aδ, for all t Ξ> ί0. So v — u + ζ is a solution
of the Navier-Stokes equations with | |Fv(ΐ)| | < M + Aδ, for t^t0.
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Also, in view of Lemma 6, \\Iv(to)\\ £ \\Iu(to)\\ + ||2ζOWII is bounded
if ||Jζ(£0)|| is bounded. Hence the α-priori estimates for solutions
of the Navier-Stokes equations, already appealed to in Lemma 6,
imply ||Iζ(t)\\ is bounded, for all t ^ t0, in terms of || Jζ(£0)|| and the
constants and norms of assumptions (Al), (A2), (A3). In summary:

LEMMA 12. For perturbations ζ (i.e., solutions of (2)) which
satisfy initially ||Fζ(ίo)|| < δ and \\Iζ(tQ)\\2 <Ξ R(δ2 + λΓ1), there holds
\\Aζ(t)\\ < c, for all t ^ tQ, where c is a constant dependent only on
R, δ, Ω and the bounds assumed for various norms in conditions
(Al), (A2), (A3).

Now consider the expression β(t) = c(|| Δu{t) ||2 + || Δψ ||2 + || Δζ{t) ||2)
appearing in Lemma 7. In view of Lemmas 6, 8 and 12, there
exists a constant B bounding all possible values of β(t) in any
interval U<Lt<Lt* for which it is known

(26) IIW) IK a,
provided we restrict our considerations to perturbations ζ satisfying

(27) || Γζ(ί0) || < δ and || Iζ(t0) ||2

Consider, also, the forcing term gn appearing in Lemma 7. Together,
Lemmas 8 and 9 imply

(28) || g\t) ||2 ^ θ(n)R(τ + KU) + "K+i

on any interval 0 ^ t ^ £* for which it is known

(29) \ \ V η n { t ) \ \ < Ί , w i t h y ^ δ .

We now chosse T sufficiently large that

(30) Ae~aT ^ — ,

with a and A as in (A3), and then choose ΛΓ sufficiently large that

(31) eBTTΘ(n)R < ~
8

and

(32) Ίn = V%{eBTTΘ{n)R + v)mK# < δ

hold for n^ N. Here, we have defined Ίn in such a way that, in
the presence of (31), there holds

(33) eBTT[θ(n)R(7l + Kϊi) + vKϊi] < ^ΎΪ ,
4
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as may be easily checked.
For n ^ N, we claim

(34) | | ίW)l l < T n , for all t ^ 0 .

If not, that is, if (34) fails for some n Ξ> N9 let ί* be the first value
of t for which \\Vη\t*)\\ = yn. To show it is impossible that ί* ^ Γ,
consider Lemma 7 with £0 — 0 and ζ == 0. The implication, in view
of (28) and (83), and remembering ηnφ) = 0, is that

S eBTT[θ(n)R(Ύl + KU) + »λήίi] < - ^ >
4

which contradicts our supposition about £*. On the other hand, if
ί* > Γ, then \\Vηn(t* ~ T)\\ < yn, and of course | |Δηn(t* - T)\\ <

R(δ2 + λΓ1), by Lemma 8. So, considering Lemma 7 again, but with
t0 = t* ~ T and ζ(ί* - T) = ^n(ί* - T), we find

(35)

In addition, in view of (30), the assumption (A3) implies

(36) .|FC(ί*)ll ^ \\\r&t* -T)\\< ^-7Λ .

Together, (35) and (36) imply \\Vηn(t*)\\ < γn, again contradicting our
supposition about ί*. So (34) must hold, and combined with Lemma
6. it implies the theorem of §3.
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