ON g-METRIZABILITY

L. FOGED

We show that a regular topological space is g-metrizable if and only if it is weakly first countable and admits a σ locally finite k-network and that a g-metrizable space need not be g-developable.

0. Introduction. G-metrizable spaces were defined in [8], where it was also shown that a space admits a countable weak base if and only if it is weakly first countable and has a countable k-network. In this paper we provide the corresponding result for g-metrizable spaces and give an example of a g-metrizable space which is not g-developable. The former result is in response to a question in [8], the latter answers a question in [6]. All spaces are at least regular.

1. Definition.

1.1. Let X be a space. If Γ is a family of subsets of X and $\zeta: \Gamma \to \mathscr{P}(X)$ is a function, then the pair $\langle \Gamma, \zeta \rangle$ is a weak base for X if, in addition, the following hold:

(a) For every member G of Γ , $\zeta(G)$ is a subset of G.

(b) If G_1 and G_2 are members of Γ and x is an element of $\zeta(G_1) \cap \zeta(G_2)$, then there is a member G_3 of Γ so that x is in $\zeta(G_3)$ and G_3 is a subset of $G_1 \cap G_2$.

(c) A subset U of X is open if and only if for every element x of U there is a member G of Γ so that x is in $\zeta(G)$ and U contains. G.

This definition of weak base differs from that of [1], namely, a collection $\mathscr{B} = \bigcup \{T_x : x \in X\}$ is a weak base for X if a set U is open in X precisely when for each point $x \in U$ there exists $B \in T_x$ such that $B \subset U$. It is easy to see that our definition is equivalent to this, for if B is as above, we let $\Gamma = \mathscr{B}$ and for $G \in \Gamma$, let $\delta(G) = \{x: G \in T_x\}$ and if $\langle \Gamma, \delta \rangle$ is a weak base by 1.1, then we let $T_x = \{G: x \in \delta(G)\}$ and $\mathscr{B} = \bigcup \{T_x: x \in X\}$.

1.2. A space X is g-metrizable if it has a weak base $\langle \Gamma, \zeta \rangle$ where Γ is a σ -locally finite family. X is weakly first countable if X has a weak base $\langle \Gamma, \zeta \rangle$ so that the family $\{\zeta(G): G \in \Gamma\}$ is point countable or, equivalently, there is a function $B: \omega \times X \to \mathscr{P}(X)$ (called a wfc system for X) so that

(a) for all $n < \omega$ and $x \in X$, $B(n + 1, x) \subset B(n, x)$;

(b) for all x in X, $x \in \cap \{B(n, x): n < \omega\}$

(c) a subset U of X is open if and only if for every x in U there is an $n < \omega$ so that U contains B(n, x).

If x is an element of a space X, then a subset S of X is said to be weak neighborhood of x if every sequence converging to x is eventually in S. One may show that if X is weakly first countable with weak base $\langle \Gamma, \zeta \rangle$ so that $\{\zeta(G): G \in \Gamma\}$ is point countable, then S is a weak neighborhood of x if and only if S contains a member G of Γ so that $x \in \zeta(G)$. Thus weakly first countable spaces are sequential [4].

1.3. If X is a space, a collection Γ of subsets of X is said to be a k-network [7] for X if for any compact subset K of X and any neighborhood U of K, there is a finite subcollection Γ' of Γ so that $K \subset \cup \Gamma' \subset U$.

2. g-metrizability and k-networks.

LEMMA 2.1. If X is a space in which points are G_{δ} and if $\langle \Gamma, \zeta \rangle$ is a weak base for X, then Γ is a k-network for X.

Proof. Let K be a compact subset of X and U an open neighborhood of K. As K is closed, $\langle \Gamma', \zeta' \rangle$ given by $\Gamma' = \{G \cap K : G \in \Gamma\}$ and $\zeta'(G \cap K) = \zeta(G) \cap K$ for all G in Γ , is a weak base for K. Thus since K is Fréchet, for every G in $\Gamma \zeta'(G \cap K) \subset \operatorname{int}_K (G \cap K)$. Consequently if Γ^* is a subcollection of Γ so that $K \subset \cup \{\zeta(G) : G \in \Gamma^*\}$ and $\cup \Gamma^* \subset U$, then a finite subfamily of Γ^* convers K.

THEOREM 2.2 [3]. A regular space with a σ -locally finite knetwork has a σ -dicrete k-network.

LEMMA 2.3. Suppose X hase $\langle \Gamma, \zeta \rangle$ so that $\Gamma = \bigcup \{\Gamma_n : n < \omega\}$ where every Γ_n is a closure-preserving family of closed sets. If $\{F_{\alpha} : \alpha \in I\}$ is a discrete collection of subsets of X, then there is a pairwise disjoint collection $\{N_{\alpha} : \alpha \in I\}$ so that for every $\alpha \in I$ and $x \in F_{\alpha}$, there is a G in Γ so that $x \in \zeta(G)$ and $G \subset N_{\alpha}$.

Proof. For each $n < \omega$ and each $\alpha \in I$, let

$$G(n, \alpha) = \bigcup \{G \in \Gamma_n : G \cap (\bigcup \{F_\beta : \beta \neq \alpha\}) = \emptyset\}$$

For each $\alpha \in I$, let

$$N_{lpha} = igcup_{n < \omega} [G(n, \alpha) ackslash \cup \{G(m, \beta) \colon m \leq n, \, eta
eq \alpha\}] \; .$$

Of course $\{N_{\alpha}: \alpha \in I\}$ is pairwise disjoint; we now verify that $\{N_{\alpha}: \alpha \in I\}$ is the desired collection. Let $\alpha \in I$ and let $x \in F_{\alpha}$. Find an

328

 $n < \omega$ and a G_1 in Γ_n so that $x \in \zeta(G_1)$ and so that G_1 misses the closed set $\cup \{F_\beta: \beta \neq \alpha\}$. Pick $G_2 \in \Gamma$ so that $x \in \zeta(G_2)$ and so that G_2 misses the closed set $\cup \{G(m, \beta): m \leq n, \beta \neq \alpha\}$. Now there is a $G_3 \in \Gamma$ with $x \in \zeta(G_3)$ so that G_3 is a subset of $G_1 \cap G_2$, hence $G_3 \subset N_\alpha$, as desired.

We are now in a position to prove the main result of this section.

THEOREM 2.4. A regular space is g-metrizable if and only if it is weakly first countable and admits a σ -locally finite k-network.

Proof. The necessity follows from Lemma 2.1. For the sufficiency: by Theorem 2.2, for each $n < \omega$ let Λ_n be a discrete collection of closed subsets of X so that $\Lambda = \bigcup \{\Lambda_n : n < \omega\}$ is closed under finite intersections and is a k-network for X. Let

 $\Gamma = \{ \bigcup \Lambda^* : \Lambda^* \text{ is a finite subset of } \Lambda \text{ so that } \cap \Lambda^* \neq \emptyset \}.$ For Λ^* a finite subset of Λ with $\cap \Lambda^* \neq \emptyset$, let

 $\zeta(\cup \Lambda^*) \simeq \{x \in \cap \Lambda^* \colon \cup \Lambda^* \text{ is a weak neighborhood of } x\}.$

Note that $\{(G): G \in \Gamma\}$ is point-countable. We now show that $\langle \Gamma, \zeta \rangle$ is a weak base for X. One easily verifies that (a) and (b) of 1.1are satisfied. For (c), observe that if U is a subset of X so that for every $x \in U$ there is a $G \in \Gamma$ so that $x \in \zeta(G)$ and U contains G, then U is sequentially open, hence open. Conversely, suppose U is open and there is an element x of U so that U contains no member G of Γ such that $x \in \zeta(G)$, i.e. the union of no finite subset of $\{L_j: j < \omega\} = \{L \in \Lambda: x \in L, L \subset U\}$ is a weak neighborhood of x. Let B a wfc system for X so that $B(1, x) \subset U$. Inductively pick a sequence $\{x_n: n < \omega\}$ so that $x_n \in B(n, x) \setminus \bigcup \{L_j: j \leq n\}$. The sequence $\{x_n: n < \omega\}$ converges to x, hence $\{x\} \cup \{x_n: n < \omega\}$ is compact. Let Λ' be a finite subset of Λ so that $\{x\} \cup \{x_n: n < \omega\} \subset \cup \Lambda' \subset U$ and let $\Lambda^* = \{L \in \Lambda' : x \in L\}$. The closed set $\bigcup (\Lambda' \setminus \Lambda^*)$ omits x, so there is an $m < \omega$ so that $\{x\} \cup \{x_n : n \ge m\} \subset \cup \Lambda^*$. Also $\Lambda^* \subset \{L \subset \Lambda : x \in L, L \subset U\}$, so there is an $r \ge m$ so that $\Lambda^* \subset \{L_j: j \le r\}$, which implies that $x_r \in \bigcup \Lambda^* \subset \bigcup \{L_j: j \leq r\}$. This contradicts the fact that x_r was picked in the complement of $\bigcup \{L_j : j \leq r\}$. Thus if U is open, then for all $x \in U$, U contains a $G \in \Gamma$ so that $x \in \zeta(G)$; so $\langle \Gamma, \zeta \rangle$ is a weak base for X.

Note that if $n < \omega$,

 $\Gamma_n = \{ \cup \Lambda^* : \Lambda^* \text{ is a finite subset of } \cup \{\Lambda_j : j \leq n\} \text{ so that } \cap \Lambda^* \neq \emptyset \}$ is a closure-preserving collection, hence $\Gamma = \cup \{\Gamma_n : n < \omega\}$ is σ -conservative. L. FOGED

For every finite subset S of ω , let

 $arLambda_s = \{ arLambda^* \colon ext{ for } n < \omega \ arLambda^* \cap arLambda_n
eq \oslash ext{ iff } n \in S; \ \cap arLambda^*
eq \oslash \}$

and write $\Lambda_s = \{\Lambda_{\alpha}^* : \alpha \in I(S)\}$. Further, as $\{\cap \Lambda_{\alpha}^* : \alpha \in I(S)\}$ is a discrete collection, use Lemma 2.3 to find a pairwise disjoint collection $\{N_{\alpha}: \alpha \in I(S)\}$ so that for every α in I(S) N_{α} is a weak neighborhood of $\cap \Lambda_{\alpha}^*$.

Now if $n < \omega$, S is a finite subset of ω , and if $\alpha \in I(S)$, let

$$G(n, \alpha) = \bigcup \{ G \in \Gamma_n : G \subset (\bigcup \Lambda_{\alpha}^*) \cap N_{\alpha} \} .$$

and let

 $\zeta'(G(n, \alpha)) = \bigcup \{\zeta(G) \cap \zeta(\bigcup \Lambda_{\alpha}^*) \colon G \in \Gamma_n, G \subset (\bigcup \Lambda_{\alpha}^*) \cap N_{\alpha}\}.$

If $n < \omega$ and if S is a finite subset of ω , let

$$\Gamma(n, S) = \{G(n, \alpha) \colon \alpha \in I(S)\} .$$

The collections $\Gamma(n, S)$ are conservative and, since $G(n, \alpha) \subset N_{\alpha}$ for every $\alpha \in I(S)$, pairwise disjoint, hence discrete. Let Γ' be the family of all intersections of finite subcollections of $\cup \{\Gamma(n, S): n < \omega, S \}$ a finite subset of ω } and extend ζ' to Γ' by $\zeta'(\bigcap_{i=1}^{k} G(n_i, \alpha_i)) = \bigcap_{i=1}^{k} \zeta'(G(n_i, \alpha_i))$. Observe that Γ' is σ -discrete; we will show that $\langle \Gamma', \zeta' \rangle$ is a weak base for X, completing the proof.

Conditions (a) and (b) of 1.1 are easily verified. Recalling that $\{\zeta(G): G \in \Gamma\}$ is point countable, the remarks in 1.2 give that for all $G \in \Gamma$ G is a weak neighborhood of $\zeta(G)$ so that if $n < \omega$, S is a finite subset of ω and if $\alpha \in I(S)$, then $G(n, \alpha)$ is a weak neighborhood of $\zeta'(G(n, \alpha))$. Consequently if $G' \in \Gamma'$, then G' is a weak neighborhood of $\zeta(G')$. Hence if U is a subset of X such that for every member x of U there is a member G' of Γ' with $x \in \zeta(G')$ and $G' \subset U$, then U is a weak neighborhood of each of its elements, thus sequentially open, and so U is open. To complete the proof of (c), let U be an open subset of X, and let $x \in U$. Since $\langle \Gamma, \zeta \rangle$ is a weak base for X, there is a finite subset Λ^* of Λ so that $x \in \zeta(\cup \Lambda^*) \subset$ $\cap \Lambda^* \subset \cup \Lambda^* \subset U$. Find a finite subset S of ω and an $\alpha \in I(S)$ so that $\Lambda^* = \Lambda^*_{\alpha}$. Since $\cup \Lambda^*_{\alpha}$ is a member of Γ , $\cup \Lambda^*_{\alpha}$ is a weak neighborhood of $\zeta(\bigcup \Lambda_{\alpha}^*)$, hence of x; N_{α} is a weak neighborhood of $\bigcap \Lambda_{\alpha}^*$, hence of x; thus $(\bigcup \Lambda_{\alpha}^*) \cap N_{\alpha}$ is a weak neighborhood of x. Again since $\{\zeta(G): G \in \Gamma\}$ is point-countable, we have that there is an $n < \omega$ and a $G \in \Gamma_n$ so that $x \in \zeta(G)$ and $G \subset (\bigcup A_{\alpha}^*) \cap N_{\alpha}$. Thus $x \in \zeta'(G(n, \alpha))$ and $G(n, \alpha) \subset \bigcup \Lambda^*_{\alpha} \subset U$. Thus (c) is established.

3. g-developable spaces. Generalizing a characterization of developability given in [5], Lee [6] defined g-developable spaces to

330

ON g-METRIZABILITY

be those weakly first countable spaces X which have a wfc system satisfying the following: if $x \in X$ and if $\{x_n : n < \omega\}$ and $\{y_n : n < \omega\}$ are sequences in X so that for every $n < \omega x$ and x_n are elements of $B(n, y_n)$, then the sequence $\{x_n : n < \omega\}$ converges to x.

PROPOSITION 3.1. A σ -discrete weakly first countable space X is g-developable.

Proof. Write $X = \bigcup \{D_n: n < \omega\}$, where D_n is a closed discrete set for every $n < \omega$. X is symmetrizable [1], so let d be a compatible symmetric function. We define $B: w \times X \to \mathscr{S}(X)$ as follows: if m and n are finite ordinals and if $x \in D_m$, let

$$B(n, x) = \{y \in X: d(x, y) < 1/n\} \setminus \cup \{D_k: k < m\}$$

One easily checks that B is a wfc system for the topology of X. To see that B satisfies the defining condition for g-developability let $x \in X$ and let $\{x_n : n < \omega\}$ and $\{y_n : n < \omega\}$ be sequences in X so that for every $n < \omega$ x and x_n are in $B(n, y_n)$. If $m < \omega$ so that $x \in D_m$, then there is a $j < \omega$ so that $\{y \in X : d(x, y) < 1/j\} \cap (\cup \{D_k : k \le m\}) =$ $\{x\}$. The fact that $x \notin \cup \{B(j, y) : y \ne x\}$ implies that if $n \ge j$, then $y_n = x$. Thus for all $n \ge j$ we have $x_n \in B(n, x)$, hence $\{x_n : n < \omega\}$ converges to x, as desired.

The definition of g-developable inspires the question to which the following is a negative answer.

THEOREM 3.2. There is a g-metrizable space which is not g-developable.

Proof. Let R denote the set of real numbers Q the set of rationals. Choose a countable quasibase Λ for the Euclidean topology of R consisting of closed sets. Let $X = \{\langle x, y \rangle \in R^2 : \text{ either } y = 0, \text{ or } x \in Q \& 1/y \in \omega\}$, and view R as $\{\langle x, y \rangle \in X : y = 0\}$. For every $q \in Q$ and $m < \omega$, define $A(m, q) = \{r \in R : |r - q| \leq 1/m\} \cup \{\langle q, 1/n \rangle : n > m\}$. Let

$$arGamma = \{ A(m, \, q) \colon m < \omega, \, q \in oldsymbol{Q} \} \cup arLambda \cup \{ \{ \langle q, \, 1/n
angle \} \colon q \in oldsymbol{Q}, \, n < \omega \}$$

and define

$$egin{aligned} &\zeta(A(m,\,q))=\{q\}\;, & ext{if}\;\;m<\omega\; ext{and}\;\;q\in Q\;;\ &\zeta(L)=\{r\in R\backslash Q\colon r\; ext{is}\; ext{in}\; ext{the Euclidean interior of}\;\;L\}\;, & ext{if}\;\;L\in\Lambda\;;\ &\zeta(\{\langle q,\,1/n
angle\})=\{\langle q,\,1/n
angle\}\;, & ext{if}\;\;q\in Q\; ext{and}\;\;n<\omega\;. \end{aligned}$$

Give X the topology for which $\langle \Gamma, \zeta \rangle$ is a weak base. Certainly Γ is countable, so, as X is easily seen to be regular, X is g-metriza-

ble. To show that X is not g-developable, assume that B is a wfcsystem for X satisfying the defining condition for g-developability.

Define a function $\phi: \mathbb{R} \setminus \mathbb{Q} \to \omega$ so that if $r \in \mathbb{R} \setminus \mathbb{Q}$, then $r \notin \cup \{B(\phi(r), q): q \in \mathbb{Q}\}$. This is possible, for if there is an $r \in \mathbb{R} \setminus \mathbb{Q}$ so that for every $n < \omega$ there is a $q_n \in \mathbb{Q}$ so that $r \in B(n, q_n)$, then find, for each $n < \omega$, an $x_n \in X \setminus \mathbb{R} \cap B(n, q_n)$. This would imply that for every $n < \omega$, r and x_n are in $B(n, q_n)$, but $\{x_n: n < \omega\}$ does not converge to r, a contradiction.

Since $R \setminus Q = \bigcup \{\{r \in R \setminus Q : \phi(r) \leq n\}: n < \omega\}$, there is an $m < \omega$ so that the Euclidean closure $\operatorname{cl}_R \{r \in R \setminus Q : \phi(r) \leq m\}$ contains a Euclidean open set U. Choose a $p \in Q \cap U$. As $B(m, p) \cap R$ is a Euclidean neighborhood of p in R, there is an $r \in R \setminus Q \cap B(m, p)$ so that $\phi(r) \leq m$, that is $r \notin \bigcup \{B(m, q): q \in Q\}$; this contradiction completes the proof.

References

1. A. Arhangel'skii, *Mappings and spaces*, Russ. Math. Surveys, **21** (1966), no. 4, 115-162.

2. A. Arhangel'skii and S. Franklin, Ordinal invariants for topological spaces, Michigan Math. J., 15 (1968), 313-320.

3. L. Foged, Separation in k-and- \aleph spaces, to appear.

4. S. Franklin, Spaces which sequence suffice, Fund. Math., 57 (1965), 107-115.

5. R. Heath, Arcwise connectedness in semi-metric spaces, Pacific J. Math., **12** (1962), 1301-1319.

6. K. Lee, On certain g-first countable spaces, Pacific J. Math., 65 (1976), 113-118.

7. E. Michael, No-space, J. Math. Mech., 15 (1966), 983-1002.

8. F. Siwiec, On defining a space by a weak base, Pacific J. Math., 52 (1974), 233-245.

Received February 8, 1980 and in revised form October 8, 1980.

UNIVERSITY OF TEXAS EL PASO, TX 79968