REALIZING AUTOMORPHISMS OF QUOTIENTS OF PRODUCT σ -FIELDS

SIEGFRIED GRAF

Let $(X_{\alpha})_{\alpha\in I}$ be a family of Polish spaces, $X=\prod_{\alpha\in I}X_{\alpha}$, and $\mathfrak B$ the product of the Borel fields of the spaces X_{α} . For $K\subset I$ let $X_K=\prod_{\alpha\in K}X_{\alpha}$ and let $\pi_K\colon X\to X_K$ be the canonical projection. Moreover, let $\mathfrak n$ be a σ -ideal in $\mathfrak B$ satisfying the following Fubini type condition:

 $N\in\mathfrak{n}$ if and only if $\pi_J^{-1}(\{z\in X_J\,|\,\pi_{I\backslash J}^{-1}(\{y\in X_{I\backslash J}\,|\,(z,y)\in N\})\notin\mathfrak{n}\})\in\mathfrak{n}$ for every nonempty $J\subset I$. Then, given an automorphism Φ from $\mathfrak{B}/\mathfrak{n}$ onto itself, there exists a bijection $f\colon X\to X$ such that f and f^{-1} are measurable and

$$[f^{-1}(B)] = \Phi([B], \quad [f(B)] = \Phi^{-1}([B])$$

for all $B \in \mathfrak{B}$.

1. Introduction. Let $(X_{\alpha})_{\alpha \in I}$ be an arbitrary family of Polish spaces and, for every $\alpha \in I$, μ_{α} a Borel measure on X_{α} . Let $X = \prod_{\alpha \in I} X_{\alpha}$ be equipped with the Baire σ -field $\mathfrak{B}(X)$ which is equal to the product of the Borel fields of the spaces X_{α} . Moreover, let μ be the product measure on $\mathfrak{B}(X)$ and \mathfrak{n} the σ -ideal of μ -nullsets. D. Maharam [5] showed that every automorphism of $\mathfrak{B}(X)/\mathfrak{n}$ onto itself is induced by an invertible $\mathfrak{B}(X)$ -measurable point mapping of X. In [6] D. Maharam proved the same result in the case that \mathfrak{n} is the σ -ideal of first category sets in $\mathfrak{B}(X)$. It is the purpose of this note to give a common generalization of these two results: We shall show that for σ -ideals \mathfrak{n} in $\mathfrak{B}(X)$ which satisfy a certain Fubini type condition the conclusions of Maharam's theorems still hold.

Choksi [1], [2] generalized Maharam's first result to arbitrary Baire measures on $X = \prod X_{\alpha}$. Our methods of proof consist in a slight modification of those used by Choksi [2] (cf. also Choksi [3]). We shall formulate our lemmas in such a way that we can also reprove Choksi's theorem.

Our basic tool in the proofs of the results stated above consists in the following generalization of a theorem due to Sikorski (cf. [8], p. 139, 32.5): Each σ -homomorphism from $\mathfrak{B}(\prod X_{\alpha})$ to an arbitrary quotient of a σ -field on any set Y (w.r.t. a σ -ideal) is induced by a measurable map from Y to $X = \prod X_{\alpha}$.

This last result is also used to deduce a characterization of injective measurable spaces first given by Falkner [4] (cf. §3).

2. Notation. In what follows $(X_{\alpha})_{\alpha \in I}$ is always a family of Polish spaces. For a subset J of I let X_J stand for $\prod_{\alpha \in J} X_{\alpha}$ and X

for X_I . For $K \subset J \subset I$ let π_{JK} denote the canonical projection from X_J onto X_K . If J = I we write π_K instead of π_{JK} . For an arbitrary completely regular Hausdorff space Y let $\mathfrak{B}(Y)$ denote the σ -field of Baire sets in Y. We will write \mathfrak{B} for $\mathfrak{B}(X)$. \mathfrak{B} is equal to the product σ -field of the Borel fields $\mathfrak{B}(X_\alpha)$. A map $f: X \to X$ is called measurable if it is \mathfrak{B} - \mathfrak{B} -measurable.

3. Realizing σ -homomorphisms. The following theorem is a generalization of a result due to Sikorski (cf. [8], p. 139, 32.5) and provides the basic tool for deriving the results in the later sections.

THEOREM 3.1. Let $X = \prod X_{\alpha}$, $\mathfrak{B} = \mathfrak{B}(X)$. Moreover let (Y, \mathfrak{A}) be a measurable space, \mathfrak{n} a σ -ideal in \mathfrak{A} , and $\Phi \colon \mathfrak{B} \to \mathfrak{A}/\mathfrak{n}$ a σ -homomorphism. Then there exists an \mathfrak{A} - \mathfrak{B} -measurable map $f \colon Y \to X$ with $f^{-1}(B) \in \Phi(B)$ for all $B \in \mathfrak{B}$, i.e. Φ is induced by f.

Proof. For every $\alpha \in I$ define $\Phi_{\alpha} \colon \mathfrak{B}(X_{\alpha}) \to \mathfrak{A}/\mathfrak{n}$ by $\Phi_{\alpha}(B) = \Phi(\pi_{\alpha}^{-1}(B))$. Then Φ_{α} is obviously a σ -homomorphism. It follows from Sikorski [8], p. 139, 32.5 that there exists an \mathfrak{A} - $\mathfrak{B}(X_{\alpha})$ -measurable map $f_{\alpha} \colon Y \to X_{\alpha}$ with $f_{\alpha}^{-1}(B) \in \Phi_{\alpha}(B)$ for all $B \in \mathfrak{B}(X_{\alpha})$. Define $f \colon Y \to X$ by $f(y) = (f_{\alpha}(y))_{\alpha \in I}$. Then f is \mathfrak{A} - \mathfrak{B} -measurable and for every $B \in \mathfrak{B}$ with $B = \bigcap_{i=1}^n \pi_{\alpha_i}^{-1}(B_{\alpha_i})$, $B_{\alpha_i} \in \mathfrak{B}(X_{\alpha_i})$ one has $f^{-1}(B) = \bigcap_{i=1}^n f_{\alpha_i}^{-1}(B_{\alpha_i})$. Since $f_{\alpha_i}^{-1}(B_{\alpha_i}) \in \Phi_{\alpha_i}(B_{\alpha_i}) = \Phi(\pi_{\alpha_i}^{-1}(B_{\alpha_i}))$ we deduce

$$\bigcap_{i=1}^n f_{\alpha_i}^{-1}(B_{\alpha_i})\in \varPhi\Bigl(\bigcap_{i=1}^n \pi_{\alpha_i}^{-1}(B_{\alpha_i})\Bigr)=\varPhi(B)$$
 ,

hence

$$f^{-1}(B) \in \Phi(B)$$
.

Since the sets of the above form generate \mathfrak{B} as a σ -field and since Φ is a σ -homomorphism it follows that $f^{-1}(B) \in \Phi(B)$ for all $B \in \mathfrak{B}$.

Before we shall go on with our main subject let us use the above theorem to derive a characterization of injective measurable spaces. Essentially the same characterization has been given first by Falkner [4]. It is also possible to deduce Theorem 3.1 from Falkner's results.

Definition 3.2.

- (a) A measurable space (Z, \mathbb{C}) is called *separated* iff for all $z, z' \in Z$ with $z \neq z'$ there exists a set $C \in \mathbb{C}$ with $z \in C$ and $z' \notin C$.
- (b) Two measurable spaces (Y, \mathfrak{A}) and (Z, \mathfrak{C}) are called *point-isomorphic* iff there exists a bijection g from Y onto Z such that g and g^{-1} are measurable. g is called a *point-isomorphism*.

- (c) A measurable space (Y, \mathfrak{A}) is called a retract of a measurable space (Z, \mathbb{C}) iff there exists a subset Z_0 of Z and an \mathfrak{A} - $\mathbb{C} \cap Z_0$ -measurable map $h: Z \to Z_0$ with $h_{|_{Z_0}} = id_{Z_0}$ such that (Y, \mathfrak{A}) is point-isomorphic to $(Z_0, \mathbb{C} \cap Z_0)$, where $\mathbb{C} \cap Z_0 = \{C \cap Z_0 | C \in \mathbb{C}\}$.
- (d) A measurable space (Z,\mathbb{C}) is called *injective* iff for every measurable space (Y,\mathfrak{A}) , for every subset $Y_0\subset Y$, for every $\mathfrak{A}\cap Y_0-\mathbb{C}$ -measurable map $f\colon Y_0\to Z$ there exists an \mathbb{A} - \mathbb{C} -measurable map $\widetilde{f}\colon Y\to Z$ with $\widetilde{f}_{|Y_0}=f$.

LEMMA 3.3. Let (Z, \mathbb{C}) be a separated measurable space and let \mathbb{C} be a subset of \mathbb{C} generating \mathbb{C} as a σ -field. Then there exists a set $B \subset [0, 1]^*$ such that (Z, \mathbb{C}) is point-isomorphic to $(B, \mathfrak{B}([0, 1]^*) \cap B)$.

Proof. Define $g\colon Z\to [0,\,1]^{\mathfrak s}$ by $g(z)=(1_{E}(z))_{E\in\mathfrak s}$. Then g is $\mathbb S-\mathfrak B([0,\,1]^{\mathfrak s})$ -measurable and one-to-one. Let B=g(Z). For $E_0\in\mathfrak S$ we have $g(E_0)=\{(s_E)_{E\in\mathfrak s}\in g(Z)|s_{E_0}=1\}$, hence $g(E_0)\in\mathfrak B([0,\,1]^{\mathfrak s})\cap B$, which proves g to be a point-isomorphism of $(Z,\,\mathbb S)$ and $(B,\,\mathfrak B([0,\,1]^{\mathfrak s})\cap B)$.

REMARK 3.4. Let I be an index set and $\emptyset \neq B \in \mathfrak{B}([0, 1]^I)$. Then $(B, \mathfrak{B}([0, 1]^I) \cap B)$ is a retract of $([0, 1]^I, \mathfrak{B}([0, 1]^I))$.

Proof. Let $x_0 \in B$ be given. Define $h: [0, 1]^T \to B$ by

$$h(x) = \begin{cases} x, & x \in B \\ x_0, & x \notin B \end{cases}.$$

Then h is measurable and $h_{1B} = id_B$.

It remains an open question whether every retract of $([0, 1]^I)$, $\mathfrak{B}([0, 1]^I)$ is point-isomorphic to a Baire subset of some generalized cube $[0, 1]^K$. (For K = I this is not true in general.)

COROLLARY 3.5. (cf. Falkner [4], Theorem 3.2.) For a separated measurable space (Z, \mathbb{C}) the following conditions are equivalent:

- (i) (Z, \mathbb{C}) is injective.
- (ii) There exists an index set I such that (Z, \mathbb{C}) is a retract of $([0, 1]^I, \mathfrak{B}([0, 1]^I))$.
- (iii) For every measurable space (Y, $\mathfrak A$) and every σ -ideal $\mathfrak n$ of $\mathfrak A$ each σ -homomorphism $\Phi \colon \mathfrak C \to \mathfrak A/\mathfrak n$ is induced by an $\mathfrak A$ - $\mathfrak C$ -measurable map $f \colon Y \to Z$.
- If (Z, \mathbb{C}) is countably generated, in addition, then the conditions (i) to (iii) are also equivalent to
- (iv) (Z, \mathbb{C}) is point-isomorphic to $(B, \mathfrak{B}([0, 1]^{N}) \cap B)$ for some $B \in \mathfrak{B}([0, 1]^{N})$.

- *Proof.* (i) \Rightarrow (ii): According to Lemma 3.3 we may assume $Z \subset [0, 1]^I$ and $\mathfrak{C} = \mathfrak{B}([0, 1]^I) \cap Z$ for some I. Let $f = id_Z$. Since (Z, \mathfrak{C}) is injective there exists a $\mathfrak{B}([0, 1]^I) \mathfrak{C}$ -measurable map $\widetilde{f} \colon [0, 1]^I \to Z$ with $\widetilde{f}_{|Z} = id_Z$. Hence (Z, \mathscr{C}) satisfies condition (ii).
- (ii) \Rightarrow (iii): Without loss of generality we may assume that $Z \subset [0,1]^I$, $\mathfrak{C} = \mathfrak{B}([0,1]^I) \cap Z$, and that there is a $\mathfrak{B}([0,1]^I) \mathfrak{C}$ -measurable map $h : [0,1]^I \to Z$ with $h_{|Z} = id_Z$. Let (Y,\mathfrak{A}) be any measurable space, $\mathfrak{A} \subset \mathfrak{A}$ a σ -ideal, $\Phi : \mathfrak{C} \to \mathfrak{A}/\mathfrak{A}$ a σ -homomorphism. Define $\Phi_0 : \mathfrak{B}([0,1]^I) \to \mathfrak{A}/\mathfrak{A}$ by $\Phi_0(B \cap Z)$. Then Φ_0 is a σ -homomorphism and according to Theorem 3.1 there exists an $\mathfrak{A} \mathfrak{B}([0,1]^I)$ -measurable map $f_0 : Y \to [0,1]^I$ which induces Φ . Let $f = h \circ f_0$. Then f is $\mathfrak{A} \mathfrak{C}$ -measurable and obviously induces Φ .
- (iii) \Rightarrow (i): Let (Y,\mathfrak{A}) be any measurable space, $Y_0 \subset Y$, and $f \colon Y_0 \to Z$ an $\mathfrak{A} \cap Y_0 = \mathbb{C}$ -measurable map. Let $\mathfrak{n} = \{A \in \mathfrak{A} \colon A \cap Y_0 = \emptyset\}$. Then \mathfrak{n} is a σ -ideal in \mathfrak{A} . Define $\Phi(C)$ to be the residual class in $\mathfrak{A}/\mathfrak{n}$ of any $A \in \mathfrak{A}$ with $A \cap Y_0 = f^{-1}(C)$. Then $\Phi \colon \mathbb{C} \to \mathfrak{A}/\mathfrak{n}$ is a σ -homomorphism. According to (iii) there exists an $\mathfrak{A} \mathbb{C}$ -measurable map $\widetilde{f} \colon Y \to Z$ which induces Φ . From the definition of Φ it follows immediately that $\widetilde{f}_{|Y_0} = f$.

Now let (Z, \mathbb{C}) be countably generated.

- (ii) \Rightarrow (iv): Without loss of generality we may assume that $Z \subset [0,1]^N$, $\mathfrak{C} = \mathfrak{B}([0,1]^N) \cap Z$, and that there is a $\mathfrak{B}([0,1]^N) \mathfrak{C}$ -measurable map $h : [0,1]^N \to Z$ with $h_{|Z} = id_Z$ (cf. Lemma 3.3 and the proof of (i) \Rightarrow (ii)). $\mathfrak{B}([0,1]^N)$ has a countable subset \mathfrak{C} such that for all $x, x' \in [0,1]^N$ there exists an $E \in \mathfrak{C}$ with $x \in E$ and $x' \notin E$. For $x \in [0,1]^N \setminus Z$ there, therefore, exists an $E \in \mathfrak{C}$ with $x \in E$ and $h(x) \notin E$. Since $h_{|Z} = id_Z$ we deduce $x \in E \setminus h^{-1}(E) \subset [0,1]^N \setminus Z$, hence $[0,1]^N \setminus Z = \bigcup_{E \in \mathfrak{C}} E \setminus h^{-1}(E)$ belongs to $\mathfrak{B}([0,1]^N)$.
 - (iv) ⇒ (ii) follows immediately from Remark 3.4.
- 4. Realizing automorphisms. In this section \mathfrak{n} is always a σ -ideal in $\mathfrak{B}(X)$, $X=\prod X_{\alpha}$. For $B\in\mathfrak{B}(X)$ the symbol [B] stands for the residual class of B in $\mathfrak{B}(X)/\mathfrak{n}$. We say that a subset B of X depends only on $J\subset I$ if $B=\pi_J^{-1}(\pi_J(B))$. It is a well-known fact that every $B\in\mathfrak{B}(X)$ depends only on a countable subset of I.

Definition 4.1.

(a) $\mathfrak n$ is said to satisfy condition (F) iff a set $N \in \mathfrak B(X)$ belongs to $\mathfrak n$ if and only if for every nonempty $J \subset I$

(b) $\mathfrak m$ is said to satisfy condition (D) iff for all countable non-empty $J_1,\,J_2\subset I$ with $J_1\cap J_2=\varnothing$ there exists an $N\in\mathfrak m$ such that N depends only on $J_1\cup J_2$ and, for all $z\in X_{J_1},\,\,\pi_{J_1\cup J_2,J_1}^{-1}(z)\cap\pi_{J_1\cup J_2}(N)$ is

uncountable and of second category in $\pi_{J_1 \cup J_2, J_1}^{-1}(z)$.

REMARK 4.2.

- (1) For every $\alpha \in I$ let μ_{α} be a finite measure on $\mathfrak{B}(X_{\alpha})$. Let μ be the product measure on $\mathfrak{B}(X)$ obtained from the μ_{α} 's and let \mathfrak{n} be the σ -ideal of μ -nullsets. Then it follows from Fubini's theorem that \mathfrak{n} satisfies condition (F).
- (2) Let \mathfrak{n} be the σ -ideal of all sets of first category in $\mathfrak{B}(X)$. Then \mathfrak{n} satisfies condition (F). This is a consequence of Theorem 1 in [6].
- (3) If there exists a σ -ideal $\mathfrak n$ in $\mathfrak B$ satisfying condition (D) then each of the X_{α} 's has to be uncountable.
- (4) Let μ be a σ -finite measure on $\mathfrak{B}(X)$ and \mathfrak{n} the σ -ideal of μ -nullsets. If each X_{α} is uncountable then \mathfrak{n} satisfies condition (D). This follows from Lemma B (and proof) in [2].

Let us now state our main theorem.

THEOREM 4.3. Let n be a σ -ideal in $\mathfrak{B}(X) = \mathfrak{B}(\prod X_{\alpha})$ satisfying conditon (F) or (D). Let Φ be an automorphism of $\mathfrak{B}(X)/n$ onto itself. Then there exists a bijection $f: X \to X$ such that f and f^{-1} are measurable and $[f^{-1}(B)] = \Phi([B])$, $[f(B)] = \Phi^{-1}([B])$ for all $B \in \mathfrak{B}(X)$.

The ingredients of the proof will be provided by a series of lemmas. Let us first make the following definition:

Given a measurable map $g\colon X\to X$ a subset J of I is called g-invariant iff, for all $x,\,y\in X$, the identity $\pi_J(x)=\pi_J(y)$ implies $\pi_J(g(x))=\pi_J(g(y))$.

LEMMA 4.4. Let $g, h: X \to X$ be measurable mappings. Then, for every countable $J_0 \subset I$, there exists a countable set $J \subset I$ which contains J_0 and is h- and g-invariant.

Proof. Let \mathscr{B}_0 be a countable base for the topology of X_{J_0} . For $B \in \mathscr{B}_0$ let J(B) be the smallest subset J of I such that $\pi_{J_0}^{-1}(B)$, $g^{-1}(\pi_{J_0}^{-1}(B))$, and $h^{-1}(\pi_{J_0}^{-1}(B))$ depend only on J. Then J(B) is countable. Define $J_1 = \bigcup \{J(B) | B \in \mathscr{B}_0\}$ and let \mathscr{B}_1 be a countable base for the topology of X_{J_1} . Then one constructs J_2 from \mathscr{B}_1 as J_1 has been constructed from \mathscr{B}_0 . Continuing this process we get an increasing sequence (J_n) of subsets of I and, for each $n \in N$, a countable base \mathscr{B}_n for the topology of X_{J_n} . Let $J = \bigcup_{n \in N} J_n$. Then J is at most countable and $J_0 \subset J$. We shall show that J is g- and h-invariant. To this end let $x, y \in X$ be such that $\pi_J(x) = \pi_J(y)$. Assume $\pi_J g(x) \neq \pi_J g(y)$. Then there is a $k \in N$ with $\pi_{J_k} g(x) \neq \pi_{J_k} g(y)$. Hence there

exists a \mathscr{B}_k with $\pi_{J_k}g(x)\in B$ and $\pi_{J_k}g(y)\notin B$ which implies $x\in g^{-1}$ $\pi_{J_k}^{-1}(B)$ and $y\notin g^{-1}$ $\pi_{J_k}^{-1}(B)$. Since, by definition, $g^{-1}(\pi_{J_k}^{-1}(B))$ depends only on J_{k+1} there is a $j\in J_{k+1}$ with $\pi_j(x)\neq\pi_j(y)$. But this is a contradiction since $j\in J_{k+1}\subset J$. Thus we deduce $\pi_Jg(x)=\pi_Jg(y)$. In the same way one shows $\pi_Jh(x)=\pi_Jh(y)$.

LEMMA 4.5. Let $\mathfrak n$ be a σ -ideal in $\mathfrak B$ satisfying condition (F). Let $q\colon X\to X$ be a measurable map with $q^{-1}(N)\in\mathfrak n$ for all $N\in\mathfrak n$. Moreover, let J be a q-invariant subset of I. Define $q_J\colon X\to X$ by $q_J(x)=(\pi_Jq(x),\,\pi_{I\setminus J}(x)).$ Then q_J is measurable with $q_J^{-1}(N)\in\mathfrak n$ for all $N\in\mathfrak n$.

Proof. From the definition it follows immediately that q_J is measurable. Now, let $N \in \mathfrak{n}$ be given. Since \mathfrak{n} satisfies condition (F) we have

$$P:=\pi_{I}^{-1}(\{z\in X_{I}|\pi_{I\backslash I}^{-1}(\{y\in X_{I\backslash I}|(z,y)\in N\})\notin\mathfrak{n}\})\in\mathfrak{n}$$
.

We will show

$$R \colon= \pi_{J}^{-1}(\{z' \in X_{J} \,|\, \pi_{IJ}^{-1}(\{y' \in X_{I \setminus J} \,|\, (z',\,y') \in q_{J}^{-1}(N)\}) \not\in \mathfrak{n}\}) \in \mathfrak{n}$$
 .

To this end let $x \in R$ be given. Then we have

$$S_x:=\pi_{I\setminus J}^{-1}(\{y'\in X_{I\setminus J}|(\pi_J(x),\,y')\in q_J^{-1}(N)\})
otin \mathfrak{n}$$
 .

Since

$$egin{aligned} S_x &= \pi_{I \setminus J}^{-1}(\{y' \in X_{I \setminus J} \, | \, q_{_J}((\pi_{_J}(x), \, y')) \in N\}) \ &= \pi_{I \setminus J}^{-1}(\{y' \in X_{I \setminus J} \, | \, (\pi_{_J}q(x), \, y') \in N\}) \end{aligned}$$

this implies $q(x) \in P$; hence $R \subset q^{-1}(P)$. Because of $P \in \mathfrak{n}$ and, therefore, $q^{-1}(P) \in \mathfrak{n}$, this implies $R \in \mathfrak{n}$, which, according to condition (F), leads to $q_J^{-1}(N) \in \mathfrak{n}$.

LEMMA 4.6. (cf. Choksi [3], p. 115.) Let Y and Z be uncountable Polish spaces, $q: Y \to Y$ a bijection such that q and q^{-1} are $\mathfrak{B}(Y) - \mathfrak{B}(Y) - \mathfrak$

Proof. According to Mauldin [7], Theorem 2.7 there exists a set $E \in \mathfrak{B}(Z)$ and a point-isomorphism g from $(Y \times E, \mathfrak{B}(Y \times Z) \cap Y \times E)$ onto $(B, \mathfrak{B}(Y \times Z) \cap B)$ such that, for each $y \in Y$, $g(y, \cdot)$ maps E onto $\{y\} \times B_y$. Define $r: B \to B$ by r(y, z) = g(q(y'), z'), where

 $(y',z')=g^{-1}(y,z)$. Then r is a bijection and r as well as r^{-1} are $\mathfrak{B}(Y\times Z)\cap B-\mathfrak{B}(Y\times Z)\cap B$ -measurable. For each $y\in Y,\ g^{-1}(y,\cdot)$ is a map from B_y onto $\{y\}\times E$, and $(y,z)\mapsto (q(y),z)$ defines a map from $\{y\}\times E$ onto $\{q(y)\}\times E$. Since g maps $\{q(y)\}\times E$ onto $\{q(y)\}\times B_{q(y)}$ we, therefore, deduce that $r(y,\cdot)$ is a map from B_y onto $\{q(y)\}\times B_{q(y)}$.

LEMMA 4.7. Let n be a σ -ideal in $\mathfrak B$ satisfying condition (F) or (D). Let $g,h\colon X\to X$ be measurable maps such that $g^{-1}(N)\in \mathfrak n$ and $h^{-1}(N)\in \mathfrak n$ for all $N\in \mathfrak n$ and such that $h^{-1}g^{-1}(B)\bigtriangleup B\in \mathfrak n$ as well as $g^{-1}h^{-1}(B)\bigtriangleup B\in \mathfrak n$ for all $B\in \mathfrak B$. Let $J\subset I$ be h- and g-invariant with $\pi_J\circ h\circ g=\pi_J=\pi_J\circ g\circ h$. Moreover, let $\alpha_0\in I$ be given. Then there exist measurable maps $\widetilde g,\,\widetilde h\colon X\to X$ and a subset $K\subset I$ with the following properties:

- (i) $J \cup \{\alpha_0\} \subset K$
- (ii) K is \tilde{g} and \tilde{h} -invariant.
- ${\rm (iii)} \quad \pi_{{\scriptscriptstyle{K}}} \circ \widetilde{g} \circ \widetilde{h} = \pi_{{\scriptscriptstyle{K}}} = \pi_{{\scriptscriptstyle{K}}} \circ \widetilde{h} \circ \widetilde{g}$
- (iv) $\pi_J \circ \widetilde{g} = \pi_J \circ g \ and \ \pi_J \circ \widetilde{h} = \pi_J \circ h$
- $(\mathbf{v}) \quad \widetilde{g}^{-1}(B) \triangle g^{-1}(B) \in \mathfrak{n} \quad and \quad \widetilde{h}^{-1}(B) \triangle h^{-1}(B) \in \mathfrak{n} \quad for \quad all \quad B \in \mathfrak{B}.$

Proof. According to Lemma 4.4 there exists a countable g- and h-invariant subset J_0 of I with $\alpha_0 \in J_0$. Define $K = J \cup J_0$. Then K is obviously g- and h-invariant. Define

$$N = \{x \in X | \pi_{\kappa} \circ g \circ h(x) \neq \pi_{\kappa}(x) \text{ or } \pi_{\kappa} \circ h \circ g(x) \neq \pi_{\kappa}(x) \}$$
.

We will show $N \in \mathfrak{n}$.

Since $\pi_J \circ g \circ h = \pi_J = \pi_J \circ h \circ g$ and since K is g- and h-invariant the set N depends only on J_0 . Let \mathscr{B} be a countable base for the topology of X_{J_0} . Then we have

$$\begin{split} N &= \{x \in X | \, \exists B \in \mathscr{B} \colon \pi_{J_0} \circ g \circ h(x) \in B \ \text{ and } \ \pi_{J_0}(x) \not \in B \} \\ & \quad \cup \, \{x \in X | \, \exists B \in \mathscr{B} \colon \pi_{J_0} \circ h \circ g(x) \in B \ \text{ and } \ \pi_{J_0}(x) \not \in B \} \\ &= \bigcup_{B,B' \in \mathscr{B}} ((h^{-1}g^{-1}\pi_{J_0}^{-1}(B) \backslash \pi_{J_0}^{-1}(B)) \cup (g^{-1}h^{-1}\pi_{J_0}^{-1}(B') \backslash \pi_{J_0}^{-1}(B')) \ . \end{split}$$

Since, according to our assumptions, $h^{-1}g^{-1}\pi_{J_0}^{-1}(B)\backslash\pi_{J_0}^{-1}(B)\in\mathfrak{n}$ and $g^{-1}h^{-1}\pi_{J_0}^{-1}(B)\backslash\pi_{J_0}^{-1}(B)\in\mathfrak{n}$ we deduce $N\in\mathfrak{n}$.

Case 1. Let n satisfy condition (F).

Let h_J and g_J be defined in the same way as q_J has been defined in Lemma 4.5. Define

$$egin{aligned} N_0 &= igcup_{m \, \in \, N} igcup_{\{h_J^{\,
u_m} h^{\, - \lambda_m} g_J^{\, -
ho_m} g^{- \kappa_m} \, \cdots \, h_J^{\, -
u_1} h^{\, - \lambda_1} g_J^{\, -
ho_1} g^{- \kappa_1}(N) \, | \ &
onumber \
onumber
onumber \
onum$$

From Lemma 4.5 we deduce $N_0 \in \mathfrak{n}$, and it follows that $h_J^{-1}(N_0) \subset N_0$, $h^{-1}(N_0) \subset N_0$, $g_J^{-1}(N_0) \subset N_0$, and $g^{-1}(N_0) \subset N_0$. Define $\widetilde{h} \colon X \to X$ by

$$\widetilde{h}(x) = egin{cases} h(x), & x \notin N_0 \\ h_J(x), & x \in N_0 \end{cases}$$

and $\widetilde{g}: X \to X$ by

$$\widetilde{g}(x) = egin{cases} g(x), & x
otin N_0 \ g_J(x), & x
otin N_0 \end{cases}.$$

Then \tilde{g} and \tilde{h} are obviously measurable.

(1) We will show that K is \tilde{g} - and \tilde{h} -invariant.

To this end let $x, y \in X$ be such that $\pi_K(x) = \pi_K(y)$. If $x \in N_0$ then there exist $\nu_1, \dots, \nu_m, \lambda_1, \dots, \lambda_m, \rho_1, \dots, \rho_m, \kappa_1, \dots, \kappa_m \in N \cup \{0\}$ with

$$g^{\kappa_1}\circ g^{
ho_1}\circ h^{\lambda_1}\circ h^{
u_1}_J\circ\cdots\circ g^{\kappa_m}\circ g^{
ho}_J^m\circ h^{\lambda_m}\circ h^{
u_m}_J(x)\in N$$
 .

Since K is g- and h-invariant it is also g_J - and h_J -invariant. This fact implies

$$egin{aligned} \pi_{K} \circ g^{arkappa_{1}} \circ g^{arkappa_{1}} \circ h^{\lambda_{1}} \circ h^{\lambda_{1}} \circ h^{\lambda_{1}} \circ \cdots \circ g^{arkappa_{m}} \circ g^{arkappa_{m}} \circ h^{\lambda_{m}} \circ h^{\lambda_{m}} \circ h^{\lambda_{m}} (x) \ &= \pi_{K} \circ g^{arkappa_{1}} \circ g^{arkappa_{1}} \circ h^{\lambda_{1}} \circ h^{\lambda_{1}} \circ h^{\lambda_{1}} \circ \cdots \circ g^{arkappa_{m}} \circ g^{arkappa_{m}} \circ h^{\lambda_{m}} \circ h^{\lambda_{m}} \circ h^{\lambda_{m}} (y) \;. \end{aligned}$$

Since N depends only on K this implies

$$g^{\kappa_1} \circ g^{\rho_1} \circ h^{\lambda_1} \circ h^{\nu_1} \circ \cdots \circ g^{\kappa_m} \circ g^{\rho_m} \circ h^{\lambda_m} \circ h^{\nu_m} (y) \in N$$
;

hence $y \in N_0$.

Since K is g_J -invariant we deduce

$$\pi_{\kappa}(\widetilde{g}(x)) = \pi_{\kappa}(g_{J}(x)) = \pi_{\kappa}(g_{J}(y)) = \pi_{\kappa}(\widetilde{g}(y))$$
.

If $x \notin N_0$ it follows by the same arguments that $y \notin N_0$. Hence, the g-invariance of K implies

$$\pi_{\scriptscriptstyle K}(\widetilde{g}(x)) = \pi_{\scriptscriptstyle K}(g(x)) = \pi_{\scriptscriptstyle K}(g(y)) = \pi_{\scriptscriptstyle K}(\widetilde{g}(y))$$
.

In the same way one can show that K is \tilde{h} -invariant.

(2) Next we will show that $\pi_K \circ \widetilde{g} \circ \widetilde{h} = \pi_K = \pi_K \circ \widetilde{h} \circ \widetilde{g}$. If $x \in N_0$ then we have $\widetilde{h}(x) = h_J(x)$. Since

$$g_J \circ h_J(x) = (\pi_J \circ g \circ h_J(x), \, \pi_{I \setminus J} \circ h_J(x)) = (\pi_J \circ g \circ h(x), \, \pi_{I \setminus J}(x)) = x$$

we get $h_J(x) \in g_J^{-1}(N_0) \subset N_0$; hence $\widetilde{g} \circ \widetilde{h}(x) = g_J \circ h_J(x) = x$; in particular $\pi_K \circ \widetilde{g} \circ \widetilde{h}(x) = \pi_K(x)$.

If $x \notin N_0$ then we have $\widetilde{h}(x) = h(x)$. From $h^{-1}(N_0) \subset N_0$ it follows that $h(x) \notin N_0$; hence $\widetilde{g} \circ \widetilde{h}(x) = g \circ h(x)$. Since $N \subset N_0$ we get $x \notin N$ and, therefore, $\pi_K \circ g \circ h(x) = \pi_K(x)$; hence $\pi_K \circ \widetilde{g} \circ \widetilde{h}(x) = \pi_K(x)$.

In the same way one can show that $\pi_{\kappa} \circ \widetilde{h} \circ \widetilde{g} = \pi_{\kappa}$.

- (3) From the definition of \tilde{g} and \tilde{h} it follows immediately that $\pi_J \circ \tilde{g} = \pi_J \circ g$ and $\pi_J \circ \tilde{h} = \pi_J \circ h$.
- (4) Let $B \in \mathfrak{B}$ be given. Then we have $\widetilde{g}^{-1}(B) \triangle g^{-1}(B) \subset N_0$; hence $\widetilde{g}^{-1}(B) \triangle g^{-1}(B) \in \mathfrak{n}$.

In the same way one can deduce that $\tilde{h}^{-1}(B) \triangle h^{-1}(B) \in \mathfrak{n}$.

Case 2. Let n satisfy condition (D).

If $J \cap J_0 \neq \emptyset$ then, according to condition (D), there exists a set $N' \in \mathbb{N}$ such that N' depends only on J_0 and such that $\pi_{J_0,J_0\cap J}^{-1}(u) \cap \pi_{J_0}(N')$ is uncountable and of second category in $\pi_{J_0,J_0\cap J}^{-1}(u)$ for all $u \in X_{J_0\cap J}$.

If $J \cap J_0 = \emptyset$ define $N' = \emptyset$.

We will show that $J_0 \cap J$ is g- and h-invariant. Let $x, y \in X$ be such that $\pi_{J_0 \cap J}(x) = \pi_{J_0 \cap J}(y)$. Then, due to the g-invariance of J_0 and J, we have

$$\pi_{J_0} \circ g(x) = \pi_{J_0} \circ g((\pi_{J_0}\!(x),\, \pi_{I \setminus J_0}\!(y)))$$

and

$$\begin{split} \pi_{J} \circ g((\pi_{J_{0}}(x),\, \pi_{I \setminus J_{0}}(y))) &= \pi_{J} \circ g((\pi_{J_{0} \cap J}(x),\, \pi_{J_{0} \setminus J}(x),\, \pi_{I \setminus J_{0}}(y))) \\ &= \pi_{J} \circ g((\pi_{J_{0} \cap J}(y),\, \pi_{J_{0} \setminus J}(x),\, \pi_{I \setminus J_{0}}(y))) \\ &= \pi_{J} \circ g((\pi_{J}(y),\, \pi_{J_{0} \setminus J}(x),\, \pi_{I \setminus (J_{0} \cup J)}(y))) \\ &= \pi_{J} \circ g(y) \ ; \end{split}$$

hence $\pi_{J \cap J_0} \circ g(x) = \pi_{J \cap J_0} \circ g(y)$.

In the same way one can show that $J \cap J_0$ is h-invariant.

Define $g_0\colon X_{J\cap J_0}\to X_{J\cap J_0}$ by $g_0(u)=\pi_{J\cap J_0}g(u,w)$, where $w\in X_{I\setminus (J\cap J_0)}$ is arbitrary. Since $J\cap J_0$ is g-invariant g_0 is a well-defined map. From $\pi_J\circ g\circ h=\pi_J=\pi_J\circ h\circ g$ it follows that g_0 is a bijection. It is also easy to check that g_0 and g_0^{-1} are $\mathfrak{B}(X_{J\cap J_0})-\mathfrak{B}(X_{J\cap J_0})$ -measurable.

Define

$$N_{\scriptscriptstyle 0} = igcup_{\scriptscriptstyle m \, \in \, N} igcup_{\scriptscriptstyle \{g^{-
u_m}h^{-\lambda_m} \, \cdots \, g^{-
u_1}h^{-\lambda_1}(N \cup N') \, | \,
u_{\scriptscriptstyle 1}, \, \, \cdots, \,
u_{\scriptscriptstyle m}, \, \lambda_{\scriptscriptstyle 1}, \, \, \cdots, \, \lambda_{\scriptscriptstyle m} \, \in N \, \cup \, \{0\}\} \; .$$

From our assumptions concerning g and h we deduce $N_0 \in \mathbb{R}$, $N \cup N' \subset N_0$, $g^{-1}(N_0) \subset N_0$, and $h^{-1}(N_0) \subset N_0$. Since N and N' depend only on J_0 and since J_0 is g- and h-invariant the set N_0 also depends only on J_0 . If $J_0 \cap J = \emptyset$ define $\widetilde{g} \colon X \to X$ by

$$\widetilde{g}(x) = egin{cases} g(x), & x \notin N_0 \ x, & x \in N_0 \end{cases}$$

and $\widetilde{h}: X \to X$ by

$$\widetilde{h}(x) = \begin{cases} h(x), & x \notin N_0 \\ x, & x \in N_0 \end{cases}$$

Then \widetilde{g} and \widetilde{h} obviously satisfy conditions (i) to (v) in Lemma 4.7. If $J_0 \cap J \neq \emptyset$ then according to our assumptions (cf. Remark 4.2.3) $X_{J_0 \cap J}$ and $X_{J_0 \setminus J}$ are uncountable Polish spaces. In this case we have $\pi_{J_0}(N_0) \in \mathfrak{B}(X_{J_0})$ and, for each $u \in X_{J_0 \cap J}$, the set $\pi_{J_0,J_0 \cap J}^{-1}(u) \cap \pi_{J_0}(N_0)$ is uncountable and of the second category in $\pi_{J_0,J_0 \cap J}^{-1}(u)$. According to Lemma 4.6 there exists a bijection $r \colon \pi_{J_0}(N_0) \to \pi_{J_0}(N_0)$ such that r and r^{-1} are measurable and such that, for each $w \in X_{J_0}$, we have

$$\pi_{J_0,J_0\cap J}\circ r(w)=g_{_0}\circ\pi_{J_0,J_0\cap J}(w)$$
 .

Since $\pi_J \circ h \circ g = \pi_J = \pi_J \circ g \circ h$ this implies

$$\pi_{J_0,J_0\cap J}r^{-1}\!(w)=h_{\scriptscriptstyle 0}\!\circ\!\pi_{J_0,J_0\cap J}\!(w)$$
 ,

where h_0 is defined in an analogous way as g_0 . Define $\tilde{g}: X \to X$ by

$$\widetilde{g}(x) = egin{cases} g(x), & x
otin N_0 \ (\pi_{I ackslash J_0} \circ g(x), \ r \circ \pi_{J_0}(x)), \ x
otin N \end{cases}$$

and $\widetilde{h}: X \to X$ by

$$\widetilde{h}(x) = egin{cases} h(x), & x
otin N_0 \ (\pi_{I ackslash J_0} \circ h(x), \ r^{-1} \circ \pi_{J_0}(x)), \ x
otin N_0 \end{cases}.$$

Then \widetilde{g} and \widetilde{h} are measurable.

(1) We will show that K is \tilde{g} - and \tilde{h} -invariant.

Let $x, y \in X$ be such that $\pi_K(x) = \pi_K(y)$. Since N_0 depends only on $J_0 \subset K$ either x and y are both in N_0 or x and y are both in $X \setminus N_0$. In the first case we have $\pi_K \circ \widetilde{g}(x) = \pi_K(\pi_{I \setminus J_0} \circ g(x), r \circ \pi_{J_0}(x))$ and, due to the g-invariance of K combined with $\pi_{J_0}(x) = \pi_{J_0}(y)$,

$$\pi_{\scriptscriptstyle{K}}(\pi_{\scriptscriptstyle{I}\setminus J_0}\circ g(x),\, r\circ\pi_{\scriptscriptstyle{J_0}}(x))=\pi_{\scriptscriptstyle{K}}(\pi_{\scriptscriptstyle{I}\setminus J_0}\circ g(y),\, r\circ\pi_{\scriptscriptstyle{J_0}}(y))=\pi_{\scriptscriptstyle{K}}\widetilde{g}(y)\;.$$

In the second case the g-invariance of K implies

$$\pi_{\kappa} \circ \widetilde{g}(x) = \pi_{\kappa} \circ g(x) = \pi_{\kappa} \circ g(y) = \pi_{\kappa} \circ \widetilde{g}(y)$$
.

In the same way one can show that K is \widetilde{h} -invariant.

(2) We will show that $\pi_{\kappa} \circ \widetilde{g} \circ \widetilde{h} = \pi_{\kappa} = \pi_{\kappa} \circ \widetilde{h} \circ \widetilde{g}$.

Since N_0 depends only on J_0 we have $\widetilde{h}(N_0) \subset N_0$ and $\widetilde{g}(N_0) \subset N_0$. Because $g^{-1}(N_0) \subset N_0$ and $h^{-1}(N_0) \subset N_0$ we also have $g(X \backslash N_0) \subset X \backslash N_0$ and $h(X \backslash N_0) \subset X \backslash N_0$.

We, therefore, deduce that, for each $x \in N_0$,

$$egin{aligned} \pi_{\scriptscriptstyle{K}} \circ \widetilde{h} \circ \widetilde{g}(x) &= \pi_{\scriptscriptstyle{K}} \circ \widetilde{h}(\pi_{\scriptscriptstyle{I \setminus J_0}} g(x), \ r \circ \pi_{\scriptscriptstyle{J_0}}(x)) \ &= \pi_{\scriptscriptstyle{K}}(\pi_{\scriptscriptstyle{I \setminus J_0}} \circ h(\pi_{\scriptscriptstyle{I \setminus J_0}} \circ g(x), \ r \circ \pi_{\scriptscriptstyle{J_0}}(x)), \ r^{-_1} \circ r \circ \pi_{\scriptscriptstyle{J_0}}(x)) \ . \end{aligned}$$

Since $\pi_{J_0,J_0\cap J}\circ r\circ\pi_{J_0}(x)=g_0\circ\pi_{J_0\cap J}(x)=\pi_{J_0\cap J}\circ g(x)$ and since J is h-invariant we have

$$\pi_{J}\circ h(\pi_{I\setminus J_0}\circ g(x),\ r\circ\pi_{J_0}(x))=\pi_{J}\circ h\circ g(x)$$
 .

Because of $\pi_J \circ h \circ g = \pi_J$ and $K \backslash J_0 \subset J$ this implies

$$\pi_{\scriptscriptstyle{K}} \circ \widetilde{h} \circ \widetilde{g}(x) = \pi_{\scriptscriptstyle{K}}(\pi_{\scriptscriptstyle{I \setminus J_0}} \circ h \circ g(x), \, \pi_{\scriptscriptstyle{J_0}}(x)) = (\pi_{\scriptscriptstyle{K \setminus J_0}} \circ h \circ g(x), \, \pi_{\scriptscriptstyle{J_0}}(x)) = \pi_{\scriptscriptstyle{K}}(x) \; .$$

For $x \notin N_0$ it follows from $N \subset N_0$ that

$$\pi_{\scriptscriptstyle{K}} \circ \widetilde{h} \circ \widetilde{g}(x) = \pi_{\scriptscriptstyle{K}} \circ h \circ g(x) = \pi_{\scriptscriptstyle{K}}(x)$$
.

In the same way one can show that $\pi_{\scriptscriptstyle{K}} \circ \widetilde{g} \circ \widetilde{h} = \pi_{\scriptscriptstyle{K}}$.

(3) We will show that $\pi_J \circ \widetilde{g} = \pi_J \circ g$ and $\pi_J \circ \widetilde{h} = \pi_J \circ h$. For $x \in X \setminus N_0$ these identities obviously hold.

For $x \in N_0$ we deduce

$$\begin{split} \pi_{J} \circ \widetilde{g}(x) &= \pi_{J}(\pi_{I \setminus J_{0}} \circ g(x), \ r \circ \pi_{J_{0}}(x)) \\ &= (\pi_{J \setminus J_{0}} \circ g(x), \ \pi_{J_{0}, J_{0} \cap J} \circ r \circ \pi_{J_{0}}(x)) \\ &= (\pi_{J \setminus J_{0}} \circ g(x), \ g_{0} \circ \pi_{J_{0} \cap J}(x)) \\ &= \pi_{J} \circ g(x) \ . \end{split}$$

In the same way one can show that $\pi_J \circ \widetilde{h} = \pi_J \circ h$.

(4) Property (v) in Lemma 4.7 follows from the fact that \tilde{g} and g as well as \tilde{h} and h differ only in a subset of $N_0 \in \pi$.

Proof of Theorem 4.3. Let \otimes be the collection of the triples (J, g, h), where $g, h: X \to X$ are measurable such that $[g^{-1}(B)] = \Phi([B])$ and $[h^{-1}(B)] = \Phi^{-1}([B])$ for all $B \in \mathfrak{B}$, and J is a g- and h-invariant subset of I with $\pi_J \circ h \circ g = \pi_J = \pi_J \circ g \circ h$.

We define the following preorder on S:

 $(J_1, g_1, h_1) \leq (J_2, g_2, h_2)$ iff $J_1 \subset J_2$, $\pi_{J_1} \circ g_2 = \pi_{J_1} \circ g_1$, and $\pi_{J_1} \circ h_2 = \pi_{J_1} \circ h_1$. According to Theorem 3.1 there are measurable maps g_0 and h_0 from X into itself such that g_0 induces Φ and h_0 induces Φ^{-1} . Thus (\emptyset, g_0, h_0) belongs to \mathfrak{S} and \mathfrak{S} is not empty.

We claim that the preorder \leq is inductive. To show this let $(J_{\lambda}, g_{\lambda}, h_{\lambda})_{\lambda \in A}$ be a (nonempty) chain in \otimes and let $\lambda_{0} \in A$ be fixed. Define $J = \bigcup_{\lambda \in A} J_{\lambda}$ and $g: X \to X$ by

$$\pi_{lpha}(g(x)) = egin{cases} \pi_{lpha}(g_{\imath}(x)), & lpha \in J_{\imath} \ \pi_{lpha}(g_{\imath_0}(x)), & lpha
otin J \end{cases}.$$

Let h be defined in an analogous way.

Then g and h are obviously measurable.

Next we will show that g induces Φ . To prove this it is enough to prove $[g^{-1}(\pi_{\alpha_0}^{-1}(B))] = \Phi([\pi_{\alpha_0}^{-1}(B)])$ for all $\alpha_0 \in I$ and all $B \in \mathfrak{B}(X_{\alpha_0})$. For $\alpha_0 \in J$ and $B \in \mathfrak{B}(X_{\alpha_0})$ there exists a $\lambda \in \Lambda$ with $\alpha_0 \in J_{\lambda}$; hence

$$g^{\scriptscriptstyle -1}(\pi_{\scriptscriptstyle \alpha_0}^{\scriptscriptstyle -1}(B)) \, = \, \{x \in X | \, \pi_{\scriptscriptstyle \alpha_0} \circ g(x) \in B\}$$

$$egin{aligned} &=\{x\in X|\,\pi_{lpha_0}\circ g_{oldsymbol{\lambda}}(x)\in B\}\ &=g_{oldsymbol{\lambda}}^{-1}(\pi_{lpha_0}^{-1}(B)) \;. \end{aligned}$$

Since $(J_{\lambda}, g_{\lambda}, h_{\lambda}) \in \mathfrak{S}$ this implies $[g^{-1}(\pi_{\alpha_0}^{-1}(B))] = \Phi([\pi_{\alpha_0}^{-1}(B)])$. For $\alpha_0 \in I \setminus J$ one has to replace λ by λ_0 in the above argument. In the same way one can see that h induces Φ^{-1} .

By standard arguments it can be shown that J is g- and h-invariant and that

$$\pi_I \circ g \circ h = \pi_I = \pi_I \circ h \circ g$$
.

Thus (J, g, h) is an upper bound of $(J_{\lambda}, g_{\lambda}, h_{\lambda})_{{\lambda} \in A}$ in \mathfrak{S} .

By Zorn's lemma there exists a maximal element (J', g', h') in \mathfrak{S} . Using Lemma 4.7 we conclude J' = I. Since g' induces Φ and h' induces Φ^{-1} the equality $g' \circ h' = h' \circ g' = id_x$ yields that f: = g' is a bijection with the desired properties.

REFERENCES

- 1. J. Choksi, Automorphisms of Baire measures on generalized cubes, Z. Wahrscheinlichkeitstheorie verw. Geb., 22 (1972), 195-204.
- 2. ———, Automorphisms of Baire measures on generalized Cubes II, Z. Wahrscheinlichkeitstheorie verw. Geb., 23 (1972), 97-102.
- 3. ———, Measurable transformations on compact groups, Trans. Amer. Math. Soc. 184 (1973), 101-124.
- 4. N. Falkner, Generalizations of standard and analytic measurable spaces, preprint 1978.
- 5. D. Maharam, Automorphisms of products of measure spaces, Proc. Amer. Math. Soc., 9 (1958), 702-707.
- 6. ——, Realizing automorphisms of category algebras of product spaces, General Topology and Appl., 10 (1979), 161-174.
- 7. R. D. Mauldin, Borel Parameterizations, Trans. Amer. Math. Soc., 250 (1979), 223-234
- 8. Sikorski, Boolean Algebras, 3rd ed., Springer, Bern-Heidelberg-New York 1969.

Received March 28, 1980.

MATHEMATISCHES INSTITUT
DER UNIVERSITÄT ERLANGEN-NÜRNBERG
BISMARCKSTR. 1 1/2
8520 ERLANGEN
W.-GERMANY