REALIZING AUTOMORPHISMS OF QUOTIENTS OF PRODUCT σ-FIELDS

Siegrried Graf

Abstract

Let $\left(X_{\alpha}\right)_{\alpha \in I}$ be a family of Polish spaces, $X=\prod_{\alpha \in I} X_{\alpha}$, and \mathfrak{B} the product of the Borel fields of the spaces X_{α}. For $K \subset I$ let $X_{K}=\Pi_{\alpha \in K} X_{\alpha}$ and let $\pi_{K}: X \rightarrow X_{K}$ be the canonical projection. Moreover, let \mathfrak{n} be a σ-ideal in \mathfrak{B} satisfying the following Fubini type condition: $N \in \mathfrak{n}$ if and only if $\pi_{J}^{-1}\left(\left\{z \in X_{J} \mid \pi_{I_{J}}^{-1}\left(\left\{y \in X_{I \backslash J} \mid(z, y) \in N\right\}\right) \notin \mathfrak{n}\right\}\right) \in \mathfrak{n}$ for every nonempty $J \subset I$. Then, given an automorphism Φ from $\mathfrak{B} / \mathfrak{n}$ onto itself, there exists a bijection $f: X \rightarrow X$ such that f and f^{-1} are measurable and

$$
\left[f^{-1}(B)\right]=\Phi\left([B], \quad[f(B)]=\Phi^{-1}([B])\right.
$$

for all $B \in \mathfrak{B}$.

1. Introduction. Let $\left(X_{\alpha}\right)_{\alpha \in I}$ be an arbitrary family of Polish spaces and, for every $\alpha \in I, \mu_{\alpha}$ a Borel measure on X_{α}. Let $X=$ $\Pi_{\alpha \in I} X_{\alpha}$ be equipped with the Baire σ-field $\mathfrak{B}(X)$ which is equal to the product of the Borel fields of the spaces X_{α}. Moreover, let μ be the product measure on $\mathfrak{B}(X)$ and \mathfrak{n} the σ-ideal of μ-nullsets. D. Maharam [5] showed that every automorphism of $\mathfrak{B}(X) / \mathfrak{n}$ onto itself is induced by an invertible $\mathfrak{B}(X)$-measurable point mapping of X. In [6] D. Maharam proved the same result in the case that \mathfrak{n} is the σ-ideal of first category sets in $\mathfrak{B}(X)$. It is the purpose of this note to give a common generalization of these two results: We shall show that for σ-ideals \mathfrak{n} in $\mathfrak{B}(X)$ which satisfy a certain Fubini type condition the conclusions of Maharam's theorems still hold.

Choksi [1], [2] generalized Maharam's first result to arbitrary Baire measures on $X=\Pi X_{\alpha}$. Our methods of proof consist in a slight modification of those used by Choksi [2] (cf. also Choksi [3]). We shall formulate our lemmas in such a way that we can also reprove Choksi's theorem.

Our basic tool in the proofs of the results stated above consists in the following generalization of a theorem due to Sikorski (cf. [8], p. 139, 32.5): Each σ-homomorphism from $\mathfrak{B}\left(\Pi X_{\alpha}\right)$ to an arbitrary quotient of a σ-field on any set Y (w.r.t. a σ-ideal) is induced by a measurable map from Y to $X=\Pi X_{\alpha}$.

This last result is also used to deduce a characterization of injective measurable spaces first given by Falkner [4] (cf. §3).
2. Notation. In what follows $\left(X_{\alpha}\right)_{\alpha \in I}$ is always a family of Polish spaces. For a subset J of I let X_{J} stand for $\Pi_{\alpha \in J} X_{\alpha}$ and X
for X_{I}. For $K \subset J \subset I$ let $\pi_{J K}$ denote the canonical projection from X_{J} onto X_{K}. If $J=I$ we write π_{K} instead of $\pi_{J K}$. For an arbitrary completely regular Hausdorff space Y let $\mathfrak{B}(Y)$ denote the σ-field of Baire sets in Y. We will write \mathfrak{B} for $\mathfrak{B}(X)$. \mathfrak{B} is equal to the product σ-field of the Borel fields $\mathfrak{B}\left(X_{\alpha}\right)$. A map $f: X \rightarrow X$ is called measurable if it is \mathfrak{B} - \mathfrak{B}-measurable.
3. Realizing σ-homomorphisms. The following theorem is a generalization of a result due to Sikorski (cf. [8], p. 139, 32.5) and provides the basic tool for deriving the results in the later sections.

Theorem 3.1. Let $X=\Pi X_{\alpha}, \mathfrak{B}=\mathfrak{B}(X)$. Moreover let (Y, \mathfrak{A}) be a measurable space, \mathfrak{n} a σ-ideal in \mathfrak{A}, and $\Phi: \mathfrak{B} \rightarrow \mathfrak{A} / \mathfrak{n}$ a σ-homomorphism. Then there exists an \mathfrak{X}-B-measurable map $f: Y \rightarrow X$ with $f^{-1}(B) \in \Phi(B)$ for all $B \in \mathfrak{B}$, i.e. Φ is induced by f.

Proof. For every $\alpha \in I$ define $\Phi_{\alpha}: \mathfrak{B}\left(X_{\alpha}\right) \rightarrow \mathfrak{U} / \mathfrak{n}$ by $\Phi_{\alpha}(B)=$ $\Phi\left(\pi_{\alpha}^{-1}(B)\right)$. Then Φ_{α} is obviously a σ-homomorphism. It follows from Sikorski [8], p. 139, 32.5 that there exists an $\mathfrak{A}-\mathfrak{B}\left(X_{\alpha}\right)$-measurable $\operatorname{map} f_{\alpha}: Y \rightarrow X_{\alpha}$ with $f_{\alpha}^{-1}(B) \in \Phi_{\alpha}(B)$ for all $B \in \mathfrak{B}\left(X_{\alpha}\right)$. Define $f: Y \rightarrow X$ by $f(y)=\left(f_{\alpha}(y)\right)_{\alpha \in I}$. Then f is \mathfrak{Q} - \mathcal{B}-measurable and for every $B \in \mathfrak{B}$ with $B=\bigcap_{i=1}^{n} \pi_{\alpha_{i}}^{-1}\left(B_{\alpha_{i}}\right), B_{\alpha_{i}} \in \mathfrak{B}\left(X_{\alpha_{i}}\right)$ one has $f^{-1}(B)=\bigcap_{i=1}^{n} f_{\alpha_{i}}^{-1}\left(B_{\alpha_{i}}\right)$. Since $f_{\alpha_{i}}^{-1}\left(B_{\alpha_{i}}\right) \in \Phi_{\alpha_{i}}\left(B_{\alpha_{i}}\right)=\Phi\left(\pi_{\alpha_{i}}^{-1}\left(B_{\alpha_{i}}\right)\right)$ we deduce

$$
\bigcap_{i=1}^{n} f_{\alpha_{i}}^{-1}\left(B_{\alpha_{i}}\right) \in \Phi\left(\bigcap_{i=1}^{n} \pi_{\alpha_{i}}^{-1}\left(B_{\alpha_{i}}\right)\right)=\Phi(B)
$$

hence

$$
f^{-1}(B) \in \Phi(B)
$$

Since the sets of the above form generate \mathfrak{B} as a σ-field and since Φ is a σ-homomorphism it follows that $f^{-1}(B) \in \Phi(B)$ for all $B \in \mathfrak{B}$.

Before we shall go on with our main subject let us use the above theorem to derive a characterization of injective measurable spaces. Essentially the same characterization has been given first by Falkner [4]. It is also possible to deduce Theorem 3.1 from Falkner's results.

Definition 3.2.
(a) A measurable space ($Z,(\mathbb{C}$) is called separated iff for all $z, z^{\prime} \in Z$ with $z \neq z^{\prime}$ there exists a set $C \in \mathfrak{C}$ with $z \in C$ and $z^{\prime} \notin C$.
(b) Two measurable spaces (Y, \mathfrak{Y}) and (Z, \mathfrak{C}) are called pointisomorphic iff there exists a bijection g from Y onto Z such that g and g^{-1} are measurable. g is called a point-isomorphism.
(c) A measurable space (Y, \mathfrak{X}) is called a retract of a measurable space (Z, (5) iff there exists a subset Z_{0} of Z and an \mathfrak{Q} - $\subseteq Z_{0^{-}}$ measurable map $h: Z \rightarrow Z_{0}$ with $h_{\mid Z_{0}}=i d_{Z_{0}}$ such that (Y, \mathfrak{X}) is pointisomorphic to (Z_{0}, © $\cap Z_{0}$), where $\mathfrak{C} \cap Z_{0}=\left\{C \cap Z_{0} \mid C \in \mathbb{C}\right\}$.
(d) A measurable space (Z, (5) is called injective iff for every measurable space (Y, \mathfrak{A}), for every subset $Y_{0} \subset Y$, for every $\mathfrak{A} \cap Y_{0}$ -\mathfrak{C}-measurable map $f: Y_{0} \rightarrow Z$ there exists an \mathfrak{A} - \mathfrak{C}-measurable map $\tilde{f}: Y \rightarrow Z$ with $\widetilde{f}_{\mid Y_{0}}=f$.

Lemma 3.3. Let (Z, \mathfrak{c}) be a separated measurable space and let § be a subset of © generating © as a σ-field. Then there exists a set $B \subset[0,1]^{\llbracket}$ such that $\left(Z,(5)\right.$ is point-isomorphic to $\left(B, \mathfrak{B}\left([0,1]^{\Xi}\right) \cap B\right)$.

Proof. Define $g: Z \rightarrow[0,1]^{⿷}$ by $g(z)=\left(1_{E}(z)\right)_{E \in \mathbb{E}}$. Then g is $\mathfrak{C}-\mathfrak{B}\left([0,1]^{\llbracket}\right)$-measurable and one-to-one. Let $B=g(Z)$. For $E_{0} \in \mathfrak{F}$ we have $g\left(E_{0}\right)=\left\{\left(s_{E}\right)_{E \in \Phi} \in g(Z) \mid s_{E_{0}}=1\right\}$, hence $g\left(E_{0}\right) \in \mathfrak{B}\left([0,1]^{⿷}\right) \cap B$, which proves g to be a point-isomorphism of (Z, ©) and ($B, \mathfrak{B}\left([0,1]^{๔}\right) \cap B$).

Remark 3.4. Let I be an index set and $\varnothing \neq B \in \mathfrak{B}\left([0,1]^{l}\right)$. Then $\left(B, \mathfrak{B}\left([0,1]^{I}\right) \cap B\right)$ is a retract of $\left([0,1]^{I}, \mathfrak{F}\left([0,1]^{I}\right)\right)$.

Proof. Let $x_{0} \in B$ be given. Define $h:[0,1]^{I} \rightarrow B$ by

$$
h(x)=\left\{\begin{array}{l}
x, x \in B \\
x_{0}, x \notin B .
\end{array}\right.
$$

Then h is measurable and $h_{\mid B}=i d_{B}$.
It remains an open question whether every retract of ($[0,1]^{I}$, $\left.\mathfrak{B}\left([0,1]^{l}\right)\right)$ is point-isomorphic to a Baire subset of some generalized cube $[0,1]^{K}$. (For $K=I$ this is not true in general.)

Corollary 3.5. (cf. Falkner [4], Theorem 3.2.) For a separated measurable space ($Z, \mathbb{(}$) the following conditions are equivalent:
(i) (Z, © $)$ is injective.
(ii) There exists an index set I such that ($Z, \mathfrak{(}$) is a retract of $\left([0,1]^{I}, \mathfrak{B}\left([0,1]^{I}\right)\right)$.
(iii) For every measurable space (Y, \mathfrak{A}) and every σ-ideal \mathfrak{n} of \mathfrak{A} each σ-homomorphism $\Phi: \mathfrak{c} \rightarrow \mathfrak{A} / \mathfrak{n}$ is induced by an $\mathfrak{A}-\mathfrak{C}$-measurable $\operatorname{map} f: Y \rightarrow Z$.
If (Z, © $)$ is countably generated, in addition, then the conditions (i) to (iii) are also equivalent to
(iv) (Z, \mathfrak{C}) is point-isomorphic to $\left(B, \mathfrak{B}\left([0,1]^{N}\right) \cap B\right)$ for some $B \in \mathfrak{B}\left([0,1]^{N}\right)$.

Proof. (i) \Rightarrow (ii): According to Lemma 3.3 we may assume $Z \subset$ $[0,1]^{I}$ and $\mathfrak{C}=\mathfrak{B}\left([0,1]^{I}\right) \cap Z$ for some I. Let $f=i d_{z}$. Since (Z, \mathfrak{C}) is injective there exists a $\mathfrak{B}\left([0,1]^{I}\right)$ - \mathfrak{C}-measurable map $\widetilde{f}:[0,1]^{I} \rightarrow Z$ with $\tilde{f}_{1 z}=i d_{z}$. Hence (Z, \mathscr{C}) satisfies condition (ii).
(ii) \Rightarrow (iii): Without loss of generality we may assume that $Z \subset$ $[0,1]^{I}, \mathfrak{C}=\mathfrak{B}\left([0,1]^{I}\right) \cap Z$, and that there is a $\mathfrak{B}\left([0,1]^{I}\right)-\mathfrak{C}$-measurable map $h:[0,1]^{I} \rightarrow Z$ with $h_{\mid Z}=i d_{z}$. Let (Y, \mathfrak{A}) be any measurable
 $\Phi_{0}: \mathfrak{B}\left([0,1]^{I}\right) \rightarrow \mathfrak{U} / \mathfrak{n}$ by $\Phi_{0}(B \cap Z)$. Then Φ_{0} is a σ-homomorphism and according to Theorem 3.1 there exists an $\mathfrak{A}-\mathfrak{B}\left([0,1]^{I}\right)$-measurable $\operatorname{map} f_{0}: Y \rightarrow[0,1]^{I}$ which induces Φ. Let $f=h \circ f_{0}$. Then f is $\mathfrak{A}-\mathbb{C}-$ measurable and obviously induces Φ.
(iii) \Rightarrow (i): Let (Y, \mathfrak{H}) be any measurable space, $Y_{0} \subset Y$, and $f: Y_{0} \rightarrow Z$ an $\mathfrak{A} \cap Y_{0}$-®-measurable map. Let $\mathfrak{n}=\left\{A \in \mathfrak{A}: A \cap Y_{0}=\varnothing\right\}$. Then \mathfrak{n} is a σ-ideal in \mathfrak{Y}. Define $\Phi(C)$ to be the residual class in $\mathfrak{X} / \mathfrak{n}$ of any $A \in \mathfrak{A}$ with $A \cap Y_{0}=f^{-1}(C)$. Then $\Phi: \mathfrak{C} \rightarrow \mathfrak{U} / \mathfrak{n}$ is a σ-homomorphism. According to (iii) there exists an \mathfrak{A} - 厄-measurable map $\tilde{f}: Y \rightarrow Z$ which induces Φ. From the definition of Φ it follows immediately that $\widetilde{f}_{\mid Y_{0}}=f$.

Now let (Z, (5) be countably generated.
(ii) \Rightarrow (iv): Without loss of generality we may assume that $Z \subset[0,1]^{N}, \mathfrak{C}=\mathfrak{B}\left([0,1]^{N}\right) \cap Z$, and that there is a $\mathfrak{B}\left([0,1]^{N}\right)-\mathfrak{C}$ measurable map $h:[0,1]^{N} \rightarrow Z$ with $h_{\mid Z}=i d_{Z}$ (cf. Lemma 3.3 and the proof of (i) \Rightarrow (ii)). $\quad \mathfrak{B}\left([0,1]^{N}\right)$ has a countable subset \mathfrak{F} such that for all $x, x^{\prime} \in[0,1]^{N}$ there exists an $E \in \mathscr{F}$ with $x \in E$ and $x^{\prime} \notin E$. For $x \in[0,1]^{M} \backslash Z$ there, therefore, exists an $E \in \mathfrak{F}$ with $x \in E$ and $h(x) \notin E$. Since $h_{\mid Z}=i d_{z}$ we deduce $x \in E \backslash h^{-1}(E) \subset[0,1]^{M} \backslash Z$, hence $[0,1]^{N} \backslash Z=$ $\mathbf{U}_{E \in E} E \backslash h^{-1}(E)$ belongs to $\mathfrak{B}\left([0,1]^{N}\right)$.
(iv) \Rightarrow (ii) follows immediately from Remark 3.4.
4. Realizing automorphisms. In this section \mathfrak{n} is always a σ ideal in $\mathfrak{B}(X), X=\Pi X_{\alpha}$. For $B \in \mathfrak{B}(X)$ the symbol [B] stands for the residual class of B in $\mathfrak{B}(X) / \mathrm{n}$. We say that a subset B of X depends only on $J \subset I$ if $B=\pi_{J}^{-1}\left(\pi_{J}(B)\right)$. It is a well-known fact that every $B \in \mathfrak{B}(X)$ depends only on a countable subset of I.

Definition 4.1.
(a) \mathfrak{n} is said to satisfy condition (F) iff a set $N \in \mathfrak{B}(X)$ belongs to \mathfrak{n} if and only if for every nonempty $J \subset I$

$$
\pi_{J}^{-1}\left(\left\{z \in X_{J} \mid \pi_{I \backslash J}^{-1}\left(\left\{y \in X_{T \backslash J} \mid(z, y) \in N\right\}\right) \notin \mathfrak{n}\right\}\right) \in \mathfrak{n}
$$

(b) \mathfrak{n} is said to satisfy condition (D) iff for all countable nonempty $J_{1}, J_{2} \subset I$ with $J_{1} \cap J_{2}=\varnothing$ there exists an $N \in \mathfrak{n}$ such that N depends only on $J_{1} \cup J_{2}$ and, for all $z \in X_{J_{1}}, \pi_{J_{1} \cup J_{2}, J_{1}}^{-1}(z) \cap \pi_{J_{1} \cup J_{2}}(N)$ is
uncountable and of second category in $\pi_{J_{1} \cup J_{2}, J_{1}}^{-1}(z)$.
Remark 4.2.
(1) For every $\alpha \in I$ let μ_{α} be a finite measure on $\mathfrak{B}\left(X_{\alpha}\right)$. Let μ be the product measure on $\mathfrak{B}(X)$ obtained from the μ_{α} 's and let \mathfrak{n} be the σ-ideal of μ-nullsets. Then it follows from Fubini's theorem that \mathfrak{n} satisfies condition (F).
(2) Let \mathfrak{n} be the σ-ideal of all sets of first category in $\mathfrak{B}(X)$. Then \mathfrak{n} satisfies condition (F). This is a consequence of Theorem 1 in [6].
(3) If there exists a σ-ideal \mathfrak{n} in \mathfrak{B} satisfying condition (D) then each of the X_{α} 's has to be uncountable.
(4) Let μ be a σ-finite measure on $\mathfrak{B}(X)$ and \mathfrak{n} the σ-ideal of μ-nullsets. If each X_{α} is uncountable then \mathfrak{n} satisfies condition (D). This follows from Lemma B (and proof) in [2].

Let us now state our main theorem.
Theorem 4.3. Let \mathfrak{n} be a σ-ideal in $\mathfrak{B}(X)=\mathfrak{B}\left(\Pi X_{\alpha}\right)$ satisfying conditon (F) or (D). Let Φ be an automorphism of $\mathfrak{B}(X) / \mathfrak{n}$ onto itself. Then there exists a bijection $f: X \rightarrow X$ such that f and f^{-1} are measurable and $\left[f^{-1}(B)\right]=\Phi([B]),[f(B)]=\Phi^{-1}([B])$ for all $B \in \mathfrak{B}(X)$.

The ingredients of the proof will be provided by a series of lemmas. Let us first make the following definition:

Given a measurable map $g: X \rightarrow X$ a subset J of I is called g-invariant iff, for all $x, y \in X$, the identity $\pi_{J}(x)=\pi_{J}(y)$ implies $\pi_{J}(g(x))=\pi_{J}(g(y))$.

Lemma 4.4. Let $g, h: X \rightarrow X$ be measurable mappings. Then, for every countable $J_{0} \subset I$, there exists a countable set $J \subset I$ which contains J_{0} and is h - and g-invariant.

Proof. Let \mathscr{B}_{0} be a countable base for the topology of $X_{J_{0}}$. For $B \in \mathscr{P}_{0}$ let $J(B)$ be the smallest subset J of I such that $\pi_{J_{0}}^{-1}(B)$, $g^{-1}\left(\pi_{J_{0}}^{-1}(B)\right)$, and $h^{-1}\left(\pi_{J_{0}}^{-1}(B)\right)$ depend only on J. Then $J(B)$ is countable. Define $J_{1}=\cup\left\{J(B) \mid B \in \mathscr{B}_{0}\right\}$ and let \mathscr{B}_{1} be a countable base for the topology of $X_{J_{1}}$. Then one constructs J_{2} from \mathscr{B}_{1} as J_{1} has been constructed from \mathscr{B}_{0}. Continuing this process we get an increasing sequence (J_{n}) of subsets of I and, for each $n \in N$, a countable base \mathscr{B}_{n} for the topology of $X_{J_{n}}$. Let $J=\mathrm{U}_{n \in N} J_{n}$. Then J is at most countable and $J_{0} \subset J$. We shall show that J is g - and h-invariant. To this end let $x, y \in X$ be such that $\pi_{J}(x)=\pi_{J}(y)$. Assume $\pi_{J} g(x) \neq$ $\pi_{J} g(y)$. Then there is a $k \in N$ with $\pi_{J_{k}} g(x) \neq \pi_{J_{k}} g(y)$. Hence there
exists a \mathscr{B}_{k} with $\pi_{J_{k}} g(x) \in B$ and $\pi_{J_{k}} g(y) \notin B$ which implies $x \in g^{-1}$ $\pi_{J_{k}}^{-1}(B)$ and $y \notin g^{-1} \pi_{J_{k}}^{-1}(B)$. Since, by definition, $g^{-1}\left(\pi_{J_{k}}^{-1}(B)\right)$ depends only on J_{k+1} there is a $j \in J_{k+1}$ with $\pi_{j}(x) \neq \pi_{j}(y)$. But this is a contradiction since $j \in J_{k+1} \subset J$. Thus we deduce $\pi_{J} g(x)=\pi_{J} g(y)$. In the same way one shows $\pi_{J} h(x)=\pi_{J} h(y)$.

Lemma 4.5. Let \mathfrak{n} be a σ-ideal in \mathfrak{B} satisfying condition (F). Let $q: X \rightarrow X$ be a measurable map with $q^{-1}(N) \in \mathfrak{n}$ for all $N \in \mathfrak{n}$. Moreover, let J be a q-invariant subset of I. Define $q_{J}: X \rightarrow X$ by $q_{J}(x)=\left(\pi_{J} q(x), \pi_{I \backslash J}(x)\right)$. Then q_{J} is measurable with $q_{J}^{-1}(N) \in \mathfrak{H}$ for all $N \in \mathfrak{n}$.

Proof. From the definition it follows immediately that q_{J} is measurable. Now, let $N \in \mathfrak{n}$ be given. Since \mathfrak{n} satisfies condition (F) we have

$$
P:=\pi_{J}^{-1}\left(\left\{z \in X_{J} \mid \pi_{\Gamma, J}^{-1}\left(\left\{y \in X_{I \backslash J} \mid(z, y) \in N\right\}\right) \notin \mathfrak{n}\right\}\right) \in \mathfrak{n}
$$

We will show

$$
R:=\pi_{J}^{-1}\left(\left\{z^{\prime} \in X_{J} \mid \pi_{I J}^{-1}\left(\left\{y^{\prime} \in X_{I \backslash J} \mid\left(z^{\prime}, y^{\prime}\right) \in q_{J}^{-1}(N)\right\}\right) \notin \mathfrak{n}\right\}\right) \in \mathfrak{n}
$$

To this end let $x \in R$ be given. Then we have

$$
S_{x}:=\pi_{I_{J, J}}^{-1}\left(\left\{y^{\prime} \in X_{I \backslash J} \mid\left(\pi_{J}(x), y^{\prime}\right) \in q_{J}^{-1}(N)\right\}\right) \notin \mathfrak{n}
$$

Since

$$
\begin{aligned}
S_{x} & =\pi_{I \backslash}^{-1}\left(\left\{y^{\prime} \in X_{I \backslash J} \mid q_{J}\left(\left(\pi_{J}(x), y^{\prime}\right)\right) \in N\right\}\right) \\
& =\pi_{I \backslash J}^{-1}\left(\left\{y^{\prime} \in X_{I \backslash J} \mid\left(\pi_{J} q(x), y^{\prime}\right) \in N\right\}\right)
\end{aligned}
$$

this implies $q(x) \in P$; hence $R \subset q^{-1}(P)$. Because of $P \in \mathfrak{n}$ and, therefore, $q^{-1}(P) \in \mathfrak{n}$, this implies $R \in \mathfrak{n}$, which, according to condition (F), leads to $q_{J}^{-1}(N) \in \mathfrak{n}$.

Lemma 4.6. (cf. Choksi [3], p. 115.) Let Y and Z be uncountable Polish spaces, $q: Y \rightarrow Y$ a bijection such that q and q^{-1} are $\mathfrak{B}(Y)-\mathfrak{B}(Y)$ measurable, and $B \in \mathfrak{B}(Y \times Z)$ such that for each $y \in Y$ the set $B_{y}=\{z \in Z \mid(y, z) \in B\}$ is uncountable and of second category in Z. Then there exists a bijection $r: B \rightarrow B$ such that r and r^{-1} are $\mathfrak{B}(Y \times Z) \cap B-\mathfrak{B}(Y \times Z) \cap B$-measurable and such that, for each $y \in Y, r(y, \cdot) \operatorname{maps}\{y\} \times B_{y}$ onto $\{q(y)\} \times B_{q(y)}$.

Proof. According to Mauldin [7], Theorem 2.7 there exists a set $E \in \mathfrak{B}(Z)$ and a point-isomorphism g from $(Y \times E, \mathfrak{B}(Y \times Z) \cap$ $Y \times E)$ onto $(B, \mathfrak{B}(Y \times Z) \cap B)$ such that, for each $y \in Y, g(y, \cdot)$ maps E onto $\{y\} \times B_{y}$. Define $r: B \rightarrow B$ by $r(y, z)=g\left(q\left(y^{\prime}\right), z^{\prime}\right)$, where
$\left(y^{\prime}, z^{\prime}\right)=g^{-1}(y, z)$. Then r is a bijection and r as well as r^{-1} are $\mathfrak{B}(Y \times Z) \cap B-\mathfrak{B}(Y \times Z) \cap B$-measurable. For each $y \in Y, g^{-1}(y, \cdot)$ is a map from B_{y} onto $\{y\} \times E$, and $(y, z) \mapsto(q(y), z)$ defines a map from $\{y\} \times E$ onto $\{q(y)\} \times E$. Since g maps $\{q(y)\} \times E$ onto $\{q(y)\} \times B_{q(y)}$ we, therefore, deduce that $r(y, \cdot)$ is a map from B_{y} onto $\{q(y)\} \times B_{q(y)}$.

Lemma 4.7. Let \mathfrak{n} be a σ-ideal in \mathfrak{B} satisfying condition (F) or (D). Let $g, h: X \rightarrow X$ be measurable maps such that $g^{-1}(N) \in \mathfrak{n}$ and $h^{-1}(N) \in \mathfrak{n}$ for all $N \in \mathfrak{n}$ and such that $h^{-1} g^{-1}(B) \triangle B \in \mathfrak{n}$ as well as $g^{-1} h^{-1}(B) \triangle B \in \mathfrak{n}$ for all $B \in \mathfrak{B}$. Let $J \subset I$ be h - and g-invariant with $\pi_{J} \circ h \circ g=\pi_{J}=\pi_{J} \circ g \circ h$. Moreover, let $\alpha_{0} \in I$ be given. Then there exist measurable maps $\widetilde{g}, \tilde{h}: X \rightarrow X$ and a subset $K \subset I$ with the following properties:
(i) $J \cup\left\{\alpha_{0}\right\} \subset K$
(ii) K is \widetilde{g} - and \tilde{h}-invariant.
(iii) $\pi_{K} \circ \tilde{g} \circ \tilde{h}=\pi_{K}=\pi_{K} \circ \tilde{h} \circ \tilde{g}$
(iv) $\pi_{J} \circ \widetilde{g}=\pi_{J} \circ g$ and $\pi_{J} \circ \widetilde{h}=\pi_{J} \circ h$
(v) $\widetilde{g}^{-1}(\boldsymbol{B}) \triangle g^{-1}(\boldsymbol{B}) \in \mathfrak{n}$ and $\widetilde{h}^{-1}(\boldsymbol{B}) \triangle h^{-1}(\boldsymbol{B}) \in \mathfrak{n}$ for all $B \in \mathfrak{B}$.

Proof. According to Lemma 4.4 there exists a countable g - and h-invariant subset J_{0} of I with $\alpha_{0} \in J_{0}$. Define $K=J \cup J_{0}$. Then K is obviously g - and h-invariant. Define

$$
N=\left\{x \in X \mid \pi_{K} \circ g \circ h(x) \neq \pi_{K}(x) \text { or } \pi_{K} \circ h \circ g(x) \neq \pi_{K}(x)\right\} .
$$

We will show $N \in \mathfrak{H}$.
Since $\pi_{J} \circ g \circ h=\pi_{J}=\pi_{J} \circ h \circ g$ and since K is g - and h-invariant the set N depends only on J_{0}. Let \mathscr{B} be a countable base for the topology of $X_{J_{0}}$. Then we have

$$
\begin{aligned}
N= & \left\{x \in X \mid \exists B \in \mathscr{B}: \pi_{J_{0}} \circ g \circ h(x) \in B \text { and } \pi_{J_{0}}(x) \notin B\right\} \\
& \cup\left\{x \in X \mid \exists B \in \mathscr{B}: \pi_{J_{0}} \circ h \circ g(x) \in B \text { and } \pi_{J_{0}}(x) \notin B\right\} \\
= & \bigcup_{B, B^{\prime} \in \mathscr{G}}\left(\left(h^{-1} g^{-1} \pi_{J_{0}}^{-1}(B) \backslash \pi_{J_{0}}^{-1}(B)\right) \cup\left(g^{-1} h^{-1} \pi_{J_{0}}^{-1}\left(B^{\prime}\right) \backslash \pi_{J_{0}}^{-1}\left(B^{\prime}\right)\right) .\right.
\end{aligned}
$$

Since, according to our assumptions, $h^{-1} g^{-1} \pi_{J_{0}}^{-1}(B) \backslash \pi_{J_{0}}^{-1}(B) \in \mathfrak{n}$ and $g^{-1} h^{-1} \pi_{J_{0}}^{-1}(B) \backslash \pi_{J_{0}}^{-1}(B) \in \mathfrak{n}$ we deduce $N \in \mathfrak{n}$.

Case 1. Let \mathfrak{n} satisfy condition (F).
Let h_{J} and g_{J} be defined in the same way as q_{J} has been defined in Lemma 4.5. Define

$$
\begin{aligned}
N_{0}=\bigcup_{m \in N} \cup & \left\{h_{J}^{-\nu_{m}} h^{-\lambda_{m}} g_{J}^{-\rho_{m}} g^{-\kappa_{m}} \cdots h_{J}^{-\nu_{1}} h^{-\lambda_{1}} g_{J}^{-\rho_{1}} g^{-\kappa_{1}}(N) \mid\right. \\
& \left.\nu_{1}, \cdots, \nu_{m}, \lambda_{1}, \cdots, \lambda_{m}, \rho_{1}, \cdots, \rho_{m}, \kappa_{1}, \cdots, \kappa_{m} \in N\right\}
\end{aligned}
$$

From Lemma 4.5 we deduce $N_{0} \in \mathfrak{n}$, and it follows that $h_{J}^{-1}\left(N_{0}\right) \subset N_{0}$, $h^{-1}\left(N_{0}\right) \subset N_{0}, g_{J}^{-1}\left(N_{0}\right) \subset N_{0}$, and $g^{-1}\left(N_{0}\right) \subset N_{0}$.
Define $\tilde{h}: X \rightarrow X$ by

$$
\widetilde{h}(x)=\left\{\begin{array}{l}
h(x), x \notin N_{0} \\
h_{J}(x), x \in N_{0}
\end{array}\right.
$$

and $\tilde{g}: X \rightarrow X$ by

$$
\widetilde{g}(x)=\left\{\begin{array}{l}
g(x), x \notin N_{0} \\
g_{J}(x), x \in N_{0} .
\end{array}\right.
$$

Then \widetilde{g} and \tilde{h} are obviously measurable.
(1) We will show that K is \widetilde{g} - and \tilde{h}-invariant.

To this end let $x, y \in X$ be such that $\pi_{K}(x)=\pi_{K}(y)$. If $x \in N_{0}$ then there exist $\nu_{1}, \cdots, \nu_{m}, \lambda_{1}, \cdots, \lambda_{m}, \rho_{1}, \cdots, \rho_{m}, \kappa_{1}, \cdots, \kappa_{m} \in N \cup\{0\}$ with

Since K is g - and h-invariant it is also $g_{J^{-}}$and $h_{J^{-}}$-invariant. This fact implies

$$
\begin{aligned}
& \pi_{K} \circ g^{\kappa_{1}} \circ \boldsymbol{g}_{J}^{\rho_{1}} \circ h^{\lambda_{1}} \circ h_{J}^{\nu_{1}} \circ \cdots \circ \boldsymbol{g}^{\kappa_{m}} \circ \boldsymbol{g}_{J}^{\rho_{m}} \circ h^{\lambda_{m}} \circ h_{J}^{\nu_{m}}(x) \\
& =\pi_{K} \circ \boldsymbol{g}^{\kappa_{1}} \circ \boldsymbol{g}_{J}^{o_{1}} \circ h^{\lambda_{1}} \circ h_{J}^{\nu_{1}} \circ \cdots \circ \boldsymbol{g}^{\kappa_{m}} \circ \boldsymbol{g}_{J}^{\rho_{m}} \circ h^{\lambda_{m}} \circ h_{J}^{\nu_{m}}(y) .
\end{aligned}
$$

Since N depends only on K this implies

$$
g^{\kappa_{1}} \circ \boldsymbol{g}_{J}^{\rho_{1}} \circ h^{\lambda_{1}} \circ h_{J}^{\nu_{1}} \circ \cdots \circ g^{\kappa_{m}} \circ \boldsymbol{g}_{J}^{\rho_{m}} \circ h^{\lambda_{m}} \circ h_{J}^{\nu_{m}}(y) \in N ;
$$

hence $y \in N_{0}$.
Since K is g_{J}-invariant we deduce

$$
\pi_{K}(\widetilde{g}(x))=\pi_{K}\left(g_{J}(x)\right)=\pi_{K}\left(g_{J}(y)\right)=\pi_{K}(\widetilde{g}(y))
$$

If $x \notin N_{0}$ it follows by the same arguments that $y \notin N_{0}$. Hence, the g-invariance of K implies

$$
\pi_{K}(\widetilde{g}(x))=\pi_{K}(g(x))=\pi_{K}(g(y))=\pi_{K}(\widetilde{g}(y))
$$

In the same way one can show that K is \tilde{h}-invariant.
(2) Next we will show that $\pi_{K} \circ \widetilde{g} \circ \tilde{h}=\pi_{K}=\pi_{K} \circ \tilde{h} \circ \widetilde{g}$. If $x \in N_{0}$ then we have $\widetilde{h}(x)=h_{J}(x)$. Since

$$
g_{J} \circ h_{J}(x)=\left(\pi_{J} \circ g \circ h_{J}(x), \pi_{I \backslash J} \circ h_{J}(x)\right)=\left(\pi_{J} \circ g \circ h(x), \pi_{I \backslash J}(x)\right)=x
$$

we get $h_{J}(x) \in g_{J}^{-1}\left(N_{0}\right) \subset N_{0}$; hence $\widetilde{g} \circ \widetilde{h}(x)=g_{J} \circ h_{J}(x)=x$; in particular $\pi_{K} \circ \widetilde{g} \circ \widetilde{h}(x)=\pi_{K}(x)$.

If $x \notin N_{0}$ then we have $\tilde{h}(x)=h(x)$. From $h^{-1}\left(N_{0}\right) \subset N_{0}$ it follows that $h(x) \notin N_{0}$; hence $\widetilde{g} \circ \tilde{h}(x)=g \circ h(x)$. Since $N \subset N_{0}$ we get $x \notin N$ and, therefore, $\pi_{K} \circ g \circ h(x)=\pi_{K}(x)$; hence $\pi_{K} \circ \widetilde{g} \circ \widetilde{h}(x)=\pi_{K}(x)$.

In the same way one can show that $\pi_{K} \circ \tilde{h} \circ \widetilde{g}=\pi_{K}$.
(3) From the definition of \widetilde{g} and \widetilde{h} it follows immediately that $\pi_{J} \circ \widetilde{g}=\pi_{J} \circ g$ and $\pi_{J} \circ \widetilde{h}=\pi_{J} \circ h$.
(4) Let $B \in \mathfrak{B}$ be given. Then we have $\widetilde{g}^{-1}(B) \triangle g^{-1}(B) \subset N_{0}$; hence $\widetilde{g}^{-1}(B) \triangle g^{-1}(B) \in \mathfrak{n}$.

In the same way one can deduce that $\tilde{h}^{-1}(\boldsymbol{B}) \Delta h^{-1}(\boldsymbol{B}) \in \mathfrak{n}$.
Case 2. Let \mathfrak{n} satisfy condition (D).
If $J \cap J_{0} \neq \varnothing$ then, according to condition (D), there exists a set $N^{\prime} \in \mathfrak{H}$ such that N^{\prime} depends only on J_{0} and such that $\pi_{J_{0}, J_{0} \cap J}^{-1}(u) \cap$ $\pi_{J_{0}}\left(N^{\prime}\right)$ is uncountable and of second category in $\pi_{J_{0}, J_{0} \cap J}^{-1}(u)$ for all $u \in X_{J_{0} \cap J}$.
If $J \cap J_{0}=\varnothing$ define $N^{\prime}=\varnothing$.
We will show that $J_{0} \cap J$ is g - and h-invariant. Let $x, y \in X$ be such that $\pi_{J_{0} \cap J}(x)=\pi_{J_{0} \cap J}(y)$. Then, due to the g-invariance of J_{0} and J, we have

$$
\pi_{J_{0}} \circ g(x)=\pi_{J_{0}} \circ g\left(\left(\pi_{J_{0}}(x), \pi_{I \backslash J_{0}}(y)\right)\right)
$$

and

$$
\begin{aligned}
\pi_{J} \circ g\left(\left(\pi_{J_{0}}(x), \pi_{I \backslash J_{0}}(y)\right)\right) & =\pi_{J} \circ g\left(\left(\pi_{J_{0} \cap J}(x), \pi_{J_{0} \backslash J}(x), \pi_{I \backslash J_{0}}(y)\right)\right) \\
& =\pi_{J} \circ g\left(\left(\pi_{J_{0} \cap J}(y), \pi_{J_{0} \backslash J}(x), \pi_{I \backslash J_{0}}(y)\right)\right) \\
& =\pi_{J} \circ g\left(\left(\pi_{J}(y), \pi_{J_{0} \backslash J}(x), \pi_{\left.I \backslash J_{0} \cup J\right)}(y)\right)\right) \\
& =\pi_{J} \circ g(y) ;
\end{aligned}
$$

hence $\pi_{J \cap J_{0}} \circ g(x)=\pi_{J \cap J_{0}} \circ g(y)$.
In the same way one can show that $J \cap J_{0}$ is h-invariant.
Define $g_{0}: X_{J \cap J_{0}} \rightarrow X_{J \cap J_{0}}$ by $g_{0}(u)=\pi_{J \cap J_{0}} g(u, w)$, where $w \in X_{T \backslash\left(J \cap J_{0}\right)}$ is arbitrary. Since $J \cap J_{0}$ is g-invariant g_{0} is a well-defined map. From $\pi_{J} \circ g \circ h=\pi_{J}=\pi_{J} \circ h \circ g$ it follows that g_{0} is a bijection. It is also easy to check that g_{0} and g_{0}^{-1} are $\mathfrak{B}\left(X_{J \cap J_{0}}\right)-\mathfrak{B}\left(X_{J \cap J_{0}}\right)$-measurable. Define
$N_{0}=\bigcup_{m \in N} \bigcup\left\{g^{-\nu_{m}} h^{-\lambda_{m}} \cdots g^{-\nu_{1}} h^{-\lambda_{1}}\left(N \cup N^{\prime}\right) \mid \nu_{1}, \cdots, \nu_{m}, \lambda_{1}, \cdots, \lambda_{m} \in N \cup\{0\}\right\}$.
From our assumptions concerning g and h we deduce $N_{0} \in \mathfrak{n}, N \cup$ $N^{\prime} \subset N_{0}, g^{-1}\left(N_{0}\right) \subset N_{0}$, and $h^{-1}\left(N_{0}\right) \subset N_{0}$. Since N and N^{\prime} depend only on J_{0} and since J_{0} is g - and h-invariant the set N_{0} also depends only on J_{0}. If $J_{0} \cap J=\varnothing$ define $\widetilde{g}: X \rightarrow X$ by

$$
\widetilde{g}(x)=\left\{\begin{array}{l}
g(x), x \notin N_{0} \\
x, x \in N_{0}
\end{array}\right.
$$

and $\tilde{h}: X \rightarrow X$ by

$$
\tilde{h}(x)=\left\{\begin{array}{l}
h(x), x \notin N_{0} \\
x, x \in N_{0}
\end{array}\right.
$$

Then \widetilde{g} and \tilde{h} obviously satisfy conditions (i) to (v) in Lemma 4.7. If $J_{0} \cap J \neq \varnothing$ then according to our assumptions (cf. Remark 4.2.3) $X_{J_{0} \cap J}$ and $X_{J_{0} \backslash J}$ are uncountable Polish spaces. In this case we have $\pi_{J_{0}}\left(N_{0}\right) \in \mathfrak{B}\left(X_{J_{0}}\right)$ and, for each $u \in X_{J_{0} \cap J}$, the set $\pi_{J_{0}, J_{0} \cap J}^{-1}(u) \cap \pi_{J_{0}}\left(N_{0}\right)$ is uncountable and of the second category in $\pi_{J_{0}, J_{0} \cap J}^{-1}(u)$. According to Lemma 4.6 there exists a bijection $r: \pi_{J_{0}}\left(N_{0}\right) \rightarrow \pi_{J_{0}}\left(N_{0}\right)$ such that r and r^{-1} are measurable and such that, for each $w \in X_{J_{0}}$, we have

$$
\pi_{J_{0}, J_{0} \cap J} \circ r(w)=g_{0} \circ \pi_{J_{0}, J_{0} \cap J}(w)
$$

Since $\pi_{J} \circ h \circ g=\pi_{J}=\pi_{J} \circ g \circ h$ this implies

$$
\pi_{J_{0}, J_{0} \cap J} r^{-1}(w)=h_{0} \circ \pi_{J_{0}, J_{0} \cap J}(w),
$$

where h_{0} is defined in an analogous way as g_{0}.
Define $\tilde{g}: X \rightarrow X$ by

$$
\widetilde{g}(x)= \begin{cases}g(x), & x \notin N_{0} \\ \left(\pi_{I \backslash J_{0}} \circ g(x), r \circ \pi_{J_{0}}(x)\right), & x \in N\end{cases}
$$

and $\tilde{h}: X \rightarrow X$ by

$$
\widetilde{h}(x)= \begin{cases}h(x), & x \notin N_{0} \\ \left(\pi_{I \backslash J_{0}} \circ h(x), r^{-1} \circ \pi_{J_{0}}(x)\right), & x \in N_{0} .\end{cases}
$$

Then \widetilde{g} and \tilde{h} are measurable.
(1) We will show that K is \widetilde{g} - and \widetilde{h}-invariant.

Let $x, y \in X$ be such that $\pi_{K}(x)=\pi_{K}(y)$. Since N_{0} depends only on $J_{0} \subset K$ either x and y are both in N_{0} or x and y are both in $X \backslash N_{0}$. In the first case we have $\pi_{K} \circ \widetilde{g}(x)=\pi_{K}\left(\pi_{T \backslash J_{0}} \circ g(x), r \circ \pi_{J_{0}}(x)\right)$ and, due to the g-invariance of K combined with $\pi_{J_{0}}(x)=\pi_{J_{0}}(y)$,

$$
\pi_{K}\left(\pi_{I \backslash J_{0}} \circ g(x), r \circ \pi_{J_{0}}(x)\right)=\pi_{K}\left(\pi_{I \backslash J_{0}} \circ g(y), r \circ \pi_{J_{0}}(y)\right)=\pi_{K} \tilde{g}(y)
$$

In the second case the g-invariance of K implies

$$
\pi_{K} \circ \widetilde{g}(x)=\pi_{K} \circ g(x)=\pi_{K} \circ g(y)=\pi_{K} \circ \widetilde{g}(y)
$$

In the same way one can show that K is \tilde{h}-invariant.
(2) We will show that $\pi_{K} \circ \widetilde{g} \circ \tilde{h}=\pi_{K}=\pi_{K} \circ \tilde{h} \circ \widetilde{g}$.

Since N_{0} depends only on J_{0} we have $\widetilde{h}\left(N_{0}\right) \subset N_{0}$ and $\widetilde{g}\left(N_{0}\right) \subset N_{0}$. Because $g^{-1}\left(N_{0}\right) \subset N_{0}$ and $h^{-1}\left(N_{0}\right) \subset N_{0}$ we also have $g\left(X \backslash N_{0}\right) \subset X \backslash N_{0}$ and $h\left(X \backslash N_{0}\right) \subset X \backslash N_{0}$.

We, therefore, deduce that, for each $x \in N_{0}$,

$$
\begin{aligned}
\pi_{K} \circ \tilde{h} \circ \widetilde{g}(x) & =\pi_{K} \circ \tilde{h}\left(\pi_{T \backslash J_{0}} g(x), r \circ \pi_{J_{0}}(x)\right) \\
& =\pi_{K}\left(\pi_{I \backslash J_{0}} \circ h\left(\pi_{I \backslash J_{0}} \circ g(x), r \circ \pi_{J_{0}}(x)\right), r^{-1} \circ r \circ \pi_{J_{0}}(x)\right) .
\end{aligned}
$$

Since $\pi_{J_{0}, J_{0} \cap J} \circ r \circ \pi_{J_{0}}(x)=g_{0} \circ \pi_{J_{0} \cap J}(x)=\pi_{J_{0} \cap J} \circ g(x)$ and since J is h invariant we have

$$
\pi_{J} \circ h\left(\pi_{I \backslash J_{0}} \circ g(x), r \circ \pi_{J_{0}}(x)\right)=\pi_{J} \circ h \circ g(x) .
$$

Because of $\pi_{J} \circ h \circ g=\pi_{J}$ and $K \backslash J_{0} \subset J$ this implies

$$
\pi_{K} \circ \widetilde{h} \circ \widetilde{g}(x)=\pi_{K}\left(\pi_{I \backslash J_{0}} \circ h \circ g(x), \pi_{J_{0}}(x)\right)=\left(\pi_{K \backslash J_{0}} \circ h \circ g(x), \pi_{J_{0}}(x)\right)=\pi_{K}(x) .
$$

For $x \notin N_{0}$ it follows from $N \subset N_{0}$ that

$$
\pi_{K} \circ \tilde{h} \circ \widetilde{g}(x)=\pi_{K} \circ h \circ g(x)=\pi_{K}(x) .
$$

In the same way one can show that $\pi_{K} \circ \widetilde{g} \circ \widetilde{h}=\pi_{K}$.
(3) We will show that $\pi_{J} \circ \widetilde{g}=\pi_{J} \circ g$ and $\pi_{J} \circ \widetilde{h}=\pi_{J} \circ h$.

For $x \in X \backslash N_{0}$ these identities obviously hold.
For $x \in N_{0}$ we deduce

$$
\begin{aligned}
\pi_{J} \circ \widetilde{g}(x) & =\pi_{J}\left(\pi_{I \backslash J_{0}} \circ g(x), r \circ \pi_{J_{0}}(x)\right) \\
& =\left(\pi_{J \backslash J_{0}} \circ g(x), \pi_{J_{0}, J_{0} \cap J} \circ r \circ \pi_{J_{0}}(x)\right) \\
& =\left(\pi_{J \backslash J_{0}} \circ g(x), g_{0} \circ \pi_{J_{0} \cap J}(x)\right) \\
& =\pi_{J} \circ g(x) .
\end{aligned}
$$

In the same way one can show that $\pi_{J} \circ \tilde{h}=\pi_{J} \circ h$.
(4) Property (v) in Lemma 4.7 follows from the fact that \widetilde{g} and g as well as \tilde{h} and h differ only in a subset of $N_{0} \in \mathfrak{n}$.

Proof of Theorem 4.3. Let \mathfrak{S} be the collection of the triples (J, g, h), where $g, h: X \rightarrow X$ are measurable such that $\left[g^{-1}(B)\right]=$ $\Phi([B])$ and $\left[h^{-1}(B)\right]=\Phi^{-1}([B])$ for all $B \in \mathfrak{B}$, and J is a g - and h invariant subset of I with $\pi_{J} \circ h \circ g=\pi_{J}=\pi_{J} \circ g \circ h$.

We define the following preorder on \mathfrak{S} :
$\left(J_{1}, g_{1}, h_{1}\right) \leqq\left(J_{2}, g_{2}, h_{2}\right)$ iff $J_{1} \subset J_{2}, \pi_{J_{1}} \circ g_{2}=\pi_{J_{1}} \circ g_{1}$, and $\pi_{J_{1}} \circ h_{2}=\pi_{J_{1}} \circ h_{1}$.
According to Theorem 3.1 there are measurable maps g_{0} and h_{0} from X into itself such that g_{0} induces Φ and h_{0} induces Φ^{-1}. Thus ($\varnothing, g_{0}, h_{0}$) belongs to \mathfrak{S} and \mathfrak{S} is not empty.

We claim that the preorder \leqq is inductive. To show this let $\left(J_{\lambda}, g_{\lambda}, h_{\lambda}\right)_{\lambda \in \Lambda}$ be a (nonempty) chain in \mathcal{S} and let $\lambda_{0} \in \Lambda$ be fixed. Define $J=\bigcup_{\lambda \in \Lambda} J_{\lambda}$ and $g: X \rightarrow X$ by

$$
\pi_{\alpha}(g(x))= \begin{cases}\pi_{\alpha}\left(g_{\lambda}(x)\right), & \alpha \in J_{2} \\ \pi_{\alpha}\left(g_{\lambda_{0}}(x)\right), & \alpha \notin J .\end{cases}
$$

Let h be defined in an analogous way.
Then g and h are obviously measurable.
Next we will show that g induces Φ. To prove this it is enough to prove $\left[g^{-1}\left(\pi_{\alpha_{0}}^{-1}(B)\right)\right]=\Phi\left(\left[\pi_{\alpha_{0}}^{-1}(B)\right]\right)$ for all $\alpha_{0} \in I$ and all $B \in \mathfrak{B}\left(X_{\alpha_{0}}\right)$. For $\alpha_{0} \in J$ and $B \in \mathfrak{B}\left(X_{\alpha_{0}}\right)$ there exists a $\lambda \in \Lambda$ with $\alpha_{0} \in J_{\lambda}$; hence

$$
g^{-1}\left(\pi_{\alpha_{0}}^{-1}(B)\right)=\left\{x \in X \mid \pi_{\alpha_{0}} \circ g(x) \in B\right\}
$$

$$
\begin{aligned}
& =\left\{x \in X \mid \pi_{\alpha_{0}} \circ g_{\lambda}(x) \in B\right\} \\
& =g_{\lambda}^{-1}\left(\pi_{\alpha_{0}}^{-1}(B)\right)
\end{aligned}
$$

Since $\left(J_{\lambda}, g_{\lambda}, h_{\lambda}\right) \in \mathbb{S}$ this implies $\left[g^{-1}\left(\pi_{\alpha_{0}}^{-1}(B)\right)\right]=\Phi\left(\left[\pi_{\alpha_{0}}^{-1}(B)\right]\right)$. For $\alpha_{0} \in I \backslash J$ one has to replace λ by λ_{0} in the above argument. In the same way one can see that h induces Φ^{-1}.

By standard arguments it can be shown that J is g - and h invariant and that

$$
\pi_{J} \circ g \circ h=\pi_{J}=\pi_{J} \circ h \circ g
$$

Thus (J, g, h) is an upper bound of $\left(J_{\lambda}, g_{\lambda}, h_{\lambda}\right)_{\lambda_{\in \Lambda}}$ in \mathfrak{S}.
By Zorn's lemma there exists a maximal element ($J^{\prime}, g^{\prime}, h^{\prime}$) in \mathfrak{S}. Using Lemma 4.7 we conclude $J^{\prime}=I$. Since g^{\prime} induces Φ and h^{\prime} induces Φ^{-1} the equality $g^{\prime} \circ h^{\prime}=h^{\prime} \circ g^{\prime}=i d_{X}$ yields that $f:=g^{\prime}$ is a bijection with the desired properties.

References

1. J. Choksi, Automorphisms of Baire measures on generalized cubes, Z. Wahrscheinlichkeitstheorie verw. Geb., 22 (1972), 195-204.
2. ——, Automorphisms of Baire measures on generalized Cubes II, Z. Wahrscheinlichkeitstheorie verw. Geb., 23 (1972), 97-102.
3. , Measurable transformations on compact groups, Trans. Amer. Math. Soc. 184 (1973), 101-124.
4. N. Falkner, Generalizations of standard and analytic measurable spaces, preprint 1978.
5. D. Maharam, Automorphisms of products of measure spaces, Proc. Amer. Math. Soc., 9 (1958), 702-707.
6. -, Realizing automorphisms of category algebras of product spaces, General Topology and Appl., 10 (1979), 161-174.
7. R. D. Mauldin, Borel Parameterizations, Trans. Amer. Math. Soc., 250 (1979), 223-234.
8. Sikorski, Boolean Algebras, 3rd ed., Springer, Bern-Heidelberg-New York 1969.

Received March 28, 1980.
Mathematisches Institut
der Universität Erlangen-Nürnberg
Bismarcestr. 1 1/2
8520 Erlangen
W.-Germany

