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ZERO DISTRIBUTION OF FUNCTIONS WITH SLOW OR
MODERATE GROWTH IN THE UNIT DISC

L. R. SONS

We consider functions which are analytic or mero-
morphic in the unit disc D. Our concern is to obtain infor-
mation about values a function may assume when we know
the function satisfies certain growth conditions. For analytic
functions whose growth measured by two related growth
indicators is distinct, we explore conditions under which
this distinctness leads to the presence of zeros for the
functions.

Let / be a meromorphic function in D. We shall assume
knowledge of the usual functions of Nevanlinna theory as in [1]. In
addition we define m2(r, f) for 0 < r < 1 by

m2(r, / ) =

A number of properties of m2 (r, /) and some value distribution
theorems involving m2(r, f) appear in [5]. We further define a and
a by

a = lim sup
—log(l — r)

and

d = lim sup
— l θ g ( l — V)

where Γ(r, /) is the value of the Nevanlinna characteristic function
at r. (Of course a and a depend on /, but as we use them no
confusion should result from suppressing that dependence, since we
are ordinarily dealing with one function at a time.) In this paper
we assume a < +oo. We prove the following theorem.

THEOREM 1. Let f be an analytic function in D. Then a ^ a ^
a + 1/2.

If we consider / defined in D by exp((l + s)/(l — z)), it can be
shown that a — 0 and a — 1/2. It is also possible to construct Blaschke
products in D for which 0 < a < 1/2 [cf. 2].

For an arbitrary meromorphic function / in D it will be con-
venient to define ii(r) and /2(r) for 0 < r < 1 by
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and

We shall show:

S 2

0

fire*9)
/(re")

f\reiθ)

dθ ,

f(reiθ)

THEOREM 2. Le£ f be a meromorphic function in D. Assume
f has at most a finite number of zeros and poles in D. Also assume
a > 0.

( i ) // Ur) = 0((l - r)~η9 (r — 1), ίΛen /9 ̂  α.
(ii) // /2(r) - 0((l - r)-η, (r — 1), then β ^ 2a.

We now turn to results about value distribution. Our main
concern is to obtain conclusions about the values assumed by a
function for which ά < α. Our theorems allow ά = 0, so they apply
to functions which are bounded in D for which a > 0 or to functions
which have bounded characteristic in D for which a > 0. We have:

THEOREM 3. Lβί / δe an analytic function in D for which
0 ^ ά < a. Suppose f has at most a finite number of zeros. Assume
further that

(1.1) Ur) = 0((l - r)~η , (r > 1) ,

w&ere /9 + a < 2a. Then for each θ,0 <>θ <2π,

I log I f{reiθ) \\ Φ 0((l - r ) " 0 , (r > 1) ,

where y < 2a — ά.

Corollaries of special interest are:

COROLLARY 1. Let f be an analytic function in D for which
ά < a. Assume further that (1.1) holds where β + d < 2a. If f
has a finite nonzero radial asymptotic path in Ό, then f has infinitely
many zeros.

COROLLARY 2. Let f be an analytic function in D for which
a < a. Assume f has at most a finite number of zeros in D and
Ix{r) — 0((l — r)~β), (r —> 1). // / has a finite nonzero radial asymptotic
path in D> then β Ξ> 2a — ά.

Corollary 2 should be compared with (i) of Therem 2.
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COROLLARY 3. Let f be an analytic function in D which has
bounded characteristic. Suppose a > 0. Assume f has at most a
finite number of zeros. If Ix(r) = 0((l — r)~β), (T —> 1)> then J3 ̂  2a.

A second major result concerning value distribution is:

THEOREM 4. Let f be an analytic function in D for which
0 <L ά < a. Assume further that

(1.2) I2(r) = 0((l - r)-') , (r > 1) ,

where β < 2 + 2α. T%e% / Aαs cm infinite number of zeros in D.

If we expect to conclude the presence of zeros for analytic
functions in D for which a < a, it is clear that a condition such as
(1.1) or (1.2) is necessary when one considers the function / defined
in D by f(z) = exp((l + s)/(l — s)) For this / it can be shown that
a = 0; a = 1/2; ^(r) - 0,(1 - r)"1; and 72(r) - C2(l - r)~3 where Cx and
C2 are constants. The corollaries below are immediate consequences
of Theorem 4. It is interesting to compare them with (ii) of
Theorem 2.

COROLLARY 4. Let f be an analytic function in D. Assume
ά < a. Assume further that f has at most a finite number of zeros
in D. If I2(r) = 0((l - r)~β\ (r -» 1), then β ^ 2α + 2.

COROLLARY 5. Lei / be an analytic function in D. Assume
a > 0, and suppose f has no zeros in D. If I2(r) = 0((l — r)~β),
(r -> 1), £fo<m /3 ^ 2α + 2.

One might suspect that for an analytic function in D for which
the orders satisfy a < a that it might be possible to conclude that
the zeros of such a function could not be uniformly distributed about
the circumference of the unit circle. However the function g defined
in D by

g{z) -

where B(z) is the Blaschke product constructed in [3, p. 599] by G.
MacLane and L. Rubel has a = 0 and a = 1/2 and zeros rather
uniformly distributed, so any theorem in the direction suggested
would have to be rather refined.

The remaining sections contain the proofs of the theorems in order.

2* Proof of Theorem !• Without loss of generality we assume



476 L. R. SONS

f(o) = 1. In [4] it was shown that

m,(r, /) ^ {1 + (8Vlog2)/Vlog (R/r)}T(R, f), (0 < r < R) .

Thus, if we let C = 8l/log 2, Λ = (1/2)(1 + r), and observe that

we see

, /) - N(r, 1/f) = -±-
2π Jo

m2(r, f) ^ {1 + 2^-^-^—j ( Γ ^ ( l + r), f) , (r. < r < 1) .

Hence α ^ α + 1/2.
To see that ά <̂  α, we use Schwarz's inequality to get

J - Γ | log[/(r^)[ |^ ^ m2(r, /) .
2π Jo

But the First Fundamental Theorem of Nevanlinna theory then shows

Therefore,

and the desired inequality follows.

3* Proof of Theorem 2. We assume /(o) = 1. We first
observe [cf. 5] that for 0 < r < 1

where

cfc(r) - -± \
2ττ Jo

We note that ck(r) = c_k(r) and φή = 2V(r, 1//) ~ ΛΓ(r, /) . Thus,
for 0 < r < 1,

(3.1) mlr, f) = \(N(r, 1/f) - N(r, /))« + 2 Σ I ek(r) |

Now for integral fc define Hk(τ) by

-ff.(r) - -£- \2π(logf(rei0))e-ik0dθ , (0 < r < 1) .
2ττ Jo
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Then for k ^ 1,

(3.2) 2ck(r) = Hk(r) + ΊΠJr) , (0 < r < 1) .

Using integration by parts, we can write for k ^ 1 and 0 < r < 1
that

(3.3)

and

., i//) -

(3.4) H_k(r) = l(n(r, 1//) - n(r, /)) ~ -L J ^ ί ^j
& &rfc 2π•^ Juι=r /

From (3.2), (3, 3), and (3.4) we see for k ^ 1 and 0 < r < 1 that

i i\z\=r f(z)

And so taking absolute values and making standard estimates, we
have for 0 < r < 1

( 3 . 5 )
k

dθ , (fc ^ 1) .

Therefore, if /.(r) = 0((l - r)~β\ (r -> 1), then there is a constant A,
such that (3.5) implies

(3.6) , (A ^ 1) , (0 < r < 1) .

Combining (3.1) and (3.6), we find

(3.7) m2(r, f) ^ \(N(r, 1//) - N(r, f)f ( ^

(0 < r < 1) .

Hence there is a constant A2 such that (3.7) becomes

(3.8) m2(r, ff ^ (N(r, 1//) - N(r, f)f + ^ ( 1 - r)"2^, (0 < r < 1) .

On the other hand we know for 0 < r < 1 that

n(r, 1//) - n(r, f) = - L
27Γ^

and

(3.9) I n(r, 1//) - n(r, f) \ £ Ur) , (0 < r < 1) .

We also have
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\N(r, 1//) - N(r, f)\ = \ ^Λlf) - n{t, f)

d t ! ( < < 1 ) .
t

Combining (3.9) with (3.10) and the assumption /(o) = 1, we see
there are constants Kx and K such that

(3.11) IN(r, 1//) - N(r, f)\ £ Kx [ Ut)dt + K, (λ < r < l) .
Jl/2 \2 /

Thus, if I^r) = 0((l - r)~β), (r -• 1), there are constants K2, Kz, and
K, such that (3.11) yields for 1/2 < r < 1

( K2 if β<l

-Kzlog(l~r) if

r ) - ( ^ 1 } if

(3.12) \N(r,l/f)-N(r,f)\^

Now if β < a we find (3.8) and (3.12) taken together lead to a
contradiction. Hence β ^ α, and (i) is proved.

To see (ii) is true, we first observe that there is a constant K5

such that

So if /2(r) - 0((l - r)~β), (r ~> 1), then

(3.13) Ur) - 0((l - r)-^/2) , (r > 1) .

Part (i) and (3.13) imply /3 ̂  2α.

4* Proof of Theorem 3* Assume first that / has no zeros in
D, f(p) = 1, and let 0 < r < R < 1. If s = reiθ, then the Poisson-
Jensen formula shows

log ι/<*) i = -ί- Γ ( g

Multiplying both sides by (l/(2τr)) log | f(z) | and integrating with
respect to θ over the interval [0, 2π], we get

2π Jo \ 27Γ Jo R2 — 2Rr2Rr cos (φ — θ) + r2

An integration by parts on the right-hand side gives

\ 2π Jo R2 — 2Rr cos φ + r2 / \ 2ττ Jo
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x ( 1 Γ (R r)( l Qg 1 f(Re) 1 «2Rr s ί n (Φ - g))
\ 2π Jo (j?2 - 2J?r cos (φ - θ) + r2)2

Using the Poisson-Jensen formula and the differentiated formula, the
latter may be rewritten as

= (log |/(r)|)(A- Γ(log \f(retβ)\)dβ
\ 2τt Jo

) (im
Jo2π ° " v " J\ f(rei0)

Standard inequalities then imply

m2(r, fY ^ 2T(r, /){|log|/(r)| | ̂

For each ε > 0, (1.1) and the definition of a enable us to obtain

(4.1) mlr, ff = 0((l - r)-r^){\ log | /(r) || + (1 - r)^} , (r > 1) .

Since β + a < 2a, we conclude from (4.1) that the conclusion is true
for θ — 0. A simple rotation shows it to be valid for each θ.
(Actually the bound in (4.1) is uniform with respect to θ.)

If / has zeros in D, we let {an} be the zeros and r0 such that
\an\ < r0 < 1 for all n. Let 0 < r0 < r < R < 1. If z = re", we
proceed in a similar manner to that above using the Poisson-Jensen
formula to obtain m2(r, ff. Further similar steps to the above along
with the choice of R = (1/2)(1 + r) lead to the desired conclusion.

5. Proof of Theorem 4* We may assume without loss of
generality that f(p) = 1. It can be shown using Green's theorem
as in [6] that if f(z) = e9iz) in {z\\z\ ̂  r}, where 0 < r < 1, then

(5.1) ^JJL.\\
dt \ 2π J

for 0 < t < r. Integrating (5.1) from 0 to r, we obtain

(5.2) pdθdp)dt .
/((θe

Using (1.2) in the right-hand side of (5.2), we find

> i f ^ ^ 2 ;

(5.3) « . < r , Λ { 0 ( ( 1 r ) _ , n ( r _ 1 ) f i f
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Since a > 0 and β < 2 + 2a, we see that whatever the value of β
the statements in (5.3) lead to contradictions. Hence if / satisfies
the hypothesis of Theorem 4, it must have at least one zero in D.

So suppose / has zeros but that the number of zeros is finite.
Let {an} be the zeros, and assume r0 is such that \an\ < r0 < 1, for
all n. Define the function B in D by

B(z) = Π ( * " " * " )
I<*J<*V 1 — anz /

We consider r0 < rx < r < 1 and apply (5.1) to the function defined
by the quotient f/B in D. Integrating from 0 to r, we obtain

(5.4) m2(r, ff = 1 Γ (log | f{reiΘ) \ )(log | B{reiθ) \)dθ
π Jo

2

pdφdpdt,

(r >1).

Since the number of zeros of / is finite and r > r1 > r0 > \an\, for
each n, we see the first term on the right-hand side of (5.4) is bounded
by

0(Γ(r,/)), (r >1),

and the second and third terms are bounded by a constant. Thus
(5.4) becomes

«h(r, /) ' S O(T(r, /))

<«.«> +ΓΛΠ
f(pe'*)

Using standard inequalities, we then get

(5.6) m2(r, ff ^ O(T(r, /)) + Γ - M ' p\Uρ) + f

We know that

pdφdpdt ,

{r > 1 ) .

dφ

, (r-

B\z) = Σ / 1 + α. \ ̂
J3(s) » \« — αn 1 — αn2; /

Hence the fact that
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Jo 1 —seιθ

enables one to obtain the estimate

r
Jo

We then observe

(5.8) Γ -L Γ p(—l—)dpdt ^ [ (log-L-)dt £ 1 .
Jrx πt Jn \ 1 — p / Jί Λ 1 — t/

Taking (5.7) and (5.8) together with (5.6) we get

m2(r, ff £ 0(T(r, /)) + θ ( l o g - i
\ 1 —

(r , 1 ) .

Recalling that α < α and that (1.2) holds, we see as in the earlier
case (5.9) leads to a contradiction whatever the value of β subject
to β < 2 + 2α with α > 0. Therefore, / has an infinite number of
zeros.
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