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THE SUPPORT OF AN EXTREMAL DILATATION

MARVIN ORTEL

We introduce a density condition which applies to subsets,
E, of a bounded region 2 in the complex plane. If E satis-
fies this condition, then it is possible to construct a
quasiconformal mapping F, of £, subject to the following
conditions: F is extremal for its boundary values; F is
conformal throughout 2— E; F is not conformal on E. The
construction makes essential use of the Hamilton-Reich-
Strebel characterization of extremal quasiconformal maps.

0. Introduction. In all that follows, 2 denotes a bounded
domain in the complex plane. Let x denote an element of <#=(2).
We say that £ is an extremal dilatation (on 2) if ||k|l.# 0 and &
is the complex dilatation of a quasiconformal mapping of 2 which
is extremal for its boundary values.

R. Hamilton, E. Reich and K. Strebel have given an incisive
characterization of extremal dilatations. Their result follows ([1],
[3], [4], [5D:

Let B(2) denote the space of functions, f, analytic on 2, for
which

Al = Sl f(@)|dA(z) < (area measure) .

Then k£ is an extremal dilatation if and only if (0 < |k <1)
and

(*) sup IS fRER)AAR)| = £ .
Viiig e

It is well known that a bounded measurable function £ may
be supported on a small subset of 2 and still satisfy condition (*).
In this paper we attempt to quantify this feature. We show that
subsets of 2 which satisfy a certain density condition will always
support extremal dilatations.

Density conditions which are necessarily satisfied by the support
of an extremal dilatation are known in the case that 2 is the unit
disk or the upper half plane. Some of these are discussed in [2].
They have features in common with the present sufficient condition,
but in no case is there a complete characterization.

1. A sufficient condition. If E is a subset of 2, X, denotes
the indicator function of E:
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1, ze B

1x(2) = {0, 2¢ K.

Let E denote a subset of 2. We say that E is analytically
thick in 2 if there 18 a bounded analytic function, h, defined on 2
for which k|, =1 and

) | L@hEdAR = A+ o) [he)dA@)

as r—1; in (1.1), H(x) ={ze€2: |h(z)| > 2} for 02 <1; also,
dA(z) denotes Lebesgue planar measure.

THEOREM 1. Suppose E is analytically thick in 2. Then there
18 an extremal dilatation, k, defined on 2 for which

{ze2: k(z) #0}CE.

Proof. The proof of Theorem 1 depends on Lemma 2 of §4
and on the theorem of Hamilton-Reich-Strebel.

Let h be given as in the definition. By Lemma 2, condition
(1.1) implies

12 | 1@ 1@ rdAE = @ + o) |1@)rdAE, n— e .

Let N=1{1,2,83,---} and let ||-|; denote the norm in &'(Q).
For each ne N, set k,(z) = h"(z)/||h"|l,- So, ||k.|, =1 and, by (1.2)

(1.3) lim Sg_Elkn(z)ldA(z) —0.

It can be shown that {k,: n € N} is a normal family; there are
two possibilities:

(1) at least one subsequence of <k,),.y converges, uniformly
on compact subsets of 2, to a function K(z) which is analytic and

not identically zero on Q.
(2) <k,>..x converges to zero uniformly on compact subsets

of 0.
In Case 1, apply Fatou’s theorem to the given subsequence: we

see, by (1.3)
S | K(2)|dAGz) < mg k(2)|dAR) =0 .
Q-E n—co JQ—E
Therefore measure (2 — E) = 0 since K is analytic and not identi-

cally zero.
In Case 2, we construct a sequence, {A4,>, of mutually disjoint
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compact subsets of 2, and a subsequence, (K,>, of <k,>, such that
(1.4) g |K.(2)|dAR) = L, neN.
24y "

First, A, and K, are chosen arbitrarily. Suppose K, K,, ---, K, and
A, A, ---, A, have been chosen; we take K,,,, from the vanishing
sequence <k,», so that

1
|y, 1 Ke@dd@) 5 st

=1

Since || K,.,|l, = 1, we may choose 4,,,, disjoint from 4, 4,, ---, A,,
so that :

K 1
>1 — .
SAnﬂ [ ,,H(z)ldA(z) =1 T

this is the same as (1.4).
Now we set

K.(2)/|K,(2)|, ze ENA,, neN
0 , otherwise .

k(z) = {
Take n € N; (1.4) implies

[ K@r@idn| z || K@e@iam)| - 1

An

=,  IE@1dA® — 1n 2 | | K.@)|dAR) — 2n

Combine this with (1.8); since (K,> is a subsequence of {(k,>, we
have

lim || K,@r@dA@)| = €]l -

It now follows, from the theorem of Hamilton, Reich and Strebel,
that £/2 is an extremal dilatation. As k is supported within E, we
are through.

2. Anexample. Set 2:|z—1|<1and h(z)=e¢™* exp {—(2i/7) log z).
Then |k (re*)|=¢* exp {(2/7)0} and, if e <z <1 and 0(x)=x/2(1+log 2),
we have

H(x) = {re?’: 6(x) <6 <m/2 and 0 < r < 2cosb}.
For —7/2 < 6 < 7/2, we set 1(f) = {re¥: 0 < r < 2cos f)}.
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1(8)

FIGure 1

Now, let Ec 2. We assume that the linear density of E on
1(0) approaches one as 6 approaches w/2: that is, we assume

@.1) SZCOMXE('MW) dr = (1 + o(1))2cos 8, 6 — /2 .

It is a consequence of (2.1) that

2.2) §z°°s”xE(rei0)rd7~=(1+ o(1))§ M edr, 6—m/2.

2 ¢
0

2 cos
This can be seen in a few lines; we integrate S
0

parts, then use (2.1) and the estimate
2cosf (t 2cos §
S g Le(re?®)drdt < g tdt .
[ 0 0
In turn, from (2.2), we see
w cos
g/z e 'exp {-ﬁ-} Sz Le(re?®)rdrdd
0(z) T 0
x cosf
— 1+ o(1))§ " eexp {_2.‘9_}5 rdrds,
0/(z) s 0

and this is the same as

[, L@@ld4E = @ + o) | |ha)|daw),

’ Lz(re)rdr by

as x——1;

xr—1.

By Theorem 1, E is an extremal support. So, if E satisfies
condition (2.1), there is an extremal quasiconformal mapping of £
which is conformal outside of E but not conformal throughout Q.

3. LEMMA 1. Let f and g denote integrable functions defined
1
on (0,1). We assume: 0 < f(r) < g(r) for all r,0<r<1; S g(rydr >
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0 for all z, 0 £ x < 1; and
3.1) gfr F)dr = (L + o(1) S;'rg('r)d'r . w——1.
Then

(3.2) S'r FVdr = (1 + o(1)) S:'r"g('r)dr . m—— oo,

Proof. Let ¢ > 0 be fixed. By condition (3.1), we may choose
x(¢e), in (0, 1), so that,

3.3) [, 7at) = renar < ef2{ rgtriar
if #(e) £ x < 1. This implies that

Sl S Ho(r) — f(r)drde < s/zS‘ S rg(r)drds

Yy Jx Yy Jz

holds as long as z(¢) <y < 1. We interchange the order of inte-
gration and obtain

|._r@@) = s — wiar < &2 _ron)r — vyar ;
then, by (3.3), we see that

|70 = ronar s e2|_rgwiar
r=y r=y
for any y, x(e) <y < 1.
Repeat this argument with the same x(¢). We see that (3.3)
is valid with 7 replaced by »". Thus,

(3.4 |, 7@ = fandr < o2 rrg@)ar
holds for all e N.

Set M = Slg(t) — f(t)dt. Then, by (3.4), if neN, we have
1 1
(3.5) So'r”(g('r) — f@)dr < Mu(e)" + e/2§x(s)r”g('r)d'r .
Now, set x,(¢) = (x(e) + 1)/2. Since ' )g(t)dt >0, we may
21(e
choose N(e, f, g) € N so that, if » = N(e, f, g), we have
Moo < ef2@)|  gtrdr < &2 rgtriar
x1( 0

1l¢e
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(just note that x(¢)<x,(¢)). Combine this with (3.5); if n=NCe, f, 9),
we have

\rotr) — snar = &\ romar .

We proved that

(@) = fonar = o [ romar,  n— e,
and (3.2) now follows.

4, LEMMA 2. The technique here is to perform an iterated
integration over the level curves of |[h|. For the sake of complete-
ness, we establish the existence of an appropriate induced measure
on these curves. So, the proof is a little longer than is perhaps
necessary.

LEMMA 2. Let h denote a bounded analytic function on 2 with
[hlle =1. For 02 <1, we set H(x) ={ze: |h(z)| > x}. Then,
if EC Q2 and

@ | x@heidae = a+ow)| ir@idae
as © —1, it follows that

@2 [ LE@E@rAE = @+ W) |mordae),
as n— oo,

Proof. Set @' ={2e2:|h(z)] #0 and |h'(z)| # 0}. The lemma
is trivial when & is a constant function. If A is not constant (as
we assume from now on), the set 2 — 2’ is negligible with regard
to integration.

We construct an open cover of Q. For each zecQ', U(z) will
denote an open subset of 2’ which contains z; moreover, we assume
h is ome-to-one in each U(z).

Now, let {P,:nc N} be a C~ partition of unity, on £2’, subor-
dinate to the cover {U(z): z€ 2'}. So, for each n € N, there is a set
U(n) e {U(z): z € '} which contains the support of P,. Set r[U(n)]=
S(n) and let S(n) i Un) (w— z,(w)) denote the inverse of % defined
in S(n). For 0 <r <1, neN we set

O0,(r) =1{0:0 < 6 < 2x, re* € S(n)}
and we define
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1) =\ Pa,re)slere®) | Zure®) Frdo

n

g.(1) = S@ o P,(z,(re?)) |z, (re®) Prdb

n

and

F@) =3 £, 90) = 3,9.0r)

It is clear that 0 < f(») = g(»), 0 < r < 1.
If ne N is arbitrary and 0 < 2 <1 and 0 < 6 < 2z, note that

Lza<r<i1

x 0Y) = @ —
) (% (16%)) (7) {0, O<r<ux.

Take Ne N and suppose 0 < x < 1: then, with w = re”,
SHMXE(Z) | h(z)|"dA(z) = ENSQ/ P ()21 (2)X5(2) | h(2) |Yd A(2)
=2 SM P, (2, (W)X g0y (20 (w) X (2 (w)) | w |7 | 2 (w) " A(w)

= 3 [ P @l W hatan 7 |2 Praoar

-3

We conclude from the Monotone Convergence Theorem that f
is integrable on (0,1). In summary, if 0 <2 <1 and NeN we
have

L0, dr = g:@,(r) Foyrvdr .

r=0

(4.3) [, 1P LadAe) = | foyrar
and, by the same reasoning,

(4.4) SM |h(2) " dAz) = S gr)r¥dr |

By (4.4), Slg('r)dq' >0 if 0 <2< 1. By hypothesis (4.1) and equa-
tions (4.3) “and (4.4), in the case N =1, we see

Sl f@)rdr = (1 + o(1)) Slg(r)rd'r R cr—1.
Thus, by Lemma 1,
S: Foyvdr = (1 + o(l))jS:g(r)'r”d'r ., N—oo.

So, by (4.3) and (4.4), in the case x = 0,
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[, M@P@dAE = @+ o) W) dAw

as N— . Since 2 — H(o) is countable, we are through.
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