AN INDEX THEOREM AND HYPOELLIPTICITY ON NILPOTENT LIE GROUPS

Kenneth G. Miller

Abstract

Extending results of Grushin we determine the index of $p(x, D)$ where $p(x, \xi)$ is a polynomial homogeneous with respect to some family of dilations on $\boldsymbol{R}^{2 d}$ and $p(x, \xi) \neq 0$ if $(x, \xi) \neq(0,0)$. In general these operators are not elliptic. If G is a step two nilpotent Lie group and P is a left invariant differential operator on G which is homogeneous with respect to some family of dilations, we apply this index theorem to prove that P is hypoelliptic if and only if P^{*} is hypoelliptic. This extends a result of Helffer and Nourrigat.

1. An index theorem. A family of dilations on a Lie algebra \mathscr{G} is a one parameter family of automorphisms $\left\{\delta_{r}: r>0\right\}$ of \mathscr{G} of the form $\delta_{r}=\exp ((\log r) A)$, where A is a diagonalizable automorphism of \mathscr{G} with positive real eigenvalues. There is no loss of generality in assuming that the smallest eigenvalue is 1 . A finite dimensional normed vector space V with norm \mid | determines an abelian Lie algebra. Let $\left\{\delta_{r}\right\}$ be a family of dilations on V. For $w \in V$ define $\|w\|$ by $\|w\|=r$ if $\left|\delta_{r}^{-1}(w)\right|=1$. Then $w \rightarrow\|w\|$ is continuous on V and C^{∞} on $V-\{0\}$ by the implicit function theorem. Let $\mathscr{B}=$ $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ be a basis for V consisting of eigenvectors of A with corresponding eigenvalues μ_{1}, \cdots, μ_{n}. If $w=a_{1} w_{1}+\cdots+a_{n} w_{n}$, then

$$
\begin{gather*}
\delta_{r} w=\sum r^{\mu_{j}} a_{j} w_{j} \quad \text { and } \tag{1.1}\\
\|w\| \approx \sum\left|a_{j}\right|^{1 / \mu_{j}} \tag{1.2}
\end{gather*}
$$

Throughout this section we will be considering a family of dilations on the abelian Lie algebra $\boldsymbol{R}^{2 d}=\boldsymbol{R}_{x}^{d} \oplus \boldsymbol{R}_{\xi}^{d}$. We do not necessarily assume that either \boldsymbol{R}_{x}^{d} or \boldsymbol{R}_{ξ}^{d} is invariant under $\left\{\delta_{r}\right\}$. Let $f \in C^{\infty}\left(\boldsymbol{R}^{2 d}\right), f(w)=0$ for $\|w\| \leqq 1 / 2$, and $f(w)=1$ for $\|w\| \geqq 1$. Define $\Phi(w)=1+f(w)\|w\|$ and $\varphi(w)=1$ for all $w=(x, \xi) \in \boldsymbol{R}^{2 d}$. Note that there is a C such that if $\left|w-w^{\prime}\right| \leqq \Phi(w)$ then $\Phi\left(w^{\prime}\right) \leqq C \Phi(w)$. Thus (Φ, φ) is a pair of weight functions on \boldsymbol{R}_{x}^{d} as defined in Beals [1]. We will usually not mention φ and will refer to Φ as the weight function for the family of dilations $\left\{\delta_{r}\right\}$. Note that Φ satisfies the coercive estimate

$$
\begin{equation*}
|w| \leqq C \Phi(w)^{\bar{\epsilon}} \tag{1.3}
\end{equation*}
$$

where $\bar{\mu}=\max \left\{\mu_{1}, \cdots, \mu_{2 d}\right\}$.

For $m \in \boldsymbol{R}$, let S_{ψ}^{m} denote the set of all smooth functions p on $\boldsymbol{R}^{2 d}$ such that for each α and $\beta \in \boldsymbol{N}^{d}$

$$
\sup \left\{\Phi(x, \xi)^{-m+|\alpha|}\left|D_{\xi}^{\alpha} D_{x}^{\beta} p(x, \xi)\right|:(x, \xi) \in R^{2 d}\right\}<\infty .
$$

\mathscr{L}_{ψ}^{m} is the set of pseudodifferential operators with symbols in S_{ψ}^{m}, H_{ϕ}^{m} is the associated (global) Sobolev space as defined in [1] and $\left\|\|_{m, \phi}\right.$ is a norm for the topology on H_{ϕ}^{m}. We note that in the special case where $m \in N$ and $m / \mu_{j} \in N$ for all j (this is necessarily the case in the context of Theorem 2 below, by Proposition 1.3 of [7]), then $\left\|\|_{m, n}\right.$ can be given explicitly as follows: Let \mathscr{B} be a basis for $\boldsymbol{R}^{2 d}$ consisting of eigenvectors for $\left\{\delta_{r}\right\}$ and let $a_{j}(x, \xi)$ be the j th coordinate of (x, ξ) with respect to the basis \mathscr{B}. By (1.2) above and 6.17 of [1]

$$
\begin{equation*}
\|u\|_{m, p} \approx \sum\left\|a_{j}(x, D)^{m / \mu_{j}} u\right\|+\|u\| \tag{1.4}
\end{equation*}
$$

where \|\| is the L^{2} norm.
We shall denote by \widetilde{S}_{ϕ}^{m} the subset of S_{μ}^{m} consisting of functions p such that for all α and β in N^{d}

$$
\sup \left\{\Phi(x, \xi)^{-m+|\alpha|+|\beta|}\left|D_{\xi}^{\alpha} D_{x}^{\beta} p(x, \xi)\right|:(x, \xi) \in \boldsymbol{R}^{2 d}\right\}<\infty .
$$

We say that $p \in C^{\infty}\left(\boldsymbol{R}^{2 d}\right)$ is homogeneous of degree m with respect to $\left\{\delta_{r}\right\}$ for large w if there is a $c, 0<c<1$, such that $p\left(\delta_{r} w\right)=r^{m} p(w)$ for all $r \geqq 1$ and all w for which $\|w\| \geqq c$. If p is homogeneous of degree m with respect to $\left\{\delta_{r}\right\}$ for large w and if v is an eigenvector for the generator A of $\left\{\delta_{r}\right\}$ with eigenvalue μ, then

$$
r^{\mu} D_{v} p\left(\delta_{r} w\right)=r^{m} D_{v} p(w)
$$

If $\|w\| \geqq 1$, let $r=\|w\|$ and $w^{\prime}=\delta_{r}^{-1}(w)$. Then $\left\|w^{\prime}\right\|=1$ and $D_{v} p(w)=\|w\|^{m-\mu} D_{v} p\left(w^{\prime}\right)$. Thus there is a C such that

$$
\begin{equation*}
\left|D_{v} p(w)\right| \leqq C\|w\|^{m-\mu} \leqq C\|w\|^{m-1} \tag{1.5}
\end{equation*}
$$

for all $w,\|w\| \geqq 1$. Consequently if p is homogeneous of degree m with respect to $\left\{\delta_{r}\right\}$ for large w, then $p \in \widetilde{S}_{\psi}^{m}$. It follows from this remark that $\Phi \in \widetilde{S}_{\Phi}^{1}$ and hence $\Phi^{m} \in \widetilde{S}_{\phi}^{m}$ for all $m \in \boldsymbol{R}$.

We say that $p \in S_{\phi}^{m}$ is Φ-elliptic if there is a C such that $\Phi(w)^{m} \leqq$ $C|p(w)|$ for $|w| \geqq C$. Note that if p is a polynomial and p is homogeneous of degree m with respect to $\left\{\delta_{r}\right\}$, then p is Φ-elliptic if and only if $p(w) \neq 0$ for $|w| \neq 0$. Note that in general Φ-ellipticity does not imply ellipticity in the usual sense. For example on $\boldsymbol{R}^{2} \times \boldsymbol{R}^{2}$, $p(x, \xi)=\xi_{1}^{4}+x_{1}^{2}+2 x_{1} \xi_{1}+\xi_{1}^{2}+\xi_{2}^{2}+x_{2}^{2}$ is Φ-elliptic and homogeneous of degree two, where the dilations are given in terms of coordinates $a_{1}=\xi_{1}, a_{2}=x_{1}+\xi_{1}, a_{3}=\xi_{2}$ and $a_{4}=x_{2}$, with $\mu_{1}=2, \mu_{2}=\mu_{3}=\mu_{4}=1$.

If Γ is an oriented curve and p maps the range of Γ into
$C-\{0\}$, let Δ_{Γ} arg p denote the change in the argument of p along Γ. In the following theorem Γ is the curve in $\boldsymbol{R}_{x} \oplus \boldsymbol{R}_{\xi}$ given by $x(\theta)=\cos \theta, y(\theta)=\sin \theta, 0 \leqq \theta \leqq 2 \pi$. In the case where \boldsymbol{R}_{ξ}^{d} and \boldsymbol{R}_{x}^{d} are eigenspaces for A with eigenvalues 1 and $1+\delta$ respectively, $\delta>0$, this theorem was proved in [2].

Theorem 1. Let $\delta_{r}=\exp ((\log r) A), r>0$, be a family of dilations on $\boldsymbol{R}^{2 d}$, Φ the weight function for $\left\{\delta_{r}\right\}$. Let $p=p_{0}+p_{1}$ where p_{0} is Φ-elliptic and homogeneous of degree m with respect to $\left\{\delta_{r}\right\}$ for large w and $p_{1} \in S_{\phi_{1}}^{m_{1}}$ for some $m_{1}<m$. Then $p(x, D): H_{\phi}^{m} \rightarrow L^{2}$ is Fredholm. If $d>1$, then ind $p(x, D)=0$. If $d=1$, then 2π ind $p(x, D)=\Delta_{C} \arg p_{0}$. If $d=1$ and p_{0} is a polynomial, then ind $p(x, D)$ is also given by (1.6) below.

Proof. By Theorem 7.2 of [1] and (1.3) above, $p(x, D): H_{\phi}^{m} \rightarrow L^{2}$ is Fredholm. By Corollary 6.13 of [1], $p_{1}(x, D): H_{\phi}^{m} \rightarrow L^{2}$ is compact. Hence ind $p_{0}(x, D)=$ ind $p(x, D)$. Let $f \in C^{\infty}\left(\boldsymbol{R}^{2 d}\right)$ be real valued, $f(w)=0$ for $\|w\| \leqq 1 / 2, \quad f(w)=1 \quad$ for $\|w\| \geqq 1$. Let $a(w)=$ $f(w) /\|w\|^{m / 2}, q=p_{0} a^{2}$. Then $A=a(x, D) \in \mathscr{L}_{\phi}^{-m / 2}$, and by the pseudodifferential operator calculus $p_{0}(x, D) A^{*} A=q(x, D)+R \quad$ where $R \in \mathscr{L}_{\phi}^{-1}$. Thus ind $q(x, D)=$ ind $p_{0}(x, D)$. Also $q\left(\delta_{r} w\right)=p_{0}(w) \neq 0$ for all $r \geqq 1$ and all $w,\|w\|=1$. If $d>1,\left\{w \in R^{2 d}:\|w\|=1\right\}$ is simply connected, so q can be continuously deformed to a nonzero constant through Φ-elliptic symbols which are homogeneous of degree 0 for large w. Hence ind $q(x, D)=0$.

Now consider the case $d=1$. Although q is not elliptic in the classic sense, q is included in the class of symbols for which Hormander proves the index theorem in §7 of [5]. In [5] it is shown that 2π ind $q^{w}(x, D)=\Delta_{\Gamma} \arg q$, where $q^{w}(x, D)$ is the Weyl pseudodifferential operator with symbol q. By (4.10) of [5] $q^{w}(x, D)=$ $a(x, D)$ where $a=q+r, r \in S_{\Phi}^{-1}$. Thus ind $q(x, D)=$ ind $q^{w}(x, D)$. Clearly $\Delta_{\Gamma} \arg q=\Delta_{\Gamma} \arg p_{0}$.

If $d=1$ and p_{0} is a polynomial, then ind $p(x, D)$ can also be computed as follows: Let v_{1} and v_{2} be eigenvectors for the generator A of $\left\{\delta_{r}\right\}$, chosen so that if $\left(x_{1}, \xi_{1}\right)$ and $\left(x_{2}, \xi_{2}\right)$ are the respective x, ξ coordinates of v_{1} and v_{2}, then $x_{1} \xi_{2}-x_{2} \xi_{1}>0$. Let Γ_{+}be the line $t \rightarrow v_{1}+t v_{2}$ and Γ_{-}the line $t \rightarrow-v_{1}+t v_{2}, t \in \boldsymbol{R}$. Let $m_{2}=m / \mu_{2}$. Let ν_{+}be the number of complex roots z of $p_{0}\left(v_{1}+z v_{2}\right)$ with positive imaginary part and ν_{-}the number of complex roots of $p_{0}\left(-v_{1}+z v_{2}\right)$ with negative imaginary part. By the homogeneity of p_{0},

$$
\begin{aligned}
& \Delta_{\Gamma} \arg p_{0}=\Delta_{\Gamma_{+}} \arg p_{0}-\Delta_{\Gamma_{-}} \arg p_{0} \text { and } \\
& \qquad \Delta_{\Gamma_{+}^{\prime}} \arg p_{0}=-i \int_{-\infty}^{\infty} \frac{d}{d t}\left|p_{0}\left(v_{1}+t v_{2}\right)\right| d t=2 \pi\left(\nu_{+}-m_{2} / 2\right)
\end{aligned}
$$

$$
\Delta_{\Gamma_{-}} \arg p_{0}=-i \int_{-\infty}^{\infty} \frac{d}{d t}\left|p_{0}\left(t v_{2}-v_{1}\right)\right| d t=2 \pi\left(m_{2} / 2-\nu_{-}\right) .
$$

Thus

$$
\begin{equation*}
\text { ind } p(x, D)=\nu_{+}+\nu_{-}-m_{2} . \tag{1.6}
\end{equation*}
$$

2. Hypoellipticity of P^{*}. Let \mathscr{G} be a nilpotent Lie algebra of step 2; i.e., $\left[\mathscr{G}, \mathscr{G}_{2}\right]=0$ where $\mathscr{G}_{2}=[\mathscr{G}, \mathscr{G}]$. Let G be the corresponding connected, simply connected Lie group. A family of dilations $\left\{\delta_{r}\right\}$ on \mathscr{G} induces a family of algebra automorphisms, also denoted $\left\{\delta_{r}\right\}$, of $\mathscr{C}(\mathscr{G})$, the complexified universal enveloping algebra of \mathscr{G}. An element P of $\mathscr{C}(\mathscr{G})$ is said to be homogeneous of degree m with respect to $\left\{\delta_{r}\right\}$ if $\delta_{r}(P)=r^{m} P$ for all $r>0$. The set of all $P \in$ $\mathscr{U}(\mathscr{G})$ such that P is homogeneous of degree m with respect to a given family of dilations $\left\{\delta_{r}\right\}$ will be denoted $\mathscr{U}_{m}\left(\mathscr{G},\left\{\delta_{r}\right\}\right)$ or simply $\mathscr{U}_{m}(\mathscr{G})$ when there is no chance of confusion. We consider the elements of $\mathscr{C}(\mathscr{G})$ as left invariant differential operators on G.

Theorem 2. Let \mathscr{G} be a nilpotent Lie algebra of step two and $\left\{\delta_{r}\right\}$ a family of dilations on \mathscr{G}. If $P \in \mathscr{U}_{m}\left(\mathscr{G},\left\{\delta_{r}\right\}\right)$ is hypoelliptic, then P^{*} is hypoelliptic.

When $\left\{\delta_{r}\right\}$ is the natural family of dilations for a grading $\mathscr{G}=$ $\mathscr{G}_{1} \oplus \mathscr{G}_{2}$ of \mathscr{G}, then this result was proved in Helffer and Nourrigat [4]. For the Heisenberg group such a result was proved in Miller [6]. It follows from this theorem that any hypoelliptic $P \in \mathscr{U}_{m}(\mathscr{G})$ is locally solvable.

The proof is based on the Helffer-Nourrigat-Rockland characterization of the hypoelliptic operators in $\mathscr{U}_{m}(\mathscr{G}): P \in \mathscr{U}_{m}(\mathscr{G})$ is hypoelliptic if and only if $\pi(P)$ is injective in \mathscr{S}_{π} for every nontrivial irreducible unitary representation π of G. (See [3] and [8]. That this result holds for arbitrary dilations is shown in [7].) We shall also need some other preliminary information before beginning the proof of Theorem 2.

By Lemma 1.2 of [7] there is a basis $\left\{X_{1}, \cdots, X_{N} ; \cdots, X_{n}\right\}$ of \mathscr{G} such that each X_{j} is an eigenvector for the generator A of $\left\{\delta_{r}\right\}$, $\left\{X_{N+1}, \cdots, X_{n}\right\}$ spans \mathscr{G}_{2}, and for each $k>N$ there are i and $j \leqq N$ such that $\left[X_{i}, X_{j}\right]=X_{k}$. Let μ_{j} be the eigenvalue of A corresponding to X_{j}. If $\alpha \in N^{n}$, let $\alpha \mu=\sum \alpha_{j} \mu_{j}$ and $X^{\alpha}=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$. Then $P \in \mathscr{U}_{m}(\mathscr{G})$ if and only if

$$
\begin{equation*}
P=\sum_{\alpha \mu=m} a_{\alpha} X^{\alpha} \tag{2.1}
\end{equation*}
$$

for some $a_{\alpha} \in C$.
Let \mathscr{G}_{1} be the subspace of \mathscr{G} spanned by $\left\{X_{1}, \cdots, X_{N}\right\}$. Letting
\mathscr{G}^{*} denote the vector space dual of \mathscr{G}, we define δ_{r} on \mathscr{G}^{*} to be the transpose of δ_{r} on \mathscr{G} for each $r>0$. Since \mathscr{G}_{1} is invariant under $\left\{\delta_{r}\right\},\left\{\delta_{r}\right\}$ (on \mathscr{G}^{*}) restricts to a family of dilations on the vector space \mathscr{G}_{1}^{*}. For $\eta \in \mathscr{G}_{1}^{*}$ define $\|\eta\|$ as in $\S 1$. If $X \in \mathscr{G}$, let $X=X^{\prime}+X^{\prime \prime}$ where $X^{\prime} \in \mathscr{G}_{1}, X^{\prime \prime} \in \mathscr{G}_{2}$. For $\eta \in \mathscr{G}_{1}^{*}$,

$$
\begin{equation*}
\pi_{\eta}(\exp X)=\exp i\left\langle\eta, X^{\prime}\right\rangle \tag{2.2}
\end{equation*}
$$

defines a unitary representation of G on C. It follows from (2.1) that if $P \in \mathscr{U}_{m}(\mathscr{G})$, then

$$
\begin{equation*}
\pi_{\delta_{\sigma_{r}}}(P)=r^{m} \pi_{r}(P)=\pi_{r}\left(\delta_{r} P\right) ; \quad \eta \in \mathscr{G}_{1}^{*} \tag{2.3}
\end{equation*}
$$

We next recall some facts about the representation theory for G. More details are given in [7]. Let $\zeta \in \mathscr{G}_{2}^{*}$. Then there is a $d=d(\zeta) \leqq N / 2$ and a basis $\mathscr{B}(\zeta)=\left\{Y_{1}(\zeta), \cdots, Y_{N}(\zeta)\right\}$ for \mathscr{G}_{1} such that $\mathscr{B}(\zeta)$ is orthogonal with respect to the inner product determined by the basis $\left\{X_{1}, \cdots, X_{N}\right\}$ and such that

$$
\begin{align*}
& \left\langle\zeta,\left[Y_{j}(\zeta), Y_{j+d}(\zeta)\right]\right\rangle=1 \quad \text { for } \quad j \leqq d \tag{2.4}\\
& \left\langle\zeta,\left[Y_{j}(\zeta), Y_{k}(\zeta)\right]\right\rangle=0
\end{align*}
$$

for all other choices $j<k \leqq N$. (In [7] we had [$Y_{j}(\zeta), Y_{j+d}(\zeta)$] $=$ $\lambda_{j}>0$. This was necessary because we wanted the basis to be orthonormal, but that is not needed here.) For any $\rho \in \boldsymbol{R}^{N-2 d}$ there is an irreducible unitary representation $\pi_{\rho, 5}$ of G on $L^{2}\left(\boldsymbol{R}^{d}\right)$ such that

$$
\begin{array}{ll}
\pi_{\rho, 5}\left(Y_{j}(\zeta)\right) u(t)=\partial u / \partial t_{j}, & j \leqq d ; \\
\pi_{\rho, 5}\left(Y_{j+d}(\zeta)\right) u(t)=i t_{j} u(t), & j \leqq d ; \\
\pi_{\rho, 5}\left(Y_{j+2 d}(\zeta)\right) u(t)=i \rho_{j} u(t), & j \leqq N-2 d ; \tag{2.5}\\
\pi_{\rho, \zeta}(Z) u(t)=i\langle\zeta, Z\rangle u(t), & Z \in \mathscr{G}_{2}
\end{array}
$$

Furthermore every irreducible unitary representation of G is unitarily equivalent to $\pi_{\rho, \zeta}$ for some $\zeta \in \mathscr{G}_{2}^{*}$ and some $\rho \in \boldsymbol{R}^{N-2 d(\zeta)}$. Note that if $\zeta=0$ we obtain the representation defined by (2.2).

For $\zeta \in \mathscr{G}_{2}^{*}, t \in \boldsymbol{R}^{d}, \tau \in \boldsymbol{R}^{d}$ and $\rho \in \boldsymbol{R}^{N-2 d}, d=d(\zeta)$, let $\eta(t, \tau ; \rho, \zeta)$ be that element η of \mathscr{G}_{1}^{*} such that

$$
\begin{align*}
& \left\langle\eta, Y_{j}(\zeta)\right\rangle=\tau_{j}, \quad\left\langle\eta, Y_{j+d}(\zeta)\right\rangle=t_{j}, \quad j \leqq d ; \tag{2.6}\\
& \left\langle\eta, Y_{j+2 d}(\zeta)\right\rangle=\rho_{j}, \quad j \leqq N-2 d .
\end{align*}
$$

Let $f \in C^{\infty}\left(\boldsymbol{R}^{N}\right)$ satisfy $f \equiv 0$ in a neighborhood of 0 and $f \equiv 1$ outside some bounded set. Define

$$
\Phi_{\rho, \zeta}(t, \tau)=1+f(t, \tau, \rho)\|\eta(t, \tau ; \rho, \zeta)\|
$$

Let $\zeta \in \mathscr{G}_{2}^{*}, \zeta \neq 0$, be fixed. If for all $\rho \in \boldsymbol{R}^{N-2 d}, q_{\rho} \in C^{\infty}\left(\boldsymbol{R}^{2 d}\right)$ and for all multi-indices α and β there is a $C_{\alpha \beta}$ such that

$$
\left|D_{\tau}^{\alpha} D_{i}^{\}} q_{\rho}(t, \tau)\right| \leqq C_{\alpha \beta} \Phi_{\rho, 5}(t, \tau)^{k-|\alpha|}
$$

for all $(t, \tau, \rho) \in \boldsymbol{R}^{N}$ we will write " $q_{\rho} \in S_{\rho, 5}^{k}$ uniformly in ρ ". $\mathscr{L}_{\rho, ~}^{k}$, is the space of pseudodifferential operators with symbols in $S_{\rho, ~}^{o}$; $H_{p, 5}^{k}$ the corresponding global Sobolev space as defined in [1].

It follows from (2.5), (2.6) and (2.2) that, for $X \in \mathscr{G}_{1}$,

$$
\begin{equation*}
\operatorname{sym} \pi_{\rho, 5}(X)(t, \tau)=\pi_{\eta\left(t, \tau, \rho, \varepsilon_{\}}\right)}(X), \tag{2.7}
\end{equation*}
$$

where $\operatorname{sym} Q$ denotes the symbol of the operator Q. Let $\zeta \in \mathscr{G}_{2}^{*}$ be fixed and let $\left\{X_{1}, \cdots, X_{n}\right\}$ be the basis for \mathscr{G} described at the beginning of this section. By (2.7) and (1.2),

$$
\begin{array}{lll}
\pi_{\rho, 5}\left(X_{j}\right) \in \mathscr{L}_{\rho, 5}^{\mu_{i}} & \text { uniformly in } \rho \text { if } & j \leqq N, \\
\pi_{\rho, 5}\left(X_{j}\right) \in \mathscr{L}_{\rho, 5}^{0} & \text { uniformly in } \rho \text { if } & j>N . \tag{2.9}
\end{array}
$$

Thus if $P \in \mathscr{U}_{m}(\mathscr{G})$, then $\pi_{\rho, 5}(P) \in \mathscr{L}_{\rho, 5}^{m}$ uniformly in ρ.
Lemma. Let $P \in \mathscr{U}_{m}(\mathscr{G})$ satisfy $\pi_{r}(P) \neq 0$ for each of the one dimensional unitary representations $\pi_{n}, \eta \in \mathscr{G}_{1}^{*}, \eta \neq 0$. Then for fixed $\zeta \in \mathscr{G}_{2}^{*}, \zeta \neq 0$, there is $a c>0$ and $a C>0$ such that

$$
\left|\operatorname{sym} \pi_{\rho, 5}(P)(t, \tau)\right| \geqq c \Phi_{\rho, 5}(t, \tau)^{m}
$$

for all $\rho \in \boldsymbol{R}^{N-2 d}$ and all $(t, \tau) \in \boldsymbol{R}^{2 d}$ such that $|t|+|\tau| \geqq C$.
Proof. Let $S=\left\{\eta \in \mathscr{G}_{1}^{*}:\|\eta\|=1\right\}$ and let $c_{1}=\min \left\{\pi_{\eta}(P): \eta \in S\right\}$. For arbitrary $\eta \in \mathscr{G}_{1}^{*}, \eta \neq 0$, let $r=\|\eta\|^{-1}$. Then $\left\|\delta_{r} \eta\right\|=1$. (2.3) implies that $\left|\pi_{\eta}(P)\right| \geqq c_{1}\|\eta\|^{m}$. Thus letting $p_{\rho, 5}^{\prime}(t, \tau)=\pi_{\eta(t, \tau, \rho, 6)}(P)$, we have

$$
\begin{equation*}
\left|p_{\rho, \xi}^{\prime}(t, \tau)\right| \geqq c_{1}\|\eta(t, \tau ; \rho, \zeta)\|^{m} \tag{2.10}
\end{equation*}
$$

Let $p_{\rho, 5}=\operatorname{sym} \pi_{\rho, 5}(P)$. By (2.7), the pseudodifferential operator calculus, (2.9) and the remark following (2.9),

$$
\begin{equation*}
p_{\rho, \xi}-p_{\rho, \xi}^{\prime} \in S_{\rho, \xi}^{m-1} \text { uniformly in } \rho . \tag{2.11}
\end{equation*}
$$

Now there exist $c_{2}>0$ and C_{2} such that if $|t|+|\tau| \geqq C_{2}$ then $\|\eta(t, \tau ; \rho, \zeta)\|^{m} \geqq c_{2}(|t| t|+|\tau|)$ for all ρ. Thus, by (2.10), there exist $c_{3}>0$ and C_{3} such that if $|t|+|\tau| \geqq C_{3}$, then $\left|p_{p, 5}^{\prime}(t, \tau)\right| \geqq c_{3} \Phi_{\rho, 5}(t, \tau)^{m}$ for all ρ. Also, by (2.11), it follows that given $\varepsilon>0$ there is a $C_{4}(\varepsilon)$ such that if $|t|+|\tau| \geqq C_{4}(\varepsilon)$, then for all ρ

$$
\left|p_{\rho, 5}(t, \tau)-p_{\rho, 5}^{\prime}(t, \tau)\right|<1 / 2 \varepsilon \Phi_{\rho, 5}(t, \tau)^{m} .
$$

The lemma follows by taking $C=\max \left\{C_{3}, C_{4}\left(c_{3}\right)\right\}$.

Proof of Theorem 2. By the theorem of Helffer-NourrigatRockland, to prove P^{*} hypoelliptic it suffices to show that $\operatorname{ker} \pi_{\rho, \zeta}\left(P^{*}\right)=0$ for all $\zeta \in \mathscr{G}_{2}^{*}$ and all $\rho \in \boldsymbol{R}^{N-2 d(\zeta)}$, except $\zeta=0, \rho=0$. (We consider $\pi_{\rho, \zeta}(P)$ and $\pi_{\rho, \zeta}\left(P^{*}\right)$ as bounded operators from $H_{\rho,, 5}^{m}$ to $\left.H_{\rho, \zeta}^{0}\right)$. If $\zeta=0$, then

$$
\begin{equation*}
\pi_{\rho, 5}\left(P^{*}\right)=\overline{\pi_{\rho, \zeta}(P)} \neq 0 \tag{2.12}
\end{equation*}
$$

for all $\rho \neq 0$. If $\zeta \neq 0$, then by Theorem 7.2 of [1] and the above lemma, $\pi_{\rho, 5}(P)$ is Fredholm for all ρ. Also by Remark 1.4 of [4] and the Helffer-Nourrigat-Rockland Theorem, $\operatorname{ker} \pi_{\rho, 5}(P)=\operatorname{ker} \pi_{\rho, \zeta}(P) \cap$ $\mathscr{S}_{\pi}=0$. Hence it suffices to prove that ind $\pi_{\rho, 5}(P)=0$.

We consider first the case when $d=d(\zeta)<N / 2$. Let $q_{\rho, \zeta}=$ $\operatorname{sym} \pi_{\rho, 5}\left(P^{*}\right)$. By (2.12) and the above lemma there is a $c>0$ and a C such that $\left|q_{\rho, 5}(t, \tau)\right| \geqq c \Phi_{\rho, 5}(t, \tau)^{m}$ for all $(t, \tau, \rho) \in \boldsymbol{R}^{N}$ with $|t|+|\tau| \geqq C$. Choose $f \in C^{\infty}\left(\boldsymbol{R}^{2 d}\right)$ such that $f(t, \tau) \equiv 0$ if $|t|+|\tau| \leqq C$, $f(t, \tau) \equiv 1$ if $|t|+|\tau| \geqq 2 C$. Let $a_{\rho, \zeta}=f q_{\rho, \zeta}^{-1}$. Then $a_{\rho, \zeta} \in S_{\rho, \zeta}^{-m}$ uniformly in ρ and $b_{\rho, 5}=1-a_{\rho, 5} \circ q_{\rho, 5} \in S_{\rho, 5}^{-1}$ uniformly in ρ, where $p \circ q$ denotes the symbol of $p(t, D) q(t, D)$. Let $\psi(\tau)=\left(1+|\tau|^{2}\right)^{1 / 2 m}$. There is a $C>0$ (depending on ζ), such that $\psi(\tau) \leqq C \Phi_{\rho, \zeta}(t, \tau)$ and, by (2.8), such that $|\rho|^{\varepsilon} \leqq C \Phi_{\rho, 5}(t, \tau)$ for all $(t, \tau, \rho) \in \boldsymbol{R}^{N}$, where $\varepsilon=\min \left\{1 / \mu_{j}\right.$: $i \leqq j \leqq N\}$. Thus $a_{\rho, 5} \in S_{\psi}^{0}$ uniformly in ρ and $|\rho|^{6} b_{\rho, 5} \in S_{\psi}^{0}$ uniformly in ρ. By the L^{2} boundedness theorem for pseudodifferential operators there is a C_{1} such that $\left\|a_{\rho, 5}(t, D) u\right\| \leqq C_{1}\|u\|$ and $|\rho|^{6}\left\|b_{\rho, 5}(t, D) u\right\| \leqq$ $C_{1}\|u\|$, for all $u \in L^{2}\left(\boldsymbol{R}^{d}\right)$ and all ρ. Thus if $|\rho|^{\varepsilon} \geqq 2 C_{1}$,

$$
\begin{aligned}
\|u\| & \leqq\left\|a_{\rho, \zeta}(t, D) \pi_{\rho, \zeta}\left(P^{*}\right) u\right\|+\left\|b_{\rho, \zeta}(t, D) u\right\| \\
& \leqq C_{1}\left\|\pi_{\rho, \zeta}\left(P^{*}\right) u\right\|+1 / 2\|u\|
\end{aligned}
$$

Hence $\pi_{\rho, \zeta}\left(P^{*}\right)$ is injective and thus ind $\pi_{\rho, 5}(P)=0$ if $|\rho|^{\varepsilon} \geqq 2 C_{1}$. Since ind $\pi_{\rho, 5}(P)$ is independent of ρ, ind $\pi_{\rho, 5}(P)=0$ for all $\rho \in \boldsymbol{R}^{N-2 d}$.

If $d=d(\zeta)=N / 2$, we write π_{ζ} for $\pi_{0, \zeta}$. Define $\varphi: \boldsymbol{R}_{t}^{d} \oplus \boldsymbol{R}_{\tau}^{d} \rightarrow \mathscr{G}_{1}^{*}$ by $\varphi(t, \tau)=\eta(t, \tau ; 0, \zeta)$, as defined before (2.6). Let $\delta_{r}^{\prime}=\varphi^{-1} \circ \delta_{r} \circ \varphi$. Then $\left\{\delta_{r}^{\prime}\right\}$ is a family of dilations on $\boldsymbol{R}^{2 d}$. Let $p_{5}^{\prime}(t, \tau)=\pi_{\eta(t, \tau ; 0,5)}(P)$. It follows from (2.3) that p_{5}^{\prime} is homogeneous of degree m with respect to $\left\{\delta_{r}^{\prime}\right\}$ and by (2.12) p_{6}^{\prime} is Φ_{ζ}-elliptic. Since $p_{5}^{\prime}-\operatorname{sym} \pi_{5}(P) \in$ S_{ζ}^{m-1} we can apply Theorem 1 to find ind $\pi_{\zeta}(P)$. If $d>1$, then ind $\pi_{\zeta}(P)=0$.

If $d=1$ and $\mathscr{B}(\zeta)=\left\{Y_{1}(\zeta), Y_{2}(\zeta)\right\}$, set $Y_{1}(-\zeta)=Y_{2}(\zeta), Y_{2}(-\zeta)=$ $Y_{1}(\zeta)$. Then $\mathscr{B}(-\zeta)=\left\{Y_{1}(-\zeta), Y_{2}(-\zeta)\right\}$ satisfies (2.4) for $-\zeta$. Also $\eta(t, \tau ;-\zeta)=\eta(\tau, t ; \zeta)$ and $p_{-5}^{\prime}(t, \tau)=p_{\zeta}^{\prime}(\tau, t)$. By Theorem 1

$$
2 \pi \text { ind } \pi_{-5}(P)=\Delta_{\Gamma} \arg p_{-5}^{\prime}=-\Delta_{\Gamma} \arg p_{5}^{\prime}=-2 \pi \text { ind } \pi_{5}(P)
$$

But ker $\pi_{\zeta}(P)=\operatorname{ker} \pi_{-5}(P)=0$ implies ind $\pi_{\zeta}(P) \geqq 0$ and ind $\pi_{-\zeta}(P) \geqq 0$. Thus ind $\pi_{\zeta}(P)=0$.

References

1. R. Beals, A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42.
2. V. Grushin, On a class of hypoelliptic pseudodifferential operators degenerate on a submanifold, Mat. Sb,, 84 (1971), 111-134; Math. USSR-Sb., 13 (1971), 155-185.
3. B. Helffer and J. Nourrigat, Caractérization des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. P.D.E., 4 (1979), 899-958.
4. ——, Théorèmes d'indice pour des opérateurs différentiels a coefficients polynomiaux, (preprint).
5. L. Hormander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math., 32 (1979), 359-443.
6. K. Miller, Hypoellipticity on the Heisenberg group, J. Functional Analysis, 31 (1979), 306-320.
7. ——, Parametrices for hypoelliptic operators on step two nilpotent Lie groups, Comm. P.D.E., 5 (1980), 1153-1184.
8. C. Rockland, Hypoellipticity on the Heisenberg group: representation-theoretic criteria, Trans. Amer. Math. Soc., 240 (1978), 1-52.

Received November 20, 1980.
Wichita State University
Wichita, KS 67208

