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AN INDEX THEOREM AND HYPOELLIPTICITY
ON NILPOTENT LIE GROUPS

KENNETH G. MILLER

Extending results of Grushin we determine the index of
p(x, D) where p(x, ξ) is a polynomial homogeneous with respect
to some family of dilations on R2d and p(x, ξ)φθ if (x, ξ)Φ(0,0).
In general these operators are not elliptic. If G is a step
two nilpotent Lie group and P is a left invariant differential
operator on G which is homogeneous with respect to some
family of dilations, we apply this index theorem to prove
that P is hypoelliptic if and only if P* is hypoelliptic. This
extends a result of Helffer and Nourrigat.

1* An index theorem* A family of dilations on a Lie algebra
g7 is a one parameter family of automorphisms {δr: r > 0} of & of
the form dr = exp ((log r)A), where A is a diagonalizable automorphism
of 5^ with positive real eigenvalues. There is no loss of generality
in assuming that the smallest eigenvalue is 1. A finite dimensional
normed vector space V with norm | | determines an abelian Lie
algebra. Let {δr} be a family of dilations on V. For w e V define
llwll by ||w|| = r if Iδ^ 1 ^)! = 1. Then w-^\\w\\ is continuous on
V and C°° on V — {0} by the implicit function theorem. Let & —
{wl9 w2, , wn} be a basis for V consisting of eigenvectors of A
with corresponding eigenvalues μl9 , μn. If w = a1wι + . . . + anwn,
then

(1.1) δrw — Σ r^'djWj and

\JL.Δ) || α/ ii F& JLΛ I *"j I

Throughout this section we will be considering a family of
dilations on the abelian Lie algebra Ru = Rt@R*. We do not
necessarily assume that either Rd

x or Rd is invariant under {δr}. Let
fe C"(R2d), f{w) = 0 for \\w\\£ 1/2, and f(w) = 1 for ||w\\ ^ 1. Define
Φ(w) = 1 + f(w) \\w\\ and φ(w) = 1 for all w = (x, ξ) e R2d. Note that
there is a C such that if \w — w'\ ^ Φ(w) then Φ(wf) ^ CΦ(w). Thus
(Φ, >̂) is a pair of weight functions on R* as defined in Beals [1].
We will usually not mention ψ and will refer to Φ as the weight
function for the family of dilations {δr}. Note that Φ satisfies the
coercive estimate

(1.3) \w\£ CΦ(wγ

where μ — max {μlf , μzd}.
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For meR, let S™ denote the set of all smooth functions p on
R2d such that for each a and β e Nd

sup {Φ(x, £ ) - + ' « ' ID?D!p(x, ξ)\: (x, ξ) e Ru) < - .

£?Z is the set of pseudodifferential operators with symbols in S?f

Hφ is the associated (global) Sobolev space as defined in [1] and
|| \\mtΦ is a norm for the topology on Hf. We note that in the
special case where meN and m\μ5 eN for all j (this is necessarily
the case in the context of Theorem 2 below, by Proposition 1.3 of
[7]), then || \\m^ can be given explicitly as follows: Let & be a
basis for R2d consisting of eigenvectors for {<5r} and let αy(α?, ξ) be
the jth coordinate of (x, ξ) with respect to the basis &. By (1.2)
above and 6.17 of [1]

(1.4) || u \L,Φ ~ Σ II as(x, DT^u \\ + \\ u ||

where \\ \\ is the L2 norm.
We shall denote by S% the subset of S™ consisting of functions

p such that for all a and β in JVd

s u p {Φ(x, ξ)-«+ι«ι+ι/'i ID?D£p(x, ξ)\: (x, ξ) e R2d} < oo .

We say that p e C°°(iί2d) is homogeneous of degree m with respect
to {dr} for large w if there is a c, 0 < c < 1, such that p(δrw) = rmp(w)
for all r ^ 1 and all w for which ]|w|| ^ c. If p is homogeneous of
degree m with respect to {dr} for large w and if v is an eigenvector
for the generator A of {δr} with eigenvalue μ, then

τ'Φvp{δrw) = rmDvp(w) .

If I M I ^ l , let r = | | w | | and w' = δ~\w). Then | | w ' | | = l and
Dυp{w) = j| w |]w~^Dvp(w') Thus there is a C such that

(1.5) \Dvp(w)\ ^ CllwH"-" ^ CII^IΓ-1

for all w, \\w\\ ^ 1. Consequently if ^ is homogeneous of degree m
with respect to {δτ} for large w, then peS™. It follows from this
remark that ΦeSφ and hence ΦmeSφ for all meR.

We say that p 6 S™ is Φ-elliptic if there is a (7 such that Φ(w)m ^
C7|j>(w)| for \w\^C. Note that if p is a polynomial and p is homo-
geneous of degree m with respect to {δr}, then p is Φ-elliptic if and
only if p(w) Φ 0 for |w| =£ 0. Note that in general Φ-ellipticity does
not imply ellipticity in the usual sense. For example on R2 x R\
p(xf ξ) = ξl + χ\ + 2&1£1 + fi + is + x\ is Φ-elliptic and homogeneous of
degree two, where the dilations are given in terms of coordinates
«i = ξu a2 = x, + ξ19 a3 = f2 and α4 = x2, with ^ = 2, μ2 = μz = μ± = 1.

If Γ is an oriented curve and p maps the range of Γ into
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C — {0}, let ΔΓ aτgp denote the change in the argument of p along
Γ. In the following theorem Γ is the curve in Rx φ Rξ given by
x(θ) = cos θ, y(θ) = sin θ, 0 ^ θ <Z 2ττ. In the case where i?^ and Λf
are eigenspaces for A with eigenvalues 1 and 1 + δ respectively,
δ > 0, this theorem was proved in [2].

THEOREM 1. Let δr — exp((logr)A), r > 0, be a family of dila-
tions on Ru

9 Φ the weight function for {δr}. Let p = p0 + Pi where
pQ is Φ-elliptic and homogeneous of degree m with respect to {δr} for
large w and p1eS'φ1 for some mx<m. Then p(x, D): H™ —> L2 is
Fredholm. If d > 1, then ind p(x, D) = 0. // d = 1, then
2π ind p(x, D) = ΔΓ arg pQ. Ifd = l and p0 is a polynomial, then
indp(x, D) is also given by (1.6) below.

Proof By Theorem 7.2 of [1] and (1.3) above, p(x, D): H?-* L2

is Fredholm. By Corollary 6.13 of [1], p^x, D): H™ —> L2 is compact.
Hence mάpo(x, D) = indp(x, D). Let feC°°(R2d) be real valued,
f(w) = 0 for | | w | | ^ l / 2 , f(w) = l for | | w | | ^ l . • Let a(w) =
f(w)l\\w\\m/\ q = p0a

2. Then A = α(a?, ̂ e ^ ^ ί " 7 2 , and by the pseudo-
differential operator calculus po(x, D)A*A — q(x, D) + R where
R e £fφ\ Thus ind q(x, D) = ind po(α, ΰ ) . Also q{δrw) = po(w) ^ 0
for all r ^ 1 and all w, \\w\\ = 1. If d > 1, {weiί2 ί i: | |w| | = 1} is
simply connected, so g can be continuously deformed to a nonzero
constant through Φ-elliptic symbols which are homogeneous of degree
0 for large w. Hence mάq(x, D) = 0.

Now consider the case d = 1. Although g is not elliptic in the
classic sense, q is included in the class of symbols for which
Hormander proves the index theorem in §7 of [5]. In [5] it is shown
that 2π ind qw(x, D) = ΔΓ arg q, where qw{x, D) is the Weyl pseudo-
differential operator with symbol q. By (4.10) of [5] qw(x, D) =
a(x, D) where a — q + r, re Si1. Thus ind q(xf D) = ind qw(x, D).
Clearly ΔΓ arg q = ΔΓ arg p0.

Ifd — 1 and p0 is a polynomial, then ind p(x, D) can also be
computed as follows: Let vx and v2 be eigenvectors for the generator
A of {δr}, chosen so that if (xlf &) and (x2f ζ2) are the respective
x, ξ coordinates of vλ and vif then xλξ2 — x2ξx > 0. Let Γ + be the
line t —> v1 + tv2 and Γ_ the line t —> — vx + tv2, teR. Let m2 = m/μ2.
Let v+ be the number of complex roots z of 2>o(̂ i + ^̂ 2) with positive
imaginary part and v_ the number of complex roots of po(—v1 + zv2)
with negative imaginary part. By the homogeneity of p0,

ΔΓ arg p0 = J Γ + arg p0 - JΓ_ arg p0 and

^ Ipoί^ + ίv2)|dί 2τr(v+ - m2/2) .
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•jτ\Po(tv2 - vx)\dt = 2π(mJ2 - v_) .
-°° at

Thus

(1.6) indp(x, D) = v+ + v_ — m2 .

2 Hypoellipticity of P** Let ^ be a nilpotent Lie algebra
of step 2; i.e., [gf, 5f2] = 0 where gf2 = [gf, g^]. Let G be the corre-
sponding connected, simply connected Lie group. A family of dilations
{δr} on & induces a family of algebra automorphisms, also denoted
{δr}, of ^(2^) , the complexified universal enveloping algebra of gf.
An element P of <&(&) is said to be homogeneous of degree m
with respect to {δr} if δr(P) = rmP for all r > 0. The set of all P e
*&(&) such that P is homogeneous of degree m with respect to a
given family of dilations {dr} will be denoted %fm(&, {3r}) or simply
^m(^) when there is no chance of confusion. We consider the
elements of ^ ( ^ ) as left invariant differential operators on G.

THEOREM 2. Let 5f be a nilpotent Lie algebra of step two and
{δr} a family of dilations on &. If P e ^ m ( ^ , {δr}) is hypoelliptic,
then P* is hypoelliptic.

When {δr} is the natural family of dilations for a grading & =
Ŝ i Θ ^2 of ^ , then this result was proved in Helffer and Nourrigat
[4]. For the Heisenberg group such a result was proved in Miller
[6]. It follows from this theorem that any hypoelliptic P 6 ^ w ( ^ )
is locally solvable.

The proof is based on the Helffer-Nourrigat-Rockland characteri-
zation of the hypoelliptic operators in ^ m ( ^ ) : P e ^ m ( ^ ) is hypo-
elliptic if and only if π(P) is injective in S^ for every nontrivial
irreducible unitary representation π of G. (See [3] and [8]. That
this result holds for arbitrary dilations is shown in [7].) We shall
also need some other preliminary information before beginning the
proof of Theorem 2.

By Lemma 1.2 of [7] there is a basis {Xlf -—,XN; « ,Xn} of
Ŝ  such that each Xs is an eigenvector for the generator A of {δr},
{XN+1, -' , Xn} spans 5 2̂, and for each k> N there are i and j S N
such that [Xi9 Xά] = Xk. Let μά be the eigenvalue of A correspond-
ing to Xs. If aeN", let aμ = Σ a5μό and Xa = X«i X;*. Then

if and only if

(2.1) P - Σ aaXa

aμ—m

for some aa e C.
Let ^ Ί be the subspace of 5f spanned by {Xu , X^}. Letting
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^ * denote the vector space dual of 2 ,̂ we define δr on ^ * to be
the transpose of δr on Sf for each r > 0. Since Ŝ Ί is invariant
under {δr}, {δr} (on 5T*) restricts to a family of dilations on the
vector space gff. For )?e5fί define | | ^ | | as in §1. If l e g 7 , let
X = X' + X" where X' e S?lf X" e gf2. For 7 e Sf f,

(2.2) τr,(exp X) = exp i(η, X'>

defines a unitary representation of G on C. It follows from (2.1)
that if P e ^ m ( 5 f ) , then

(2.3) πδrV(P) = r™πη{P) = πv(δrP) ηeS??.

We next recall some facts about the representation theory for
G. More details are given in [7]. Let ζeS^f. Then there is a
d = d(ζ) ^ Λ//2 and a basis ^ ( ζ ) = {^(ζ), , YN(ζ)} for gfx such
that ^ ( ζ ) is orthogonal with respect to the inner product determined
by the basis {X^ , X^} and such that

(2.4) <UΓ,(0, Γy+i(O]> = l for i ^ d

for all other choices j < k ^ N. (In [7] we had [Γ/ζ), Γi+d(ζ)] =
λ̂  > 0. This was necessary because we wanted the basis to be
orthonormal, but that is not needed here.) For any peRN~2d there
is an irreducible unitary representation πPΛ of G on U(Rd) such that

πPtζ(Yj+d(ζ)Mt) = itsu{t) ,

πΛY(QMt) - iPju(t) ,

πp,ζ(Z)u(t) = i<ζ, Z)u(t) ,

Furthermore every irreducible unitary representation of G is
unitarily equivalent to πPtζ for some ζeS^2*

 a n ( i some peRN~2dU).
Note that if ζ = 0 we obtain the representation defined by (2.2).

For ζ e 5f *, teRd, τeRd and p e β^-2d, d = d{ζ), let ^(ί, τ; p, Q
be that element rj of ^ Ί * such that

(2.6) ^

Let / e C°°(RN) satisfy / Ξ 0 in a neighborhood of 0 and / = 1 outside
some bounded set. Define

Let ζ e ^ 2 * , ζ ^ 0, be fixed. If for all p e RN~2d, qP e C~(R2d) and
for all multi-indices a and β there is a Cαi9 such that
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\D?DlqP(t, τ)\ ^ Ca,Φp,,{t, r)*~'««

for all {t,τ,p)eRN we will write "qpeSk

Pfζ uniformly in p". &h

PΛ

is the space of pseudodifferential operators with symbols in Sk

Prζ;
HPiζ the corresponding global Sobolev space as defined in [1].

It follows from (2.5), (2.6) and (2.2) that, for I G %

(2.7) sym πPtζ(X)(t, τ) = πnuτtPΛ)(X) ,

where sym Q denotes the symbol of the operator Q. Let ζ 6 2 2̂* be
fixed and let {Xu , Xn} be the basis for <& described at the
beginning of this section. By (2.7) and (1.2),

(2.8) ^.c(-Xj) e - S ^ 'c uniformly in p if j <> N,

(2.9) ^,c(-Σ"i) e -Sf̂ .c uniformly in p if j > N.

Thus if P 6 ^ m ( ^ ) , then π>,ζ(P) e .S^c uniformly in p.

LEMMA. Lei P e ^ J g 7 ) satisfy πv(P)^0 for each of the one
dimensional unitary representations πηf Ύ] e ̂ f, 57 ̂  0. Γ/ie^ for
fixed ζ 6 S 2̂*, ζ =£ 0, ίfeerβ is α c > 0 αwώ α C > 0

/or αϊϊ ρeRN~2d and all (ΐ, r) e JR2<* swd ίΛαt | ί | + | r | ̂  C.

Proo/. Let S = {ηeS?f:\\η\\ = 1} and let cx = min {πv(P): η e S}.
For arbitrary η e Sff, 7 ̂  0, let r = H^H"1. Then ||δr)7|| = 1. (2.3)
implies that \πv(P)\ ^ c^lyW*. Thus letting p;tC(t, τ) = πm>T>p>ζ)(P)f

we have

(2.10) ip'pAtf^l^cMttTiPiQW*.

Let p^ζ = sym7Γ^ς(P). By (2.7), the pseudodifferential operator
calculus, (2.9) and the remark following (2.9),

(2.11) pP)ζ — pPtζ 6 S ^ 1 uniformly in p .

Now there exist c2 > 0 and C2 such that if 111 + | r | ^ C2 then
1117C*» ̂  Λ OIΓ ^ C2(\\t\ + |τ | ) for all ̂  Thus, by (2.10), there exist
c3 > 0 and C3 such that if | t | + | τ | ^ C3, then |p^iC(t, τ ) | ^ c3ΦP>ζ(ί, τ) w

for all p. Also, by (2.11), it follows that given ε > 0 there is a
C4(ε) such that if | ί | + \τ\ ^ C4(ε), then for all p

The lemma follows by taking C = max {C3, C4(c3)}.
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Proof of Theorem 2. By the theorem of Helffer-Nourrigat-
Rockland, to prove P * hypoelliptic it suffices to show that
ker πPΛ(P*) = 0 for all ζ 6 5f2* and all p e RN~^\ except ζ = 0, p = 0.
(We consider πP)ζ(P) and πp>ζ(P*) as bounded operators from JΪ* f C to
H°Ptζ). If ζ - 0, then

(2.12) JΓ,,C(P*) = πPΛ{P) Φ 0

for all p Φ 0. If ζ ^ 0, then by Theorem 7.2 of [1] and the above
lemma, π>>ζ(P) is Fredholm for all p. Also by Remark 1.4 of [4]
and the HelfFer-Nourrigat-Rockland Theorem, ker πPtζ(P) = keτ πp>ζ(P)f]
£% = 0. Hence it suffices to prove that indπ> | ζ(P) = 0.

We consider first the case when d = d(ζ) < N/2. Let qP}ζ —
sγmπP}ζ(P*). By (2.12) and the above lemma there is a c > 0 and
a C such that | qPtζ(t, τ) | ^ cΦP}ζ(t, τ)m for all (t, τ, p) e iί^ with
|ίI + \τ\ ^ C. Choose / e C°°(R2d) such that /(ί, τ) = 0 if \t\ + | r | ^ C,
/(£, τ) = 1 if I ί I + I τ \ ^ 2C. Let aPΛ = fqp^. Then aPtζ e S;m

ζ uniformly
in p and bP)ζ — 1 — a,p,ζoqP,ζGSp~j ζ uniformly in |O, where p°q denotes
the symbol of p(t, D)q(t,D). Let ψ(τ) = (1 + |τ | 2 ) 1 / 2 m . There is a
C > 0 (depending on ζ), such that ψ(τ) <: CΦP)ζ(t, τ) and, by (2.8),
such that I pi2 <: CΦP)ζ(t, τ) for all (£, τ, ρ)eRN, where β = min {l/^ :
i tS: j ^= N}. Thus α^ζ 6 S^ uniformly in p and l ^ l ^ ζ 6 Sψ uniformly
in p. By the 12 boundedness theorem for pseudodifferential operators
there is a Cx such that \\ap>ζ(t, D)u\\ ^ CJI^H and I/O 1*116̂ *̂, J5)w|| ^
CJIuH, for all ueL\Rd) and all p. Thus if | ^ | ε ^ 2CU

1/21|u\\ .

Hence πp>ζ(P*) is injective and thus indπ>)ζ(P) = 0 if | ^ | ε ^ 2CX. Since
indπ>>ζ(P) is independent of p, indτr,,ζ(P) = 0 for all ρeRN~2d.

lid = d(ζ) = N/2, we write πζ for τro,ζ. Define ψ\ Bf (&Rd

T-> %??
by <p(t, τ) = ί?(ί, τ; 0, ζ), as defined before (2.6). Let K = φ~ l o<? r°φ.
Then {S;| is a family of dilations on R2d. Let p[(t, τ) = π, ( ί, r ; 0,ζ )(P).
It follows from (2.3) that p'c is homogeneous of degree m with
respect to {<?;} and by (2.12) p[ is Φ relliptic. Since p[ — symπ ζ (P)e
Sf"1 we can apply Theorem 1 to find ind7Γζ(P). If d > 1, then
ind τrζ(P) = 0.

If d = 1 and ^ ( ζ ) - {^(ζ), Γ8(ζ)}, set ^ ( - ζ ) = Γ2(ζ), Γ 2 (-ζ) =
Y1(ζ). Then ^ ( - ζ ) = { ^ ( - ζ ) , Γ 2(-ζ)} satisfies (2.4) for - ζ . Also
η(t, τ; - ζ ) - η(τ, ί; ζ) and plζ(ί, τ) - pj(r, ί). By Theorem 1

2τrindπ_ζ(P) — J Γ arg^'_ ζ = —JΓ8Lΐgp[ = —2TΓ indπ ζ(P) .

But ker ττζ(P) = ker τr_ζ(P) = 0 implies ind πζ(P) ^ 0 and ind ττ_ζ(P) ^ 0.
Thus ind πζ(P) = 0.
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