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A FIXED POINT THEOREM FOR PRODUCT SPACES
AL1 A. ForA

We prove the following result in this paper: Let (X, d)
be a complete metric space and Y be a space having the
fixed point property. Let f: X XY > X XY be a continuous
map. If f is a contraction mapping in the first variable,
then f has a fixed point.

This result is a generalization to the result obtained in
Nadler [5].

Other results are proved concerning the fixed point
theorem for product spaces.

The concept “continuous height-selection” is discussed and
its relation to the existence of fixed points for a function
is also discussed.

1. Introduction. Given a funetion f: X — X, fixed point theory
is concerned with the questions of the existence, nature and number
of points 2 ¢ X such that f(z) = x.

The problem of whether the fixed-point property (f.p.p. for
short) is, or is not necessarily invariant under cartesian products is
an old one (see [2] and [3] for its history). As is well-known,
examples due to Connell in the category of metric spaces, to Lopez
in the category of polyhedra, and to Bredon in the category of
polyhedra with the Shih condition show that the answer is negative
in these categories, ([2] and [3]). In a certain sense the reason for
the failure in the latter examples of the invariance of the f.p.p.
under products is due to special local properties of the space under
consideration. The first indication that the invariance could fail for
homotopy-theoretic reasons came to light when Bredon discovered
cell complexes X, of the form S*|J,D*™ with the f.p.p. whose
product X, x X, fails to have the f.p.p. ([1]). A nice article by
Husseini [4] shows that there are also manifolds with the f.p.p.
whose product fails to have f.p.p.

Although the f.p.p. is not preserved under cartesian products
in general, it is preserved when the maps f: X X Y — X X Y have
special contraction properties. We prove the following theorem.

THEOREM 1.1. Let (X, d) be a complete metric space, let Y be a
topological space with the f.p.p. and let f be a continuous function
Jrom X XY into X X Y. If f is a locally contraction mapping in
the first variable, then f has a fixed point.

(For the definition of locally contraction mapping see §2.)
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The above theorem is a generalization of the following two theorems
obtained by Nadler (see [5]).

THEOREM 1.2 (Nadler). Let (X, dy) be a complete metric space,
let (Y, dy) be a metric space with the £.p.p., and let f be a function
Jrom X xY into X x Y. If f is uniformly continuous on X XY
and a contraction mapping in the first variable, then f has a fixed
point.

THEOREM 1.3 (Nadler). Let (X, dy) be a complete metric space,
let (Y, dy) be a metric space with the £.p.p., and let f be a function
Jrom X XY into X xY. If (X, dy) is locally compact and f is
continuous on X X Y and a contraction mapping in the first variable,
then f has a fixed point.

In Theorem 1.1 we don’t need f to be uniformly continuous on
X x Y; neither we need the metrizability of Y nor the locally com-
pactness of X. For these reasons, Theorem 1.1 is a generalization
of each of Theorem 1.2 and Theorem 1.3.

In what follows pr;: X x Y — X will denote the first projection
mapping defined by pr,(z, y) = ®, while pr,: X X Y —Y will denote
the second projection mapping defined by pr,(x, ¥) = ¥.

2. Fixed point theorem and product spaces. Let us start
this section with the following definition.

DEFINITION 2.1. Let (X, d) be a metric space and Y be any
space. Let f be a mapping from X X Y into X x Y. Then f is
said to be a locally contraction mapping in the first variable if and
only if for any y € Y there exist an open set V(y) containing y and
a real number \(y) [0, 1) such that

d(pr. f(x, v), prif(x,, v)) < My)d(z, xz,) for all z, x, ¢ X and all v e V(y) .

A mapping /1 X XY —>X X Y is called a contraction mapping
in the first variable if and only if there exists a real number \e
[0, 1) such that for any ye€ Y we have

d(pr.f(@, y), pr. f(x;, ¥)) = (2, ;) for all wx,x,eX.

It is clear that every contraction mapping in the first variable
must be locally contraction in the first variable but the converse is
not true in general. For example, let X =Y =R, d(z, ¥) = | — y]|
for all z,yeR, and let /iR X R— R X R be defined by f(z, y) =
(xy¥A + o), xy* /(1L + 9*) (notice that both X and Y have the usual
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topology on the real line). For yeY let

,’.2
147

r=lyl+1l, V= (-r7r and My =

Then for any z, 2’ € X and any v e V(y), we have

,02

e — 2| < My)lo - o]

|pr f(®, v) — pr fl@, v)| =

Hence fis a locally contraction mapping in the first variable. Since

2 2
" f(0, y) — 1Ly =Y d Lim—¥ =1
| f0, ¥) — pr.f(1, ¥)| 11 ond Mmo s )

therefore the mapping f is not contraction in the first variable.
Let us prove the first of our main results.

Proof of Theorem 1.1. Let x, be a fixed point in X. Define the
mapping ¢: Y —» Y as follows:

Let ye¢Y. In order to define g(y) we first define a sequence
{t.(y)} as follows:

t(y) = x,, t.(y) = pri ft..(v), ¥) , n=1,23,---.

For simplicity we shall write ¢, to stand for %.(y).

We shall prove below, that as a consequence of local contracti-
bility, it follows that {¢,} is a Cauchy sequence in X (see Lemma 1
below). But (X, d) is complete so there is a point £, in X such that
t, —t,.

Now define g(y) = pr.f(t,, y). We are going to prove in Lemma
2 that pr f@,, ) = %,.

We are also going to prove in Lemma 3 that g is continuous.

Since Y has the f.p.p., there is a point y,€Y such that
9(¥) = ¥, By Lemma 2 we have pr, f(t,, ¥,) = t,,. Buty, = g(y,) =
o7 f(ty, ¥o). Henceforth f(¢,, ¥, = (t,, ¥,) which completes the proof
of the theorem.

LEMMA 1. The sequence {t,} is a Cauchy sequence in X.

Proof. Since f is a locally contraction mapping in the first
variable, there exists a real number A e[0, 1) such that

d(p’rlf(tn—ly y); prlf(tn; y)) é )"d(tn-—ly tn) , n Z 1 .
By induction, we find

d(tm tn+1) é )"nd(tOy tl) .
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Using the triangle inequality, we find, for m > =,

d(tny tm) é d(tm tn+1) + .-+ d(tm—-lr tm)
é ()\‘n + )\ln+1 + e + )\’m-—l)d<to’ tl)

1—
=2 dt, t,
=2, 1)

< 1—’-“__—xd(to, t) .

Since A" — 0 as m» — co, this inequality shows that {¢,} is a Cauchy
sequence.

LemMA 2. pr f(t,, y) = t,.

Let w = pr,f(t,, y). By way of contradiction, suppose that u = ¢,.
Then d(u,t,) =¢ > 0. Since f is continuous, there exists an open
set Ux V in X X Y such that

UcS.t,), ¢, yeUxV and fIUXV)cCS.,(u) XY .

Since lim,..t¢, =t,, there is a natural number K =1 such that
t,e U for all » = K. But pr,f(t, ¥) = t,s. € U. Therefore f(t,, y) ¢
S..(u) X Y which contradicts the fact that f(U x V) S,.(u) X Y.

Therefore our assumption is incorrect and consequently we have
the required conclusion.

LEMMA 3. The function g: Y —Y defined as in the proof of
Theorem 1.1 is a continuous function.

Proof. Let ye Y and U be any open set containing g(y). Then
f(t,, y)e X xU. Since f is a continuous function at (¢,, ), there is
an open set G in Y and a positive real number ¢ > 0 such that

(t,»elS(t,) xG and f(S.(t,) x G)cX xU.

Let W be an open set in Y and let A be a real number with
A €[0, 1) such that ye W and

d(pr. f(z, v), pr.f(®y, v)) = Nd(x, z,) for all z,z, € X and all ve W.

Since A — 0 as m — o, we can choose a natural number n» =1
such that

€ 1—>X

< = ,
8 d(ty, t) + (¢]8)

and
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a%m<% for all m=m.

Since f(t,, y) e X XU and f is a continuous function at (¢, ¥),
there exists a basic open set U, X V, in X X Y such that

) elU, xV,, U,c S.x,) , V,.cGNW and
U, xVy)ycXxU.

Since f is continuous at (¢,_, %) and f(¢,_, y)e U, X Y, there
exists a basic open set U, , X V,_, in X x Y such that

(tn-—ly y) € Un—l X Vn—l ) Un—l C Ss/&(tn—l) ) V"_l C V,L and
f(Un—l X Vn_l) C Un x Y.

Inductively, suppose that U,, U,_, ---, U;, V,, Vooy, -+, Viln — 1 =
1 = 1) are chosen such that

t,welU xV,, U, C S.4t.) , V.cV,,, and
fUXxV)cU,, xY.

Since f is continuous at (¢,_,, ¥) and f(¢,_, ¥) € U; X Y, there exists
a basic open set U, , X V,_, in X X Y such that

(tt._l’ y) € Ui_l X Vi_l ’ Uf—'l c SE/S(ti—l) ’ Vi——l c V1 and
U XV, ) )cU, xY.

In this way, the sets U,, U,_,, ---, Uy, Vo, Vs, -+, V, are defined
with the above mentioned properties. We claim that g(V;) c U.

To prove the claim, let z¢ V,. Then (&, 2)e U, X V,, where
to = x,. Thus f(t, 2)e U, X Y, i.e., t; = pr.f(t;, z) € U,. Consequently
d(t, t,) < €/8.

Using the triangle inequality we have d(¢, t;)=d(t,, t)=d(t, t)+
dt, t) < d(t, t,) + ¢/8. Since f(U, xV,)cU, XY and (t;,2)e U, XV,
therefore f(t;,2)e U, XY, i.e., t, = pr.f(t, z)e U, (For brevity we
have used ¢, to stand for ¢.(z)).

In the same way, we conclude that t; = pr, f(¢ti_, 2)e U1 =1,
2, cee, n).

Since ¢, € U, and U, C S.4(t,), therefore d(¢,, t,) < ¢/8. Using the
triangle inequality we find, for m = n,

d(t;n’ ty) é d(tw t"n) + d(t:u t:;+1) + *ee + d(t:n_], t:,,)
<%+vmmmnwatmw~+mwmm
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€ A _
== 1 — A" ™)d(L,, t
& A" & & & g
— d(t,, t, —= Z L2 ==,
<8+1—x<(°’ )+8><8+8 1

If t, = lim, .. ¢,, then the above inequality shows that d(¢,, t,) < ¢/4.

Therefore (¢,, 2) € S.(t,) X G and consequently f(¢,, 2)e X x U, i.e.,
9(z) = pr,f(t.,, 2) e U.

Therefore our claim is proved and the proof of the lemma is
completed.

The following result is an immediate corollary to Theorem 1.1.

COROLLARY 2.2. Let (X, d) be a complete metric space, let Y be
a topological space with the f.p.p. and let f be a continuous function
from X x Yinto X X Y. If fis a contraction mapping in the first
variable, then f has a fixed point.

A mapping /1 X XY >X XY is called a strong contraction
mapping in the first variable provided the following condition is
satisfied: “There exists a positive constant K such that for all
@, ;€ X and all y,, ,€ Y, we have d(pr, (%, ¥.), 7. f(®@,, ¥.)) = Kd(,, )
whenever z, #« 2,”.

It is clear that there exists a contraction mapping in the first
variable which is not strong contraction in the first variable. It is
also clear that there exists a strong contraction mapping in the first
variable which is not contraction mapping in the first variable. For
examples, let X =Y =R, d(z, y) = |x — y| for all z, ye R and let
f, g be two functions from R x R into R X R defined by the rules
flz, v) = (2z, y) and g(x, ¥) = (x + ¥)/2, y). Then it is clear that fis
a strong contraction mapping in the first variable with ¥ = 2 but
not a contraction mapping in the first variable. It is also clear that
¢ is a contraction mapping in the first variable with A = 1/2 but not
a strong contraction mapping in the first variable because

f— * fomnd l i l = [ee]
|p7r9(2, y) — p1.9(0, 0)| l2 +1’ and L1m<2 —1—1) + o .

Yy—00

As the following proof shows we have the following result.
PROPOSITION 2.3. Let (X, d) be a metric space which has no iso-
lated point. If : X XY —>X XY is a continuous mapping and a

strong contraction mapping in the first variable, then pr f({x} xXY)
18 a set comsisting of a single element for all x e X.

Proof. We shall prove the proposition by contradiction. Assume
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that there exist x € X and y, y, € Y such that pr, f(x, y) = pr.f(x, ¥,).
For simplicity, we shall write ¢, = pr,f(x, ) and ¢, = pr,f(z, y,). Let
e =d(t,t,). Then ¢ > 0. Let S,(») denote the open sphere in (X, d)
with center at pe X and radius » > 0.

Since f is continuous, therefore there exist an open set U in X
and open sets V, and V, in Y such that

@,peUxV,, (@uy)eUxV,, UcSu®),

U X V) S.6t) x Y and f(U X V,) CS.4(t,) X Y.

Since (X, d) has no isolated point, therefore there exists a point
we U — {x}.

Therefore d(u, ) < ¢/6K. But fis a strong contraction mapping
in the first variable, therefore we have

d(prlf(u, y*), p/rlf(x’ y)) é Kd(u, x) < %’ .

Consequently o7, f(u, y,) € S.s(t;) which is impossible because
o1 f(u, Ys) € S.6(t) and S,,4(t) N Seu(ts) = @ .

Therefore we have the required contradiction and the proof of
the proposition is completed.

3. Fixed point theorem and continuous height-selection.
Let 1 X xY—-X XY be a continuous mapping. A point y.,€Y
for which p7,f(x, y¥,) = vy, is called a fixzed f-height of x. The set

{¥.: ¥, is a fixed f-height of x}
is called the fixed f-height of x and is denoted by F(f, x). The set
U{F(f, z): 2z € X}
is called the fixed f-height of X and is denoted by F(f, X).

THEOREM 38.1. If Y has the f.p.p., then F(f,z)+* @ for all
spaces X and all xe X. Conversely if F(f, X) #+ @ for some space
X and all continuous maps f: X XY —X XY, then Y has the £.p.p.

Proof. Let Y have the f.p.p. and let X be any topological
space. Let xeX and /i1 X xY—>X XY be any continuous map.
Define the function g: Y — Y by the rule g(y) = pr,f(x, ). Then g is
continuous because f is continuous. But Y has the f.p.p., therefore
there exists an element y, € Y such that g(y,) =vy,. Thus pr. flz, ¥.) =
Y, 1.€., F(f, x) # Q.

Conversely, suppose that F(f, X) # @ for some space X and all
continuous maps f: X XY - X xY. Let g:Y —Y be any continuous
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map. Define h: X XY - X XY by the rule h(x, y) = (x, 9(%)). Then
h is continuous. Since F(h, X) = @, there exists an element a e X
such that F(h, a) # @. Let ye F(h, a).

Then prh(a, ¥) =y. It follows from the definition of i that
9(y) = y which completes the proof of the theorem.

A continuous height-selection of f is a continuous mapping
9: X — F(f, X) such that g(x)e F(f, x) (F(f, X) has the subspace
topology from Y).

Let us state our next result in this section.

THEOREM 3.2. Let X and Y be topological spaces with the f.p.p.,
and let X XY — X XY be a continuous map. If fhas a continu-
ous height-selection, then f has a fixed point.

Proof. Since Y has the f.p.p., by Theorem 3.1 the set
F(f, X))+ @. Let g: X— F(f, X) be a continuous height-selection
of f. Define the map h: X — X by the rule i(x) = pr f(x, g(x)). We
claim that % is continuous. To prove our claim we let xe X and G
be any open set containing h(z). Then G X Y is an open set con-
taining the point f(x, g(x)). Since f is continuous, therefore there
exists an open set U X V containing (x, g(x)) such that f(Ux V)CGX Y.
But ¢ is continuous and V is an open set containing g(x). Therefore
there exists an open set W containing 2 such that g(W)c V. Now,
it is clear that h(W)c G. Hence & is continuous.

Let teX be a fixed point of h. Then &)=t Ii.e.,
pr f(t, git)) =t. Therefore f(t, g(t)) = (¢, v) for some veY. But
gt) e F(f, t). Therefore prf(¢, 9(t) = 9(t), i.e., f&, g(t)) = (u, g(t))
for some u € X. Henceforth f(¢, g(t)) = (¢, g(t)) which completes the
proof of the theorem.

THEOREM 3.3. Let X and Y be spaces with f.p.p. Let f be a
continuous function from X XY into X X Y. If prf({x} X Y) 4s
a singleton set for any x € X, then f has a fixed point.

Proof. Choose a point y, in Y. By Theorem 3.1 there exists
an element z,¢ X such that f(x,, y,) = (2, v) for some ve€Y. Apply
Theorem 3.1 again, there exists an element y, €Y such that
f@s, ¥,)) = (w, ¥,,) for some ue X. But pr,f({x} X Y) is a singleton
set, therefore u = x,. Henceforth f(,, ¥.,) = (%, ¥.,) which completes
the proof of the theorem.

If we combine Theorem 3.3 and Proposition 2.3 then we can get
the following result by observing that if X has the f.p.p. then X
must be connected.
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COROLLARY 3.4. Let (X, d) be a metric space with the f.p.p.,
let Y be a space with the £f.p.p. and let f be a continuous mapping
Jrom X XY into X X Y. If fis a strong contraction mapping in
the first variable, then f has a fixed point.

Using the proof of Theorem 1.1 and the technique used in the
proof of Theorem 3.2 one can obtain the following theorem.

THEOREM 3.5. Let (X, d) be a complete metric space, let Y be a
topological space with the f.p.p. and let f be a continuous function
JromY X X into Y x X. If f is a locally contraction mapping in
the second variable, thenm f has a continuous height-selection and,
hence, f has a fixed point.

Actually the proof of Lemma 3 (§2) gives us a way to construct
such continuous height-selection. More explicitely if we define
h: Y- F(f,Y) (F(f, Y) is a subspace of X) by the rule h(y) =t,,
then h will be a continuous height-selection of f.

The author wishes to express his appreciation to the referee for
his valuable suggestions and remarks concerning the paper.
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