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TAUBERIAN THEOREMS BETWEEN THE LOGARITHMIC

AND ABEL-TYPE SUMMABILITY METHODS

DAVID BORWEIN AND BRUCE WATSON

The object of this paper is to show that if a series is
summable by the logarithmic method L, then the series is
also summable by the Abel method Aλ, provided a tauberian
condition of the "slowly decreasing" type is satisfied.

1* Introduction* Suppose throughout that {sn} is a sequence of

numbers, λ real is real, eχ

0 — 1, ελ

n — (n ) for n = 1, 2, 3, , and

-μ for . = 0 ,1,2, .- . .

Y
We are concerned with the methods of summability Ax introduced

and studied by Borwein [1] and the logarithmic method L. They
are defined as follows. Let

(1) σλ{y) = (1 + y)-^ ± eisJ-M—X , and
n=o \ 1 -f- y I

1 °° a / aι

(2) Uv) = - Σ n \—

If σλ{y) converges for y > 0 and tends to s as ί/^oo, then we
say that the sequence {sn} is ^-convergent to s and write sn-+s(Aλ).
The method Ao is the ordinary Abel method.

If L(y) converges for y > 0 and tends to s as y —• oo f then we
say that {sn} is L-convergent to s and write sn -> s(L).

Evidently, sn —> s(L) if and only if

log(l — x) n=o n + 1

converges for 0 < x < 1 and tends to s as x —> 1~.

LEMMA 1. Aλ is regular for λ > — 1 . [That is, sn—>s implies
sn -» s(Ax)].

LEMMA 2. L is regular.

LEMMA 3. Aχ+εaAχ for λ > — 1, α îcί ε > 0. [That is, sn-+
s(Aχ+ε) implies sn —> s(Aχ) and there exists a sequence {sn}, depending
on λ and ε, such that {sn} is Aλ-convergent but not Aλ+S-convergent.]
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LEMMA 4. Aλ(zL for λ > - 1 .

Lemmas 1 and 3 were established by Borwein in [1]. Lemma 4
was proved by Borwein in [2] as a particular case of a more general
inclusion theorem on methods of summability based on power series.
Lemma 2 is a standard result found, for example, in [4].

2* The main theorem* Suppose that Φ is a nonnegative, con-
tinuous, strictly increasing function on [a, °o), for some α, such that
Φ(t) —> oo aS t —> oo .

The real-valued function / is said to be slowly decreasing with
respect to Φ if lim inf {f(y) — f{x)} ^ 0 whenever y ^ x -+ oo and
Φ(y) - Φ(x) -> 0.

THEOREM 1. For λ > —1, if sn-+s(L) and σλ(t) is slowly decre-
asing with respect to log log t, then sn-+s(Aλ).

In connection with the methods Aλ, we proved the following
lemma in [3].

LEMMA 5. For λ > — 1 and ε > 0, if sn->s(Aλ) and σλ+ε(t) is
slowly decreasing with respect to logt, then sn—>s(Aλ+ε).

3* Methods of summability based on power series* Suppose
that pn ^ 0, qn ^ 0, Σ Γ - P . > 0> and ΣSU0. > 0 for n = 0, 1, 2, -.
Set

3>(α) = Σ ί̂ n̂ n , and

q(x) = Σ ?«*"
tt=0

Let ^ and pq denote their respective radii of convergence. We also
write

P0*0 = Σ Pn«»»n

<?.(*) = - f r Σ ^nSn^

The power series method P is defined as follows. If pp > 0,
Σί=o ϊ>A#n converges for 0 < x < pp and lim^^^- ps(x) = s, then we
write sn —>β(P).

The method Q is defined similarly.
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Borwein has proved [2] the following lemma.

LEMMA 6. (i) If 0 < pp < °°, then a necessary and sufficient
condition for P to be regular is that Σ»=o Pn(ft)" = °°

(ii) If ρp — oo then P is regular.

Suppose that X(t) is a function of bounded variation on [0, 1],
and Z*(ί) is its associated normalized function. That is,

0 ί = 0

0 < t < 1
2
Z(l) - Z(0) t = 1 .

A sequence {μn} is called an m-sequence if, for some X,

μn == (Wz(ί) for n = 0, 1, 2, . . .
Jo

If, in addition,

μn ^ d[tn I dX*(t) I for 0 < δ ^ 1 and
Jo

n = N9 N + 1, m - , then {μj is called an m-sequence.

LEMMA 7. 1 / ^ = μngn(w = N, N + 1, •), {j«n} is (in m-sequence,
pp = pg > 0, cmd P is regular, then Q Q P. (That is, sn-*s(Q)
implies sn-> s(P).)

This result is due to Borwein (see [2], Theorem A').
We require the following two lemmas.

LEMMA 8. An m-sequence which converges to a positive limit is
an m-sequence.

LEMMA 9. The sequences {vi} and {l/vx

n} are in-sequences for
λ > —1.

The proof of Lemma 8 is straightforward and Lemma 9 was
established in [4], Theorem 211.

The next result is used in the proof of Theorem 1.

THEOREM 2. Let Q be a regular power series method and suppose
that {μn} is an m-sequence such that μn —> a > 0. Then μnsn —> as(Q)
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whenever sn —» s(Q).

Proof Suppose that sn -> s(Q). Set pn = μnqn for n = 0,1, 2,
Since μn^0 and μn-^a it is easy to verify that pp = pq- If ft, =
oo, then P is regular by Lemma 6(ii). Otherwise, since pn ~ aqn, P
is regular by Lemma 6(i).

Therefore, by Lemma 7, sn-+s(P). That is,

( 3 ) — — Σ snμnqnx
n > s as a? > ^p .

In addition, since Q is regular,

Application of Q to {μnsn} yields

1 T a <? <7 x n

2-ι μnSnqnX

> as as a? > pj" = p? by (3) and (4) .

This completes the proof.

COROLLARY TO THEOREM 2. sn—>s(L) if and onlyifvisn->s(L).

This is immediate in view of Lemmas 8 and 9, and the fact
that vi -> 1 as n -> oo.

4* An integral transformation* The integral transformation
Jλ(w) of the function /(£), for λ > — 1 and w > 0, is defined as
follows.

( 5 ) Jx(w) = • ./_, . Γ (1 + W
log(l + w) Jo
• ./_, . Γ (1 + Wlogy
log(l + w) Jo V £(1 +

THEOREM 3. // λ > — 1 and f(t) — σλ(t) is convergent for all
t > 0, then Jχ(w) —> s as w —* oo i f αtic? onϊ̂ / i / sn —> s(L).

Proof. Setting % — (ί(l + w))/(w(l + t)) in e/i(w) gives

(w)

l + w) J o V ί(1 + w)/ r-
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w) n=o

= Γ(λ-fl) f εj (_w_\n

"Vl + wJf (
log(l + w) £o(n + 1)̂ +1 "Vl +

1 y. t£βw /

log(l + w) ̂ =o ̂  + 1 \i

The convergence, for ί > 0, of the series defining σλ(t) implies
its absolute convergence. This justifies the integration term by term
and, in view of the corollary to Theorem 2, the proof is complete.

5* Additional lemmas*

LEMMA 10. For λ > — 1, ΣSU εi snx
n is absolutely convergent for

I x I < 1 if and only if Σ«=o (sj(n + l))xn is absolutely convergent for
\x\ < 1 .

We omit the simple proof.

LEMMA 11. For 0 < t < w,

lost w(^ + *) > w-t
ί(l + w) w(l + ί) '

Proof. For sc > 1,

log x = log a? - log 1 = ^ ~ 1 >

where 1 < θ < x. The result follows by observing that, for 0 < t <
w, & = (w(l + ί))/(*(l + w)) > 1.

LEMMA 12. For jΐccβcί 7 > 1 and λ > — 1,

(
Jo (\ + )

- 0(1) .

Proof. Suppose λ 2Ϊ 1. Then, for a; ̂  1,

|I(*) | = I(aj)

^ λ log 4
~ x(l + xr)
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= Ux) +

Now,

Hence,

Also,

x) = 0(1) .

Ux) = 0(1) log

x

Suppose 0 < λ < 1. By Lemma 11 we have,

\I(x)\ = I(x)

< X log ^ + *
(l + a;)

since α? log (α?r(l + x))/(x(l + α?0)
Therefore

( ^ (
χx Jo

Suppose - 1 < λ < 0. Then

I jrχ\ I = _ jrχ\

( )α + tγ-'(l

I2(x) .

Using Lemma 11 and the fact that

xlog f xr)
x)xr M

we have
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^ 4 ) Pα
xr(l + a?) / Jo

For /2(cc), since 1 + t > a /2,

< \' (l +1)*-^ » - * V
~ J.Λ \χ(l + t)Jt).

dt

1 + t

5=5 # λ + 1 Jχ/2

= 1
(λ + 1)2* '

Hence, I{x) — 0(1) in this case.

Finally, since the case λ = 0 is trivial, the lemma is established.

LEMMA 13. For 7 > 1, and λ > — 1,

1 (1 ~f~ t) (log 1 cίt

- (7 - 1) log(l + x) + o(log(l + x)) .

Proof. Set {sn} = {1}. Then ^( ί ) = 1 and, by Theorem 3, putting
/(*) = σλ(t) in (5) gives

Jλ{x) = 1 + o(l) as x > oo .

Now by Lemma 12,

+ ty

= log(l + xr) + o(log(l + a?0) ~ log(l + a?) + o(log(l + x))

+ o(l)

- (7 - 1) log(l + a?) + o(log(l + x)) .

This establishes the lemma.
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6+ A general tauberian result*

THEOREM 4. Suppose that the following conditions hold:

( 6) K(w, t) is defined, real-valued, and nonnegative for w > 0, t ^

0; moreover, \ K(w, t)dt exists in the sense of Lebesgue for each
Jo

w>0,

S oo

K(w, t)dt > 1 as w > oo ,
0

(8) f is real-valued and continuous on (0, oo) ,

S oo

K(w, t)f{t)dt exists in the Cauchy-Lebesgue sense for
0

each w > 0,

(10) liminf {f{y) — fix)} ^ — μ for some fixed finite nonnegative μ,
whenever y ^ x —> oo and Φ(y) — Φ(x) —> 0 ,

(11) Φ(x) - Φ(x - 1) > 0 a s x > oo ,

(12) \ K(w, t)dt > 0 whenever w > x > oo and
Jo
Φ(W) — Φ(x) > oo ,

(13) [°K(w, t)(Φ(t) - Φ(x))dt > 0 whenever

x > w > oo and Φ(x) —

(14) F(w) = 0(1) /or w > 0 .

/(t) = 0(1) /or t > 0.

This result was established in [5]. A version of this theorem
with (10) replaced by the stronger condition that / be slowly de-
creasing with respect to Φ can be found in [3]. The proofs are very
similar.

7* A theorem on boundedness* In this section we deduce a
weakened form of Theorem 1 from the general tauberian result of

THEOREM 5. If λ > — 1, oo > μ ^ 0, sn -»s(L), and liminf {σλ(y) -
oλ{x)} ^ —μ whenever y ^ x —> oo and Φ(y) — Φ(x) —> 0, then σλ{t) —
0(1).

Proof Set
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<t<w

0 otherwise ,

(t/ee O£t<ee

(log log t ee <I t ,

and

/(*) = σλ{t) .

First, note that if {sn} = {1}, then sn -> 1(L) and σλ(t) = 1. Hence,
by Theorem 3 with /(«) = ^(ί) = 1 in (5), we have

K(w, t)dt

= Jχ{w) > 1 a s w > oo .

This establishes (6) and (7).

Conditions (8), (9), (10) and (14) hold by hypotheses, and (11)
clearly holds.

Furthermore, condition (13) is immediate since K(w, t) = 0 when-
ever t^w. It remains to show (12). Suppose — 1 < λ < 0. Then,
by Lemma 11, we have

\*K(w, t)dt

( 1 -
0

dt

log(l + w) Jox ' 1 + *

^ (1 - x/wY fa de

~ l o g ( l + w) Jol + ί

= a - χ/
. w)

as w > a? —» oo and log log w — log log x —> oo, since the latter implies
log x/log w -»0 and #/w -> 0.

Suppose λ ^ 0 and x > 1. Then
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log(l + w) [°K(w, t)dt =
Jo t(l + W)

Setting u = 1/ί in Ix gives

= 0(1) .

Furthermore,

i2 = 0(1) ("(l + ty'dt

Therefore,

[*K(w, t)dt
Jo

log(l

4
w)

as tί? > x —> oo and log log w — log log x
This completes the proof.

8. Proof of Theorem 1* Assign ε > 0. Since σλ(t) is slowly-
decreasing with respect to Φ(t) = log log ί, there exist positive numbers
X and δ such that σλ(y) — σλ(x) > — ε whenever y > x > X and
loglog y — loglog x < d; or equivalently, writing δ = log 7

(15) <7λ(a?) — ε < σλ(y) whenever X < x < y < xr.

Suppose, without loss of generality, that s = 0. Then Jλ(w) —> 0 as

Relation (15) implies, for x > X, that

I, _ S d + ίy-^gLiίi)^) -,,«

— 12
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Now, by Theorem 5 and Lemma 12,

= log (1 + s O W ) - log(l + x)Jz(x) + 0(1)

= o(log(l + x7)) + o(log(l + x))

= o(log(l + a?)) .

By Lemma 13,

iχ = Mx) - e)Γr(i + ty->hog%ξL±£)ιdt
}χ V ί ( l + α O '

- (σ,(a;) - e)((Ύ - 1) log (1 + x) + o(log(l + x))) .

But /j ίS /2 implies

- (7 - 1) + 0(1)

Therefore,

(16) lim sup σλ(x) ^ ε .

In a similar fashion, we can show that

(17) — ε ^ lim inf σλ(x) .

Combining (16) and (17) completes the proof of theorem.

9* A counterexample* In this section we give an example
which shows that Theorem 1 would be false if log log t were replaced
by logt. That is, a more delicate tauberian condition on σλ(t) is
required than what is obtained by using the standard definition of
slowly decreasing.

LEMMA 14. If f{x) is absolutely continuous on [0, T] for each
T > 0 and f\x) > —M/x for all x > 0, then f(x) is slowly decreasing
with respect to log x.

Proof. Assign ε > 0. Then if y > x > 0

f(y) - f(χ) = [f\t)dt
Jx

S y 1
—dt

X t

= —M(logy — logo;) > —ε
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whenever log y — log x < e/M. This completes the proof.

THEOREM 6. There exists a sequence {sn} such that sn —> s(L) and,
for every λ > — 1, σλ(t) is slowly decreasing with respect to logt,
but {sn} is not Aλ-convergent.

Proof. Let {sn} be the real part of the sequence {4}. For any
λ > — 1, σλ(t) exists for t > 0, and we have

, _ Γ(λ + i + 1) ei+1

 (1)
Sn "IT + °(1)+ i)ra + i) IT

Therefore, ^(ί) is the real part of

^ . α + ty + o(i).
+ 1)

The first term above has a derivative which is O(l/t) and, hence,
the real part of the first term has a derivative which is 0(1/1). The
second term is o(l) since A* is regular. Hence, the real part of this
term is slowly decreasing with respect to any Φ. Therefore, by
Lemma 14, σλ{t) is slowly decreasing with respect to log£.

Next, it is clear that {sn} is not ^-convergent.
However,

Jo(w) = — — ί — - Γ(l + trισ0(t)dt
log(l + w) J

log(l + w) Jo 1 +

log(l + w)

Hence, by Theorem 3, sn —> O(L). This completes the proof.
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