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LOCALLY INVARIANT TOPOLOGIES ON FREE
GROUPS

SIDNEY A. MORRIS AND PETER NICKOLAS

In 1948, M. I. Graev proved that the free topological
group on a completely regular Hausdorff space is Hausdorff,
by showing that the free group admits a certain locally
invariant Hausdorff group topology. In 1964, S. Swierczkowski
gave a different proof, which also depends on the construc-
tion of a locally invariant topology. Yet another such
construction follows from work of K. Bicknell and S. A.
Morris. Graev's topology has proved to be essential in the
investigation of free products of topological groups;
Swierczkowski's topology is the key to the work of W.
Taylor on varieties and homotopy laws; and Bicknell and
Morris extend results of Abels on norms on free topological
groups. In this paper, the three topologies are investigated
in detail. It is seen that the Graev topology contains the
Swierczkowski topology, which in turn contains that of
Bicknell and Morris. These containments are shown to be
proper in general. It is known that the topology of the
free topological group is in general finer than each of these
three topologies.

Introduction* If X is a completely regular HausdorfF space, let
F(X) denote the free group on the set X Clearly the finest group
topology on F(X) which gives X its original topology must make
F(X) the free topological group on X Because of this, a number
of authors have constructed Hausdorff group topologies on F(X) as
a means of proving that the free topological group is Hausdorff.
Moreover, most other proofs of this fact are easily seen to contain
implicitly the construction of some group topology on F(X).

In this paper we shall examine and compare the topologizations
of F(X) arising from three such constructions.

The topologies we study will all have the additional property
of local invarίance; that is, they have bases at the identity of sets
invariant under inner automorphisms, or, equivalently, they are
defined by families of invariant pseudometrics. (A pseudometric p
on a group is {two-sided) invariant if p(axb, ayb) = p(xf y) for all
group elements α, b, x, y.) Such topologies arise naturally in the
present context since they necessarily make the group operations
continuous.
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1* The topologies and their properties* We remind the reader
that the Graev free topological group on a completely regular
Hausdorff pointed space X with basepoint e is a topological group
F(X) which, algebraically, is a free group with X\{e) as a free basis,
and is such that any continuous map from X to a topological group,
sending e to the identity, extends uniquely to a continuous homo-
morphism on F{X). The basepoint e becomes the identity of F(X)9

and the generating copy of X has the topology of the original space.
See [10] for a survey of the elementary theory of free topological
groups.

In this paper we shall in fact use F(X) to denote the underlying
group of the free topological group — that is, the free group gen-
erated by the set X\{e}, with e the identity of F(X).

We now define the first topology of interest.

Graev's construction: By a continuous pseudometric on X, we
mean a pseudometric inducing a topology contained in the given
topology on X.

For any continuous pseudometric p on X, we define a pseudo-
metric pf on F(X) as follows. Let w — a\ι aε^ be a (not neces-
sarily reduced) word in symbols {αj, with e< = ± 1 , ί = 1, , n. For
u, v 6 F(X) we define

p'(u,v) = inf &p(at9 bt)\ ,

where aif bt e X, i = 1, , n, are such that αj1 α*» = u and bl1

bε

n

n = vy and the infimum is taken over all words w and all possible
choices of {αj and {δj.

A definition of pr equivalent to ours was given by Graev [4],
who showed that pr is an invariant pseudometric (and a metric if p
is), which coincides with p on X. Denote by τx the topology induced
on F{X) by the extensions p' of all the continuous pseudometrics p
on X. The properties of p' and τ1 will be discussed fully later, but
one straightforward fact will be noted now.

It is easily checked that two-sided invariance is equivalent to
the requirement that

p(ab, cd) ^ p(a, c) + p(b, d)

for all group elements α, b, c, d. From the definition of pf we have
the following:
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PROPOSITION 1. The pseudometric p' is the largest two-sided
invariant extension of p, for any pseudometric p on X, and τx is
the finest locally invariant topology on F(X) inducing the original
topology on X.

SwierczkowskV s construction: In [8], Swierczkowski defined a
topology on general free algebras, giving an explicit construction of
neighborhoods of points. His construction may be rephrased easily
in terms of pseudometrics, giving rise, in the case of free groups, to
the following definition.

Let w — w{au , an) be any word in the symbols au , an.
(Thus, each at may occur many times in the expression for w.)
Given p and X as before, and u, veF(X), we define

p\u, v) = inf \^p(ai9 &,)[ ,

2

where again the infimum is taken over all words w and all choices
of {αj, {6J such that w(au , α j = u and w(bu , bn) = v. Let τ<
be the topology defined by all the pseudometrics p2.

We shall now discuss the properties of τλ and τ2 in detail.
Several of the arguments we shall use here have certain features in
common, so we shall spend a little time isolating some of these first.

Let w — al1 aε

n

n be a word in symbols {αj, with et = ± 1 , i =
1, --,n, and for aif keX write u and v for the group elements
represented by α? aε

n

n and bl1 - - bε

n

n respectively. We may select
in the word a[ι - aε

n

n a cancellation order; that is, a sequence of
steps of the form "delete e" or "replace an adjacent x and x~x by
e", at the end of which the word representing u is reduced. Each
symbol αξ* remaining after reduction will be called essential, and the
others inessential. Note that the cancellation order may not be
unique, and that the essential symbols α{* arising from different
cancellation orders may occur at different values of the subscript i;
though clearly the final string of essential symbols in the reduced
word is uniquely determined. Of course, a given symbol may occur
at one point as an essential symbol, and at another as an inessential
one.

Let a cancellation order be fixed for both u and v. Then for
any essential symbol s — α? of u we may form a sequence of columns

where each pair (s, ίt), (sλ \ tx

 ι), is one of (αί1, 611), (αp,
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where tfiϊ1, t2t2~\ and s^sly s2~
1s2, are replaced by e in the

cancellation orders for v and u respectively, and where the sequence
ends with the next occurrence of an essential symbol of u or v, or
of e. Such a sequence may be formed from each essential symbol
of u, and then, similarly, from each essential symbol of v: we
observe that any two of these sequences are either disjoint or are
identical except for the order in which their columns are displayed.
(We may form similar sequences from the remaining inessential
symbols, but these will be of no interest to us.)

Given any column sequence, its normalization will be the sequence
of columns GίC2 Cm obtained by replacing each x~\ xeX, by x in
the original sequence. For each i9 1 ̂  i ^ m, let C^l) and 0̂ (2)
denote respectively the upper and lower entries of C*. Then it is
clear from its construction that the normalized sequence has a
pairing, in that either

(0,(1) = C2(l), C,(l) = C4(l)

ί c 2 ( 2 ) = c , ( 2 ) , c 4 ( 2 ) = c m ,•••

or

C2(l) = C8(l), C4(l) = C5(l)

A(2) = C2(2), C8(2) - C4(2) . . . .

There are exactly two entries left unpaired, namely, either d ( l ) or
Cί(2), and either Cw(l) or Cm(2).

We may perform a process of column-deletion in a normalized
sequence d C 2 Cm, as follows. If C* = <75 for i < y, we delete
columns Ci+U Cί+2, , Cά if i — i is even, and we delete columns
Ci9 Ci+l9 , Cj if j — i is odd. This procedure is carried out repea-
tedly (the steps chosen, of course, may not be unique) until we
obtain a sequence, say Cil9 Ch, •• ,C ίA;, which has distinct columns.
It is easily checked that k and m have the same parity, and that
(if k > O)ChCh " - Cik has a pairing like that of CXC2 Cm, with its
two unpaired elements being equal to those of CXC2 Cm9 and occur-
ring in the same positions.

(For example, if d(2) and Cm(l) are unpaired, then so are Ciχ(2)
and Cik(X), and Cx(2) - Ch(2) and Cm(l) - C<Jfc(l).)

In [4], Graev used an argument based on the idea of partition-
ing into column sequences to prove that for any pair of represen-
tations a[ι αε/ and b[] bε

n

n of u, v eF(X), there is another pair,
d1 <Λ and dj1 cR» respectively, with the properties:
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(1) {cl9 , cn, dl9 , dn) are taken only from among e and the
letters occurring in the reduced forms of u and v, and

(2) ΣUpia^bJ^ΣUp^di)
(3) at most p + q of the terms p{ci9 dt) are nonzero, where u

and v have reduced lengths p and q respectively. It follows that the
infimum p\u, v) is actually attained for some pair of representations,
and, using this, Graev proved that the restriction of p' to X is p
(so that τx induces the original topology on X) and that τx is Haus-
dorff.

Our next result is that the infimum p\u, v) need not be attained,
but we shall go on to show that results parallel to those just mentioned
for p' and τx still hold for p2 and r2. Indeed it will be observed
that our proofs carry over routinely to the case of p' and τx also,
so that Graev's result on the infimum may be dispensed with entirely.

PROPOSITION 2. The infimum defining p2(u, v) need not be attained
by any pair of representations of u and v.

Proof. Take X to be the plane with the point a deleted, and
choose x, y e X so that x, y, e are the vertices of an equilateral
triangle of side I = V &p(e, a) and center α, where p is the Euclidean
metric on the plane. If w(a, β, 7) = aβ^Ύβ'1, the choices (a, β, Ύ) —
(x, e, y) and (a, β, 7) = (6, 6, 6) for any & e X, yield representations of
xy and e, respectively, giving an associated sum of distances p(x, b) +
P(y, b) + p(e, b). It is easy to see that this sum approaches VZl as
6 approaches a, so that p2(xy, e) ^ i/3i. We shall show that no pair
of representations can achieve this value.

Suppose that w(alf , an) = xy and w(bu , bn) = e, for some
w, and some aiybieX,i = l9 •••,%. As described above, select a
cancellation order, essential symbols and a partitioning into column
sequences of these representations. One may easily check that the
sequences containing the essential occurrences of x and y must be
disjoint, so that both end with an occurrence of e. Normalize both
sequences.

Now perform the column deletion process on the sequence for

x, writing the transformed sequence as CA Cp and, noting that

CΊ is of the form ί ^ J for some u, with x unpaired. Suppose that

the normalized sequence for y is DJ)2 Dq9 and let i0 be the least

ί, 1 ^ i ^ Q> for which Dt equals some Cj9 if such an % exists. Say

DiQ = CJQ, noting that the choice of j0 is unique. Assume for con-

creteness that iQ is even.
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Now transform D1 DiQ into a sequence Dh DtJt (for some ft)
by column deletions. (By our choice of iOf k Φ 0.) Then k is even,

A(l) = A,(l) = y, and if DiQ = ( j ) then Afc = ( j ) for some ί',

with 2/ and s the unpaired elements of both sequences.
Write cj - rtCtfl), (7,(2)) and dw = p(Dim(l), Am(2)), ίov 1 ^ j ^ p

and 1 <; m ^ Jfc. If t Φ tf (so that in fact none of Dh, - , Di]c equals
any of Clf , Cp), then

JO v k

Σ*cs+ Σ βy + Σ dm , i0 even
yo-i

Σ ^ + Σ ' ^ + Σ ώ m , io odd
y=i y=y0 »=i

^ /o(a?, s) + /?(s, e) + p(y, s) .

If ί = ϊ, so that A , = A o = Cio = ( J ), then

Σ c« + Σ ^ + Σ <Z« > io even

Σ d . , io odd

^ p(x, t) + p(t, e) + p(y, t) .

A similar argument applies when iQ is odd, so that in all cases,
Σ P(ai, bt) is greater than or equal to an expression p(x, b) + p(b, e) +
Piy,b), for some beX. Finally, if no integer iQ exists, ^ΣιP(ai9bt)
is easily seen to be at least p(x9 e) + p(y, e). Since the latter equals
2Z, and any sum p(x, b) + p(b, e) + p(y, b) is strictly larger than
V 31 (for b Φ α), the result follows.

We remark further that for representations w(alf , aJ = xy
and w(blf , bn) = e with α,, &, e {x, y, β}, i = 1, , n, Σ?=i ^(α^ 64)
must be at least 2i.

PROPOSITION 3. Let G be the subgroup of F(X) generated by
{xlf - , xk} C X, α-̂ dl sβί m eguαZ ίo ί/̂ β minimum distance among
{p(xi9 Xj): Xi Φ Xj) and {p(xif e): xt Φ e}. Then p2(w, e) ^ m for any
w eff, w Φ e.

Proof. Let w = yiι * - - yε

pv Φ e, in reduced form, with yt e
{xlf -, xk}, i = 1, -, p, and let ^(α^ - , an) and w{bu , δn) be
representations of w and e respectively. Select a cancellation order,
essential symbols, and a column partitioning as usual.

If the column sequence for any y? ends in e, a column deletion
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argument shows the distance sum from our representations to be at
least ρ(yi9 e), giving the desired conclusion. Similarly, p\w, e) ̂  m
if the normalized sequence for any yl* ends with any yό different
from yt. But this must happen for some y\*9 since if each normalized
sequence begins and ends with the same essential symbol, we may
replace all inessential symbols by e (which cannot affect the reduced
forms of w (alt , an) and w(bu , 6J), and we then see that
w(au , αn) reduces to e, contradicting w Φ e. Thus p\w, e) Ξ> m
as required.

COROLLARY. // X is (completely regular) Hausdorff, so is
(F(X\ τ2).

Proof. If X is Hausdorff and xl9 , xk are distinct, there is a
continuous pseudometric p on Xίoτ which m ^ 1, and then p\w, e) ̂
1 for any nontrivial word w in the symbols {xlf •••,%}. Hence τ2

is Hausdorff.

We note the next two propositions without proof; the arguments
needed are very much in the spirit of those already presented.

PROPOSITION 4. For x, ye X, p2(%, y) = p(x, y), and τ2 induces
the original topology on X.

PROPOSITION 5. If xux2f — ,xn are (not necessarily distinct)
elements of X different from e, then

ρr(xxx2 xn, e) = Σ p(Pι, e) .

Of interest in light of Proposition 2, and also of use later, is
the following result and its corollary.

PROPOSITION 6. Let p be the usual metric on X ~ [0,1], and let
u, veF(X). Given representations w(au , an) and w(bl9 •••,&«) of
u and v(ai9 6*6 X, i = 1, , n), there is another pair of representa-
tions w'(a[9 , a'm), w'(b[9 , b'm), with a[9 , a'm, b[9 , b'm chosen
from e and the letters occurring in the reduced forms of u and v,
such that

Σ P« Vi) ̂  t P(ajf bά) .
i l i l

COROLLARY. The infimum p2(u9 v) is achieved for some pair of

representations w(alf •••,»«) and w(bu

 β , δ n ) with each α* and bi
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chosen from e and the letters occurring in the reduced forms of u
and v.

Proof of Proposition 6. Let x1 < x2 < < xp run through e
and the distinct letters occurring in the reduced forms of u and v.
If any at or bif i = 1, , n is less than xi9 it does not occur in the
reduced form of u or v, and so we may replace it at each occurrence
by α?! without affecting the reduced forms of our representations. It
is easy to see, moreover, that the distance sum from the altered
representations is no larger than that from the original ones.
Similarly replacing all α* and δ; larger than xp by χp9 we may
assume that x1 <̂  aίf bt ^ xp for each i.

For any α, be [xlf xp], let d(a,b) be the number of integers j
for which a < xi < b or b < xό < a. We shall show how to exchange
our representations for ones in which d(aίf bt) = 0 for each i.

Suppose that d(ai9 6<) > 0. If at < bi9 let j be the least integer
such that at < xd < bif and if bt < at let j be the greatest such that
bι < Xj < ait

Define

Then

^ 1 ( ^ 1 , , a * - i , α ί + 1 , • • - , « » , α * , δ t , &t)

and

wxφu , &<_!, δ ί + 1, , δn, α?y, a?y, 6,)

are clearly representations of u and v respectively, and their associat-
ed distance sum differs from the previous one only in that p(aίf b%)
has been replaced by p(ai9 xά) + p(x3 , bt) + p(bi9 bt). The latter,
though, is equal to p(ai9 δ j , so the distance sum is in fact unaltered.
We observe that d(ai9 xά) = d(bi9 bt) = 0, and that d(xi9 bt) = d(ai9 bt) —
1, so it follows that a repeated application of the above procedure
will yield representations of u and v9 which we again write as
w(al9 , α j , w(bl9 , δ j , in which d(aί9 bτ) = 0 for each i. That is,
for each i there is a j , 1 <̂  j ^ p — 1, such that α*, δ* e [%, x i + 1].

Fix a i, 1 ^ i <; 29 — 1. For each i, write Ĉ  = [aίt δ<] if α̂  ̂  δ*
and Ci = [δ ,̂ α j if 6< ̂  α<, and suppose without loss of generality
that {i: Ĉ  C [xh xj+1]} — {1, 2, , A;} for some Λ. For te {xh xj+1),
with ί Φ aif bίy i — 1, •••,&, define S(ί) to be the number of intervals
Ci9i = l9 •••,&, for which ί e Ct. Equivalently, Bit) = Σf=i %(?<(*)>
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for all t in the domain of B (wher Xo is the characteristic function
of C). Then we have

X
Oi

(t)dt

Now choose a t0 for which B(t0) is minimal, and, in our repre-
sentations, replace each at in [xjf t0) by α = xs, and each at in
(ί0, &/+J by a\ — xi+ί. Similarly, replace δ* e [xjt ί0) by b[ = %, and
bt e (ί0, a?i+j by b\ = α?i+1.

The transformed representations must still represent u and v9

since no symbol which has been (nontrivially) replaced occurs in the
reduced forms of u or v.

Denote the closed interval with endpoints α , b\ by Q, i = 1, ,
fc, and set B'(t) = Σf=i V.(«), <e fo, α?i+1). As above, Σ t i ^ K 60 =

Bf(t)dt. But exactly β(t0) of the intervals Q are equal to

[xjf xί+1]f while the rest are either {xs} or {xj+1}> so that JB'(ί) = B(t0)
for all ί.

Therefore

Σ P«

B(t)dt
Xj

= Σ ί>(α<f δ,)

Hence the distance sum from the transformed representations is no
larger than that from the earlier ones, and, carrying out this process
for each j9 l^j^p—1, we obtain representations of the desired kind.

Proof of the corollary. We observe that any representations
w(au , αn) and w(bu •••,&„) of u and v may be replaced by others
in which the pairs {(α<, 6t)} are distinct, and which give a sum of
distances no greater than ΣΓ P(ai> &<)• F°r> if iβu bt) = (α3 , 6̂ ) for
i ^ i, define

then clearly ^ ( α ^ , α ^ , α i + l f , α j and ^ ( δ ^ , b^u bj+1, , δ j
are again representations of u and v, and the distance sum has been
decreased by p(aif b/). This procedure may be repeated until all pairs
(aif bt) remaining are distinct.
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From this observation, and Proposition 6, it follows easily that
the infimum defining p2(u, v) may be taken over a finite set only,
and the corollary follows.

Let τ0 denote the topology of the free topological group F(X).
The next proposition extends to τ1 and τ2 a result proved in [4] for
τ0. The proofs proceed by a straightforward use of the definitions
of pr and p2, and will be omitted.

PROPOSITION 7. The topologies τ0, τι and τ2 are independent of
the choice of basepoint. More precisely, if elfe2eX, let F(X, eλ),
F(X, e2) be the groups obtained by selecting eu e2 {respectively) as
basepoint. If φ: (X, eλ) —» F(X, e2) is the (basepoint-preserving) map
de fined by φ(x) = xe^\ x e X, then the extension of φ to a homomorphism
Φ: F(X, ex) —> F(X, e2) is a topological isomorphism with respect to
τ0, τx or τ2.

We now define and discuss the third topology of interest.

The construction using the path-connected embedding: If G is a
group, let G* be the set of continuous-from-the-right step functions
from the half-open interval [0, 1) into G; that is, functions / for
which there is a partition 0 = α0 < a1 < < an = 1 of [0, 1] such
that / is constant on each [aί9 ai+1). Given an invariant pseudometric
p on G we may define another such pseudometric p* on (?* by

P*(f, 9) = [p(f(t\ g(t))dt, f,geG*.
Jo

With the topology defined by p*9 G* becomes a path-connected
topological group (see the more general Theorem 1 of [6]), and the
map i defined by i(g)(t) = g, te [0,1), g e G, is an isometric isomorphism
of G into (•?*. We define the path P = P(f9 g) between / and g in
G* by

j / ( ) , 8 £ t < 1 ,

for te[0,1), se[0, 1].
Now suppose that S = {slf s2, , sn} is a finite ordered subset of

X containing e. Let G(S) be the subgroup of F{X) generated by S,
let ds be the discrete metric on G(S) (that is, all nonzero distances
are equal to 1), and let d* be the extension of ds to G(S)*. Clearly
Ui=ί P(i(8j), i(sj+1)) is homeomorphic to [0,1], so by the complete
regularity of X there is a continuous map φ: X—> Ui=ί P(i(sj)> i(»i+i))
such that (̂Sj ) = i(^ ), i = 1, , w. Extending φ to a continuous
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homomorphism Φ: F(X) —• G(S)*9 where F(X) is now the free to-
pological group, we define a continuous invariant pseudometric pStφ

on F{X) by

PsΛu, v) = d%{Φ(u), φ(v)) , u,ve F(X) .

(Note that pSyφ is invariant since ds and d* are.)

A proof that the free topological group is Hausdorff was given
in [2] using path-connected embedding, although no explicit construc-
tion was given there of a topology on the free group. The topology
τ3 generated by all the pseudometrics pS)φ, for all choices of S, and
all choices of φ of the kind indicated, may be seen as an expression
in terms of invariant pseudometrics of the proof of [2].

PROPOSITION 8. If X is completely regular and Hausdorff, then
τs is Hausdorff, and X has its original topology and is a closed
subspace of (F(X), r8).

Proof. If w is any nontrivial word in letters from S =
{xl9 , xnf e} £ X, we form the discrete metric ds on G(S) and its
extension df to G(S)*. Let φ: X-> U S 1 P(i(%), ifo+i)) U P(i(xn), i(e)) Q
G(S)* be any continuous map such that φ(xs) = i{xά), 3 — 1, , n,
and extend φ to a homomorphism Φ: F{X) —> G(S)*. Then clearly
φ(w)(t) = w for all £e[0,1), so ρs,Φ(w, e) = 1, and r3 is Hausdorff.
Indeed we see further that if u £ X, psA

x> u) = 1 for each xe X,
and this shows that X is closed in r8.

By construction, each pStΦ is continuous on X, in its original
topology, so the latter contains the restriction of r3 to X. On the
other hand, let U Φ X be open in the original topology, and let x be
any point in U. If ee U, select any yeX\U, set T — {x, y, e), and
form dTy d* and pTtψ, where ψ: X—• G(Γ)* satisfies ψ(x) = i(x), ψ(e) =
i(e) and ψ(X\U) = {i(̂ /)}, and has extension f* on JP(X). If ΰ =
{weF(X): pτ,ir(w, x) < 1}, then Bf]X is open in the restriction of r3

to X. But for ^ e ί ί i l w e have

1 > ft,*(s, a?) = d$(W(z)f Ψ(x))

so that for some t e [0, 1), Ψ{z)(t) = a?, implying that ze U. That is,
x e B Π X c C7, and U is open in the restriction of τ3 to X (Note
that this argument works even when x — e.) A very similar argu-
ment gives the same conclusion in the case when e £ U, and the
equality of the two topologies follows.
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REMARK. We have not included proofs that X is closed in τx

and τ2. This may be proved directly, but will in fact follow from
Proposition 8 and Theorem 1.

2* The relations between the topologies*

THEOREM 1. If X is completely regular and Hausdorff, then

r0 2 rx 2 r2 2 r8 -

THEOREM 2. The above inclusions are in general strict. Speci-
fically, if τ0 = τ19 or if τ1 = τ2f then X has the property that any
countable union of its closed subsets must be closed. When X —
[0, 1], r2 Φ τ8.

Proof of Theorem 1. Of course τ0 is the strongest group topology
on F(X) inducing the original topology on X, and so τx £ r0. The
inclusion τ2 Q τ1 follows from Proposition 1.

To show that r3 £ τ2, fix a finite set S £ X containing β, and
define d* and ρS)Φ as earlier, for any choice of φ. If we let p be
the restriction of pStΦ to X, p is a continuous pseudometric on X, and
we shall show that p2 ^ p8tΦ.

Suppose that for δ > 0, /O2(t&, v) < δ, for some u, veF(X). Then
there is a word ^(αx, , αn) and al9 - - , an,blf , bn e X such that
«?((&!, , an) = u, w(bl9 , &J = v, and such that Σ?=i ^ < $> where

δi = ρ(ai9 bt) =

Since ds is the discrete metric we have φ(at)(t) = φ{b%){t) for ί in a
set At of measure 1 — δi. Suppose that w{al9 , an) = α{j α<*, a
(not necessarily reduced) word in the symbols {al9 « , α j , with each
et equal to ± 1 . For each I, 1 <̂  Z ̂  k, the pair (α<z, &<z) is one of
the pairs (aly bλ), , (αn, δn), and so ^(αlz)(ί) = ^(&<z)(i) for ί in one of
the sets A^ , An.

Hence Φ(u)(t) = φ{a^{t)^ Φ(aik)(t)ε* is equal to Φ(y)(t) =
ΦiK^y1''' ΦQ>i})ltYk f o r ^ e A = Π?=i Λ, and the measure of A is at
least 1 — Σ^> which is larger than 1 — δ. Therefore pSΦ(u, v) —

S I

ds{Φ{u)(t),Φ(v)(t))dt <δ, and ρStφ ^ p2 as required, proving the
0

theorem.

Proof of Theorem 2.

Case 1: τ0 and τx. The result stated here will appear with
proof in [5]. See [3] and [7] for related results.
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Case 2: τx and r2. The following result will be needed.

LEMMA. Suppose that {An} is a sequence of closed sets in X and
e 0 U An. If {kn} is an increasing sequence of positive integers for
which Σ (X/K) converges, and if B - U Bn = U (AJ*», then e$B, the
closure of B in τx.

Proof. Since, for each n, An is closed and e g An, there are
continuous pseudometrics ρn on X such that pn(e, An) 7>lfneN. If
we define

P(fi, 2/) = Σ mm{pn(x, y), (A J"1} , x, y e X ,
n = l

we see that p is again a continuous pseudometric on X and that
p(e, An) ^ (kn)~\ neN. Then if w = xLx2 - - xke (An)

k (writing k = kn)9

Proposition 5 shows that p\w, e) = Σ ι°(̂ > e) = 1> a n ( i s o P'(et B)^l
and e g 5 , which proves the lemma.

With {An}, A and B as in the lemma, suppose that A is not
in X, and that e e Ά\A. We shall show that B is not closed in r2.
For if p is any continuous pseudometric on X, and ε > 0, there is
an x in some An such that p(x, e) < ε. Setting w(a) = αfc(& = ftj,
we see that w(x) = #fc and w(e) = e, so that

P 2 ( x \ e) ^ p ( x , e)<6.

Then since xkeB, e is in the closure of B in τ2. Thus, in the case
when e 6 A\A, τ1 Φ τ2. An appeal to Proposition 7 now proves Case
2 in general.

Case 3: τ2 cmc£ r3. We shall show that τ2 Φ τz in the case X —
[0, 1]. Let J = [α, 6] c[0,1] be a closed interval of length 1/4, such
that |θ(7, e) ^ 1/4, where ^ is the usual metric on [0, 1]. For neN
and 1 <; i ^ 3^, set xf = a + l/12n e J, define

Wnk - ^ ^ f e - i ) " 1 ^ ^ ^ ^ ) " 1 ^ - ! ^ ) " 1 for 1 ^ k ^ Λ ,

and set wn = wnlwn2 ^ M . We shall show that {wn} converges to
e in τ3, but does not in τ2. In general the superscripts n will be
omitted.

Let S = {slf , sOT} be a finite ordered subset of X containing β,
define G(S), ds, d% as earlier, and let φ: X-> [Jf-,1 P(i(sά), i(sj+1)) be
any continuous map such that φ(sj) = i(ss), j = 1, , m. Extend ^
to a homomorphism Φ: F(X) —>G(S)*. Since 0 is uniformly continuous
on Xy there is an n0 such that when n> n0,
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( 1 ) < 1

and d%{φ{xzk_2), φ(x3k)) < 1

for 1 ^ k ^ n. We shall show that for each t e [0,1), at least two
of Φ(xn-ά(t\ Φ(%sk-i)(t) and φ(xΛk)(t) are equal.

Consider a fixed value of k. Then for I = 0, 1, 2 there is a p l f

1 <̂  p, <* m, and an ah 0 ^ at < 1, such that

i , <*z ̂  ί < 1 .

For distinct lx and l2, we must have \ph — Pι2\ 2̂ 1, since otherwise
Φ(x3k-h)(t) and Φ(x3k-ι2)(t) are different for all ί e [0, 1), and hence
dKΦfah-h), Φ(%*k-ι2)) = 1, contradicting (1). Therefore, two of {p0, plf p2}
are equal, and the third differs from them by at most one. Suppose
without loss of generality that pQ = plf so that either (a) p2 = pQ — 1,
or (b) p2 = p0, or (c) p2 = p0 + 1.

Consider case (a). By (1), we must have α2 > a0 and a2 > αx.
Then, assuming without loss of generality that α0 ^ α1? we have

and ^(»8*)(ί) = Φ(xsk-i)(t) = sPo, α x ^ ί < 1 .

A similar analysis in the other cases shows that two of
Φ(%*k-i)(t) and φ(xzk){t) are always equal, so that Φ(wnk)(t) = e for all
te [0, 1). Therefore Φ(wn)(t) — e for all t and for n > wo> and hence
PsAwn, e) = 0 for % > tt0, and wn —> e with respect to pStφ. Thus
^ n —> e in τ3.

To prove that wnlA e in τ2, we use the corollary to Proposition
6 to give us, for a fixed n, representations w(aί9 , ap) = wn and
w(bl9 , bp) = e, where α1? , α ,̂ 61? , bp are taken from among
e and {xf: 1 ^ i ^ 3w}, and where /O2(wn, β) = Σ?=i ι°(^, &i)> with p the
usual metric on [0, 1]. For a given kfl^k^n, consider all pairs
(αt, δt) for which {α<, δ j Π {a?8fc-2, ^ fc-i, a?8fc} ^ ^.

A straightforward argument shows that for (at least) one such
pair we must have at Φ bt. Write the pair as (x(k)t y(k)), and carry
out this procedure for each k. If any x{k) or y(k) = e, we have
p2(wn, e) ^ 1/4 immediately, by our choice of the interval /. If no
x{k) or y(k) = e, then ρ(x(h), y{k)) ^ l/12τι, \<>k^n. But the
number of distinct pairs in {(x(k), y(k)): 1 ^ A; ̂  }̂ is at least nj2, as
any such pair may equal at most one other. Therefore p\wn, e) ^
(n/2) (l/12w) = (1/24), and wn-fiem r2.

This completes the proof of Theorem 2.
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EXAMPLE. Let X be any uncountable set. Fixing e e X, define
a topology on X by specifying that a set is closed if it is countable,
or it contains e. Then X is a (Hausdorff) normal nondiscrete space
with the property that countable unions of closed sets are always
closed. Thus Theorem 2 leaves the question of equality between τ0

and τlf and τί and τ2, unsettled for a nontrivial class of spaces.

REMARK. We conclude by noting that if X is a "large" metric
space then τzφτx.

More precisely let X be any metric space, or even any completely
regular Hausdorff space which admits a continuous metric. Then
Thompson [11] shows that F(X) with the topology τ1 has no small
subgroups. On the other hand, it is clear that if the cardinal number
of the set X is strictly greater than 2% then from the definition,
the group F(X) with the topology τ3 does have small subgroups
(because the cardinality of G(S)* is only 2C). Hence τ3 Φ τγ in this
case.
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