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LOCALLY INVARIANT TOPOLOGIES ON FREE
GROUPS

SIDNEY A. MORRIS AND PETER NICKOLAS

In 1948, M. I. Graev proved that the free topological
group on a completely regular Hausdorff space is Hausdorff,
by showing that the free group admits a certain locally

invariant Hausdorff group topology. In 1964, S. Swierczkowski
gave a different proof, which also depends on the construc-
tion of a locally invariant topology. Yet another such
construction follows from work of K. Bicknell and S. A.
Morris. Graev’s topology has proved to be essential in the
investigation of free products of topological groups;
Swierczkowski’s topology is the key to the work of W.
Taylor on varieties and homotopy laws; and Bicknell and
Morris extend results of Abels on norms on free topological
groups. In this paper, the three topologies are investigated
in detail. It is seen that the Graev topology contains the

Swierczkowski topology, which in turn contains that of
Bicknell and Morris. These containments are shown to be
proper in general. It is known that the topology of the
free topological group is in general finer than each of these
three topologies.

Introduction. If X is a completely regular Hausdorff space, let
F(X) denote the free group on the set X. Clearly the finest group
topology on F(X) which gives X its original topology must make
F(X) the free topological group on X. Because of this, a number
of authors have constructed Hausdorff group topologies on F(X) as
a means of proving that the free topological group is Hausdorff.
Moreover, most other proofs of this fact are easily seen to contain
implicitly the construction of some group topology on F(X).

In this paper we shall examine and compare the topologizations
of F(X) arising from three such constructions.

The topologies we study will all have the additional property
of local invariance; that is, they have bases at the identity of sets
invariant under inner automorphisms, or, equivalently, they are
defined by families of invariant pseudometrics. (A pseudometric o
on a group is (two-sided) invariant if p(axdb, ayb) = p(z, y) for all
group elements a, b, x, y.) Such topologies arise naturally in the
present context since they necessarily make the group operations
continuous.
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1. The topologies and their properties. We remind the reader
that the Graev free topological group on a completely regular
Hausdorff pointed space X with basepoint e is a topological group
F(X) which, algebraically, is a free group with X\{¢} as a free basis,
and is such that any continuous map from X to a topological group,
sending e to the identity, extends uniquely to a continuous homo-
morphism on F(X). The basepoint ¢ becomes the identity of F(X),
and the generating copy of X has the topology of the original space.
See [10] for a survey of the elementary theory of free topological
groups.

In this paper we shall in fact use F(X) to denote the underlying
group of the free topological group — that is, the free group gen-
erated by the set X\{e}, with e the identity of F(X).

We now define the first topology of interest.

Graev’'s construction: By a continuous pseudometric on X, we
mean a pseudometric inducing a topology contained in the given
topology on X.

For any continuous pseudometric o on X, we define a pseudo-
metric o' on F(X) as follows. Let w = ai --- ai» be a (not neces-
sarily reduced) word in symbols {«;}, withe;, = 1,4 =1, .-+, n. For
u, v € F(X) we define

o'(u, v) = inf {3} 0(a, b} ,

where a,, b€ X,1 =1, ---, n, are such that a3 --- ai» = u and b3 - --
b» = v, and the infimum is taken over all words w and all possible
choices of {a;} and {b,}.

A definition of o' equivalent to ours was given by Graev [4],
who showed that o’ is an invariant pseudometric (and a metric if o
is), which coincides with p on X. Denote by 7, the topology induced
on F(X) by the extensions p’ of all the continuous pseudometrics o
on X. The properties of o’ and 7z, will be discussed fully later, but
one straightforward fact will be noted now.

It is easily checked that two-sided invariance is equivalent to
the requirement that

p(ab, cd) < p(a, ¢) + o(b, d)

for all group elements a, b, ¢, d. From the definition of o’ we have
the following:
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PrOPOSITION 1. The pseudometric p' is the largest two-sided
invariant extension of 0, for any pseudometric 0 on X, and , is
the finest locally invariant topology on F(X) inducing the original
topology on X.

Swierczkowski's construction: In 8], Swierczkowski defined a
topology on general free algebras, giving an explicit construction of
neighborhoods of points. His construction may be rephrased easily
" in terms of pseudometrics, giving rise, in the case of free groups, to
the following definition.

Let w = w(a,, -+, a,) be any word in the symbols a, ---, a,.
(Thus, each «; may occur many times in the expression for w.)
Given p and X as before, and u, ve F(X), we define

0°(u, v) = inf {g o, bi)} ,

where again the infimum is taken over all words w and all choices
of {a.}, {b;} such that w(a, ---, @,) = w and w(®, ---,b,) =v. Let 7,
be the topology defined by all the pseudometrics p°.

We shall now discuss the properties of 7, and 7, in detail.
Several of the arguments we shall use here have certain features in
common, so we shall spend a little time isolating some of these first.

Let w = qa%-.- a» be a word in symbols {a;}, with ¢, = *+1,1 =
1, ---,n, and for a,, b;e X write u and v for the group elements
represented by ai --- ai» and b --- bi» respectively. We may select
in the word at --- ai» a cancellation order; that is, a sequence of
steps of the form “delete ¢’ or “replace an adjacent x and 2™ by
¢”’, at the end of which the word representing w is reduced. Each
symbol ai remaining after reduction will be called essential, and the
others imnessential. Note that the cancellation order may not be
unique, and that the essential symbols ai arising from different
cancellation orders may occur at different values of the subscript 1;
though clearly the final string of essential symbols in the reduced
word is uniquely determined. Of course, a given symbol may occur
at one point as an essential symbol, and at another as an inessential
one.

Let a cancellation order be fixed for both # and ». Then for
any essential symbol s = ai of u we may form a sequence of columns

(ENENE) -

where each pair (s, t,), (s7% &), --- is one of (af, b, (as, b2), - --,
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where ¢t 6%, --- and s;'s, s;'s,, --- are replaced by e in the
cancellation orders for v and u respectively, and where the sequence
ends with the next occurrence of an essential symbol of u or », or
of ¢. Such a sequence may be formed from each essential symbol
of u, and then, similarly, from each essential symbol of »: we
observe that any two of these sequences are either disjoint or are
identical except for the order in which their columns are displayed.
(We may form similar sequences from the remaining inessential
symbols, but these will be of no interest to us.)

Given any column sequence, its normalization will be the sequence
of columns C,C, --- C, obtained by replacing each 2™ xze X, by = in
the original sequence. For each 7,1 =<1 =<m, let C(1) and C,(2)
denote respectively the upper and lower entries of C;,. Then it is
clear from its construction that the normalized sequence has a
pairing, in that either

(C\(1) = GQ), CG1) =CA), ---
{ Cu2) = Cy(2), C2) = C,(2) , -+~
or
( c,1) = C,1), C,A1) = C,A), ---
@ =0@,c@=0@--.
There are exactly two entries left unpaired, namely, either C,(1) or

C.(2), and either C,(1) or C,(2).

We may perform a process of colummn-deletion in a normalized
sequence CGC,---C,, as follows. If C,=C; for i < j, we delete

columns C,,,, Gy, -+, C; if j — 1 is even, and we delete columns
C, Ciyyy --+,C; if 5 — 4 is odd. This procedure is carried out repea-
tedly (the steps chosen, of course, may not be unique) until we
obtain a sequence, say C;, C,, ---, C,,, which has distinct columns.

It is easily checked that ¥ and m have the same parity, and that
(if > 0)C,C;, --- C;, has a pairing like that of C,C, --- C,, with its
two unpaired elements being equal to those of C,C, --- C,, and occur-
ring in the same positions.

(For example, if C,(2) and C,(1) are unpaired, then so are C,(2)
and C,,(1), and C,(2) = C;(2) and C,(1) — C, (1).)

In [4], Graev used an argument based on the idea of partition-
ing into column sequences to prove that for any pair of represen-
tations ai' --- ai» and by --- b» of u, ve F(X), there is another pair,
ct--- ¢ oand di - .- di» respectively, with the properties:
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(1) {e, -+, ¢, dy, -+, d,} are taken only from among e and the
letters occurring in the reduced forms of w and v, and

(2) 2 p(a, b) = 23 (e, dy)

(8) at most p + g of the terms p(c;, d;) are nonzero, where u
and v have reduced lengths p and ¢ respectively. It follows that the
infimum p'(u, v) is actually attained for some pair of representations,
and, using this, Graev proved that the restriction of o' to X is p
(so that 7, induces the original topology on X) and that 7, is Haus-
dorff.

Our next result is that the infimum p*(u, v) need not be attained,
but we shall go on to show that results parallel to those just mentioned
for o' and 7, still hold for p* and 7z,. Indeed it will be observed
that our proofs carry over routinely to the case of o' and 7, also,
so that Graev’s result on the infimum may be dispensed with entirely.

PROPOSITION 2. The infimum defining 0*(u, v) need not be attained
by any pair of representations of u and v.

Proof. Take X to be the plane with the point a deleted, and
choose z,y€ X so that x,y,e are the vertices of an equilateral
triangle of side I =17 8p(e, a) and center a, where p is the Euclidean
metric on the plane. If w(a, B, 7) = aB*vB™*, the choices (a, B, 7) =
(x, e, y) and (a, B, 7) = (b, b, b) for any be X, yield representations of
xzy and e, respectively, giving an associated sum of distances o(x, b) +
o(y, b) + ple, b). It is easy to see that this sum approaches 1 3] as
b approaches a, so that p*(xy, e) < 1V 31. We shall show that no pair
of representations can achieve this value.

Suppose that w(a, :---, a,) = 2y and w(, ---, b, = e, for some
w, and some a,, b, eX,i=1,---,n. As described above, select a
cancellation order, essential symbols and a partitioning into column
sequences of these representations. One may easily check that the
sequences containing the essential occurrences of # and y must be
disjoint, so that both end with an occurrence of ¢. Normalize both
sequences.

Now perform the column deletion process on the sequence for
x, writing the transformed sequence as C,C, --- C, and, noting that
C, is of the form <$) for some %, with x unpaired. Suppose that
the normalized sequence for y is D,D, --- D,, and let 4, be the least
i,1 <1 = q, for which D, equals some C;, if such an ¢ exists. Say
D,, = C,,, noting that the choice of j, is unique. Assume for con-
creteness that 7, is even.
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Now transform D, --- D, into a sequence D, --- D, (for some k)

by column deletions. (By our choice of 4, k = 0.) Then k is even,
D(1) =D, (1) =y, and if D, = ( g) then D, = (ts) for some ¢,
with y and s the unpaired elements of both sequences.

Write ¢; = o(C;(1), C;(2)) and d,, = o(D,, (1), D; (2)), for1 < j=<p
and 1<m < k. If t+#1 (so that in fact none of D,, ---, D, equals
any of C, ---,C,), then

2@+Z@+Z%, Jo even
zmaz,b)_ -
Zc,+2’ + mzzldm, Jo odd

i=Jo

gM%@+M&@+M%$-
If t=1¢, so that D,, =D, =C; = (‘; ), then

jo—1 if—1

. Zc +Zc,+2dm, Jo even
Z{p(ai! bt); -1
N Z%+EC+Z%, Jo odd

Z o, t) + P(t, e) + 0y, 1) .

A similar argument applies when 4, is odd, so that in all cases,
> p(a;, b)) is greater than or equal to an expression o(x, b) + 0(b, ) +
o0(y, b), for some be X. Finally, if no integer 14, exists, >} o(a,, b;)
is easily seen to be at least p(z, ¢) + p(y, ¢). Since the latter equals
2l, and any sum p(zx, b) + o(b, e) + p(y, b) is strictly larger than
V381 (for b # a), the result follows.

We remark further that for representations w(a,, ---, a,) = xy
and w(bly ) b,) =e with Qg b, € {x; Y, 6}, 1= 1: e, m, Z?=1 p(aiy b,)
must be at least 2.

PROPOSITION 3. Let G be the subgroup of F(X) generated by
{x, ---, 2.} S X, and set m equal to the minimum distance among
{o(x;, ;): x; # x;} and {o(x;, e):x; = e}. Then 0*(w,e)=m for any
weQG, w+ e.

Proof. Let w=wyit---y?+#e in reduced form, with y,e
{xly ) xk}’ 1=1 -, p, and let w(ay, -+, a,) and w(by, -+, b,) be
representations of w and e respectively. Select a cancellation order,
essential symbols, and a column partitioning as usual.

If the column sequence for any y: ends in e, a column deletion
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argument shows the distance sum from our representations to be at
least o(y,, e), giving the desired conclusion. Similarly, e*(w,e) = m
if the normalized sequence for any w: ends with any y; different
from y,. But this must happen for some %, since if each normalized
sequence begins and ends with the same essential symbol, we may
replace all inessential symbols by e (which cannot affect the reduced
forms of w(a, ---, a,) and w(, ---,b,), and we then see that
w(a,, - -+, a,) reduces to e, contradicting w # e¢. Thus P*(w, ¢) = m
as required.

COROLLARY. If X 1is (completely regular) Hausdorff, so is
(F(X), 7).

Proof. If X is Hausdorff and =z, ---, x, are distinct, there is a
continuous pseudometric p on X for which m = 1, and then p*(w, ¢) =
1 for any nontrivial word w in the symbols {x, ---, 2,}. Hence 7,
is Hausdorff. :

We note the next two propositions without proof; the arguments
needed are very much in the spirit of those already presented.

PROPOSITION 4. For x,ye X, p’(x, y) = o(x, y¥), and 7, induces
the original topology on X.

PROPOSITION 5. If x, %, ---,, are (not mecessarily distinct)
elements of X different from e, then

P'(%xz et Xy 6) = iz:::lp(xi’ e) .

Of interest in light of Proposition 2, and also of use later, is
the following result and its corollary.

PROPOSITION 6. Let o be the usual metric on X = [0, 1], and let
u, ve F(X). Given representations w(a,, ---, a,) and wb, ---,b,) of
u and v(a;, be X,i =1, ---, m), there is another pair of representa-
tions w'(ai, + -, an), WO, -+, bn), with ai, ---, an, by, -+, b, chosen
Jfrom e and the letters occurring in the reduced forms of u and v,
such that

3 o(al, b) < 3 pla, ) -

COROLLARY. The infimum 0°*(u, v) is achieved for some pair of
representations w(a, -+, a,) and wb, -, b,) with each a, and b,
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chosen from e and the letters occurring in the reduced forms of u
and v.

Proof of Proposition 6. Let x, <a,<--- <x, run through e
and the distinct letters occurring in the reduced forms of w and v.
If any a, or b;,,t =1, ---, n is less than x,, it does not occur in the
reduced form of w or v, and so we may replace it at each occurrence
by x, without affecting the reduced forms of our representations. It
is easy to see, moreover, that the distance sum from the altered
representations is no larger than that from the original ones.
Similarly replacing all @, and b, larger than 2z, by =z, we may
assume that x, < a,, b, = x, for each 7.

For any a,be(x, «,], let d(a, b) be the number of integers j
for which ¢ < x; < b or b < z; < a. We shall show how to exchange
our representations for ones in which d(a;, b;) = 0 for each 7.

Suppose that d(a;, b;) > 0. If a, < b;, let 7 be the least integer
such that a; < x; < b;, and if b, < a; let j be the greatest such that

b’l < xj < ai.
Define
WAy =y Qygy Ay =0y Oy A, 3, 7Y)
= w(@y, ++, Wy (BT, Qigyy =+, Q) -
Then
w1<a1, ) ai—h ai+1’ Y a’m a‘i’ bi) bt)
and

wl(bly Tty bi—l, bi+ly Tty bn’ Ty Xj, bt)

are clearly representations of % and v respectively, and their associat-
ed distance sum differs from the previous one only in that o(a,, b.)
has been replaced by p(a,, z;) + o(x;, b)) + p(b;, b). The latter,
though, is equal to p(a;, b;), so the distance sum is in fact unaltered.
We observe that d(a;, ;) = d(b,, b;,) = 0, and that d(x;, b,) = d(a;, b;) —
1, so it follows that a repeated application of the above procedure
will yield representations of % and v», which we again write as
w(a, - -, a,), wb, ---,db,), in which d(a,, b;) = 0 for each ;. That is,
for each ¢ there is a j,1 < j < p — 1, such that a,, b, €[z}, z;,.]-
Fixa j,1<j=<p—1. For each 7, write C;, = [a;, b;] if a, £ b,
and C; =[b, a;] if b, = a;, and suppose without loss of generality
that {i:C, & [#;, 2;..0} = {1, 2, -+, k} for some k. For te(x;, ®;..),
with ¢ == a;, b, 7 =1, ---, k, define B(t) to be the number of intervals
C,i=1,---,k, for which ¢teC,. Equivalently, B(t) = >, X, (),
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for all ¢ in the domain of B (wher X, is the characteristic function
of C). Then we have

k
%P(aiy b) = > |b; — a

_ Smlxci(t)dt
%
- S”“B(t)dt .
aj

Now choose a ¢, for which B(¢,) is minimal, and, in our repre-
sentations, replace each @, in [x;, t,) by @;==2; and each a; in
(toy %541] by a; = x;,,. Similarly, replace b;€[x;, t,) by b; = x;, and
b; € (to, ®541] by b; = ;4.

The transformed representations must still represent % and v,
since no symbol which has been (nontrivially) replaced occurs in the
reduced forms of u or wv.

Denote the closed interval with endpoints ai, b; by Ci, 2 =1, ---,
k, and set B'(t) = 3k, Xei(t), te (w5, x;1,). As above, 33, o(az, by) =

Zi+1

. B'(t)dt. But exactly B(f,) of the intervals C; are equal to
[w;-, %;.,], while the rest are either {z,;} or {z;,,}, so that B'(t) = B(t,)
for all ¢.

Therefore

3 0@, b) = (23 — 7)B(t)

< S’ “Bt)dt

A
= ZZ{ o(ag, b;) .

Hence the distance sum from the transformed representations is no
larger than that from the earlier ones, and, carrying out this process
for each j, 1=<j<p—1, we obtain representations of the desired kind.

Proof of the corollary. We observe that any representations
w(a,, +++, a,) and wb,, -+, b,) of u and v may be replaced by others
in which the pairs {(a;, b))} are distinct, and which give a sum of
distances no greater than >} o(a,, b;). For, if (a, b)) = (a;, b;) for
© # j, define

wl(ah Y aj—l; Cej+!.9 Y an) = w(aly Y aj-—l, ai; aj+1’ Tty an) ;

then clearly w,(a,, -, a;_;, @1y, *++, @,) and wy(by, -, bj_y, bjy4qy =+, b,)
are again representations of # and v, and the distance sum has been
decreased by p(a;, b;). This procedure may be repeated until all pairs
(a;, b;) remaining are distinct.
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From this observation, and Proposition 6, it follows easily that
the infimum defining ©*u, v) may be taken over a finite set only,
and the corollary follows.

Let 7, denote the topology of the free topological group F(X).
The next proposition extends to 7, and 7, a result proved in [4] for
7,- The proofs proceed by a straightforward use of the definitions
of o’ and p? and will be omitted.

ProroOSITION 7. The topologies 7, 7, and T, are independent of
the choice of basepoint. More precisely, if e, e,€ X, let F(X, e,),
F(X, e,) be the groups obtained by selecting e, e, (respectively) as
basepoint. If ¢: (X, e,) — F(X, e,) is the (basepoini-preserving) map
defined by ¢(x) = xer*, x € X, then the extension of ¢ to a homomorphism
0: F(X, e,) = F(X, ¢,) 1s a topological isomorphism with respect to
Toy Ty OF T,

We now define and discuss the third topology of interest.

The construction using the path-connected embedding: If G isa
group, let G* be the set of continuous-from-the-right step functions
from the half-open interval [0, 1) into G; that is, functions f for
which there is a partition 0 =g, < e, < -+ < a, =1 of [0,1] such
that f is constant on each [a;, @;,,). Given an invariant pseudometric
0 on G we may define another such pseudometric p* on G* by

0", 9) = | p(F®), aeDdt, £ geG*.

With the topology defined by p* G* becomes a path-connected
topological group (see the more general Theorem 1 of [6]), and the
map 1 defined by (g)(t) = g, t€[0, 1), g € G, is an isometric isomorphism
of G into G*. We define the path P = P(f, g) between f and ¢ in
G* by

g(t)r 0=st<s

P(s)(t) = ), s<t<i,

for te[0, 1), se|[0, 1].
Now suppose that S = {s,, s,, -- -, s,} is a finite ordered subset of
X containing e. Let G(S) be the subgroup of F(X) generated by S,
let dg be the discrete metric on G(S) (that is, all nonzero distances
are equal to 1), and let d¥ be the extension of dgto G(S)*. Clearly
"t P(i(s;), 1(8;4,)) is homeomorphic to [0, 1], so by the complete
regularity of X there is a continuous map ¢: X — U3z: P(i(s;), 1(8;+1))
such that ¢(s;) = i(s;),7 =1, ---, n. Extending ¢ to a continuous
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homomorphism &: F(X) — G(S)*, where F(X) is now the free to-
pological group, we define a continuous invariant pseudometric oy,
on F(X) by

0s,6(u, v) = (@), o)) , u,ve F(X).

(Note that pg4 is invariant since ds and df are.)

A proof that the free topological group is Hausdorff was given
in [2] using path-connected embedding, although no explicit construc-
tion was given there of a topology on the free group. The topology
7, generated by all the pseudometrics ps4, for all choices of S, and
all choices of ¢ of the kind indicated, may be seen as an expression
in terms of invariant pseudometrics of the proof of [2].

PrROPOSITION 8. If X 4s completely regular and Hausdor[f, then
7, 18 Hausdorff, and X has its original topology and is a closed
subspace of (F(X), ts).

Proof. If w is any nontrivial word in letters from S =
{x, -+, 2, ¢ € X, we form the discrete metric ds; on G(S) and its
extension d} to G(S)*. Let ¢: X — Uiz P(i(x;), i(x;..)) U PGi(x,), i(e)) S
G(S)* be any continuous map such that ¢(x;) =i(x),5=1, ---, n,
and extend ¢ to a homomorphism @: F(X)— G(S)*. Then clearly
O(w)(t) = w for all te[0,1), so ps4(w,e) =1, and 7, is Hausdorff.
Indeed we see further that if w¢ X, o54(x, w) =1 for each ze X,
and this shows that X is closed in z,.

By construction, each pg, is continuous on X, in its original
topology, so the latter contains the restriction of 7, to X. On the
other hand, let U == X be open in the original topology, and let x be
any point in U. If ec U, select any ye X\U, set T = {x, v, ¢}, and
form d,, d¥ and oy, Where ¢: X — G(T)* satisfies 4(x) = i(x), ¥(e) =
i(e) and w(X\U) = {i(y)}, and has extension ¥ on F(X). If B=
{we F(X): orw(w, ) < 1}, then BN X is open in the restriction of r,
to X. But for ze BN X we have

1 > lOT,'V"(z’ w) = d;(w(z)y ?F(x))
= | @@, vt

so that for some ¢¢[0, 1), ¥(2)(f) = z, implying that ze€ U. That is,
2xe BN XcU, and U is open in the restriction of 7, to X. (Note
that this argument works even when z = e.) A very similar argu-
ment gives the same conclusion in the case when e¢ U, and the
equality of the two topologies follows.
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REMARK. We have not included proofs that X is closed in 7,
and 7,. This may be proved directly, but will in fact follow from
Proposition 8 and Theorem 1.

2. The relations between the topologies.

THEOREM 1. If X 4s completely regular and Hausdorf, then

To=2T1=2T,=27Ts .

THEOREM 2. The above inclusions are in general strict. Speci-
fically, if ©o = 7, or 2f T, = T, then X has the property that any
countable union of its closed subsets must be closed. When X =
[0, 1], 7, # 7,

Proof of Theorem 1. Of course 7, is the strongest group topology
on F(X) inducing the original topology on X, and so 7z, & 7,. The
inclusion 7, € 7, follows from Proposition 1.

To show that 7, £ 7,, fix a finite set S < X containing e, and
define d¥ and pg, as earlier, for any choice of 4. If we let p be
the restriction of o5, to X, o is a continuous pseudometric on X, and
we shall show that o = pg.

Suppose that for ¢ > 0, o*(u, v) < 4, for some u, ve F(X). Then
there is a word w(ay, +--, @,) and a,, --+, a,, b, ---, b,€ X such that
w(ay, ---, a,) = u, wb, ---,b,) =v, and such that 3 7., d, < 0, where

b, = pla, b) = | du(o(@)(®), s D)L

Since dg is the discrete metric we have ¢(a;)(t) = ¢(b,)(t) for ¢t in a
set A, of measure 1 — §,. Suppose that w(a, ---,a,) = ait --- i, a
(not necessarily reduced) word in the symbols {a,, - - -, a,}, with each
g, equal to £1. For each [,1 <1<k, the pair (a;, d;) is one of
the pairs (a,, b,), - --, (a,, b,), and so ¢(a;)(t) = ¢(b;)(t) for ¢ in one of
the sets A4, ---, A,.

Hence @ (u)(t) = ¢(a;) (@) -+ ¢(a; )(E)* is equal to @(w)(t) =
¢(b, ) () - - - 6(b;,)(£)* for te A = M-, A;, and the measure of A is at
l?ast 1 — > 0;, which is larger than 1 — . Therefore pg,(u, v) =
Sods(@(u)(t), D)) dt < 8, and ps, < 0° as required, proving the
theorem.

Proof of Theorem 2.

Case 1: 7, and 7,. The result stated here will appear with
proof in [5]. See [3] and [7] for related results.
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Case 2: 7, and 7,. The following result will be needed.

LEMMA. Suppose that {A,} is a sequence of closed sets in X and
e¢ UA,. If {k,} is an increasing sequence of positive integers for
which 3, (1/k,) converges, and if B= U B, = U (A,)*, then e ¢ B, the
closure of B in 7.

Proof. Since, for each m, A, is closed and e¢ A,, there are
continuous pseudometrics p, on X such that p,(¢, 4,) =1, neN. If
we define

o, ¥) = 3 minfo,@, v), &)Y, @, veX,

we see that p is again a continuous pseudometric on X and that
ole, A,) = (k,)™*, ne N. Then if w = x.x, - - - 2, € (4,)* (writing k = £k,),
Proposition 5 shows that p'(w, ¢) = >, p(x;, ¢) = 1, and so p'(e, B) = 1
and e¢ B, which proves the lemma.

With {A4,}, A and B as in the lemma, suppose that A is not
in X, and that ec A\A. We shall show that B is not closed in z,.
For if p is any continuous pseudometric on X, and & > 0, there is
an « in some A, such that o(x, e¢) <e. Setting w(a) = a*k = k,),
we see that w(z) = 2* and w(e) = ¢, so that

Pt e) = p(z, 6) <e.

Then since z*e€ B, ¢ is in the closure of B in 7z,. Thus, in the case
when ee A\A4, 7, # 7,. An appeal to Proposition 7 now proves Case
2 in general.

Case 3: 7, and ;. We shall show that ¢, % 7, in the case X =
[0,1]. Let I ={[a,bd]c][0, 1] be a closed interval of length 1/4, such
that po(I, ) = 1/4, where p is the usual metric on [0,1]. For ne N
and 1 =1 < 3n, set 4} = a + l/12n e I, define

W = T—o(B—1) 705 (X)X T—y(@3) ™ for 1Z k=m0,

and set w, = w,w,, --- w,,. We shall show that {w,} converges to
e in 7, but does not in 7,. In general the superscripts n will be
omitted.

Let S={s, ---, s,} be a finite ordered subset of X containing e,
define G(S), ds, d¥ as earlier, and let ¢: X — Ur: P(i(s;), i(s;41) be
any continuous map such that ¢(s;) = i(;s), =1, ---, m. Extend ¢
to a homomorphism @: F(X) — G(S)*. Since ¢ is uniformly continuous
on X, there is an n, such that when n > n,,
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A3 (P(Xr—2), P(Ti—r)) < 1
(1) a3 (3(@si—r), $(@a) < 1
and d¥($(@s—o), $(z)) < 1

for 1<k <mn. We shall show that for each t¢[0, 1), at least two

of ¢(2s;_0)(), B(%s—.)() and g(ws)(t) are equal.
Consider a fixed value of k. Then for [ = 0,1, 2 there is a p,
1< p,£m, and an «;, 0 < a;, < 1, such that

Spl+1, O§t<al
1 0 ast<l.

For distinct !, and l,, we must have |p, — p,,| = 1, since otherwise
P(®g_,)(t) and @(wy_,,)(¢) are different for all ¢€[0,1), and hence
d¥((@s—r,), $(@ar—1,)) = 1, contradicting (1). Therefore, two of {p,, p,, »,}
are equal, and the third differs from them by at most one. Suppose
without loss of generality that p, = p,, so that either (a) p, = v, — 1,
or (b) p. = py, or (¢) P, = P, + 1.

Consider case (a). By (1), we must have a, > «, and a; > «,.
Then, assuming without loss of generality that a, < «,, we have

(@)(t) = ¢(@s_)(®) = 811y 0=t < @y,
¢(x3k)(t) = ¢(Ty_)() = Spy » ap=t<a,
and  ¢(@u)(®) = ¢(@a )(t) = 85, ar=t<1.

(e _1)(8) =

A similar analysis in the other cases shows that two of ¢(xy,_,)(%),
#(x;,_)(t) and é(x,,)(t) are always equal, so that @(w,,)(t) = ¢ for all
te[0,1). Therefore @(w,)(t) = e for all ¢ and for n > n, and hence
Os.s(w,, ) =0 for n > m, and w,—e with respect to pog,. Thus
w, — e in T,

To prove that w, 4 e in 7,, we use the corollary to Proposition
6 to give us, for a fixed =, representations w(a,, ---, a,) = w, and
w(b, +--,b,) =e, where a, ---,0a, b, ---,b, are taken from among
e and {z7:1 <[ < 3n}, and where p*(w,, &) = 3.1, o(a;, b;), with o the
usual metric on [0, 1]. For a given b, 1 < k < n, consider all pairs
(@, b)) for which {a;, b} N {Xs—zy Toros, T} # 6.

A straightforward argument shows that for (at least) one such
pair we must have a, # b,. Write the pair as (x(k), y(k)), and carry
out this procedure for each %. If any xa(k) or y(k) =e, we have
0*(w,, ) = 1/4 immediately, by our choice of the interval I. If no
x(k) or y(k) =e, then p(x(k), y(k)) =1/12n, 1 = k< n. But the
number of distinet pairs in {(x(k), y(k)): 1 < k < n} is at least »n/2, as
any such pair may equal at most one other. Therefore 0*(w,, ¢) =
(n/2)-(1/12n) = (1/24), and w, 5 e In T,.

This completes the proof of Theorem 2.
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ExAMPLE. Let X be any uncountable set. Fixing ee X, define
a topology on X by specifying that a set is closed if it is countable,
or it contains e. Then X is a (Hausdorff) normal nondiscrete space
with the property that countable unions of closed sets are always
closed. Thus Theorem 2 leaves the question of equality between 7,
and 7, and 7, and 7,, unsettled for a nontrivial class of spaces.

REMARK. We conclude by noting that if X is a “large” metric
space then 7, # 7,.

More precisely let X be any metric space, or even any completely
regular Hausdorff space which admits a continuous metric. Then
Thompson [11] shows that F(X) with the topology z, has no small
subgroups. On the other hand, it is clear that if the cardinal number
of the set X is strictly greater than 2°¢, then from the definition,
the group F(X) with the topology 7, does have small subgroups
(because the cardinality of G(S)* is only 2°). Hence 7, # 7, in this
case.
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