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CONGRUENCE LATTICES OF ALGEBRAS
OF FIXED SIMILARITY TYPE, II

WILLIAM A. LAMPE

A celebrated theorem of G. Gratzer and E. T. Schmidt
shows that every algebraic lattice can be represented as the
congruence lattice of some universal algebra. That result
naturally provokes questions concerning possible refinements.
This paper provides sufficient conditions for an algebraic
lattice to be representable as the congruence lattice of a
groupoid.

Part I, [5], showed that the subspace lattice of each infinite
dimensional vector space over any uncountable field is not the
congruence lattice of any algebra of countable similarity type. It
also presented some necessary conditions for an algebraic lattice to
be representable as the congruence lattice of an algebra of countable
similarity type.

Suppose L is an algebraic lattice. We shall say that L is a
pinched lattice iff there exists a set I of compact elements of
L such that V / = 1 and such that each compact element of
L is comparable to every element of I. Each algebraic lattice
with a compact unit element is a pinched lattice. So are ordinal
sums of such lattices and certain homomorphic images of such
sums.

The principal result of this paper is

THEOREM 1. L is isomorphic to the congruence lattice of a
groupoid if L is isomorphic to one of the following:

( i ) a pinched lattice;
(ii) the lattice of ideals of a distributive lattice;
(iii) a direct product of lattices satisfying (i) or (ii).

In his 1980 paper [24], E. T. Schmidt shows that the ideal
lattice of any distributive lattice can be represented as the congruence
lattice of a lattice. From the lattice theory point of view this is
a vast improvement over the the appropriate part of Theorem 1.
Also, using McKenzie's type reduction theorem (see [17]), one obtains
as a corollary that any such lattice has a representation in similarity
type <2, 1>. As yet, there is no reduction theorem which reduces
finite type to type <2>. Theorem 1 provides representations in the
latter type.

Theorem 1 was announced in 1977 lectures in Budapest, at the
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Esztergom Colloquium and in [17]. The latter includes a survey of
this field.

By Theorem 1 we see that the class of lattices isomorphic to
congruence lattices of groupoids includes all finite lattices, all chains,
and all projective planes. Also, each algebraic lattice L is a retract
of an element in this class (see Figure 1).

v
FIGURE 1

The above theorem was discovered before the results of Part I.
In fact, the failure of the author's attempts to improve Theorem 1
led to Part I.

§2 of the paper contains preliminaries. §3 is devoted to part
(i). The proof of (ii) is in §4. §5 contains a generalization of (iii).
It provides sufficient conditions so that the congruence lattice of a
direct sum of algebras is the direct product of the congruence lattices
of the algebras. Theorem 1 is a representation theorem. §6 contains
a nonrepresentation theorem (Theorem 5) and concluding remarks.
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2* Preliminaries* The various lemmas in this section are either
well known or trivial. So no proofs are included.

Generally, the terminology will be as in Gratzer's book [8], but
the notations will differ somewhat. For example, we will use bold-
face letters, such as A, to denote algebras, while letters such as A
will denote the underlying set of an algebra. Suppose Θ is an
equivalence relation. a/Θ will denote the Θ class to which a belongs.
Both a = b (Θ) and aΘb will be used to denote (a, b) e Θ. For a subset
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S of the domain of Θ, θ\s will denote Θ Π (SxS). A is the diagonal
or equality relation. Dmn and Rng are used as abbreviations for
domain and range, respectively. For example, Dmn( , i ) will mean
the domain of the partial operation in the partial algebra A.
Con A and Con (-4) will both variously denote the set and lattice of
congruence relations of A.

Suppose A is a set and C is some set of subsets of A. For
S £ A we set

[S]o=

provided this intersection is an element of C. Otherwise, [S]c is
undefined. We call [S]G the C-closure of S. As usual, [a]c abbreviates
[{a}]G. Obviously, when it exists, [S]c is the XeC satisfying: (i)
SQXeC; (ii) SQYeC implies XQY. Recall that C is a closure
system iff [S]c exists for each S £ A. C is an algebraic closure system
iff C is a closure system and the union of any up-directed subset of
C is also an element of C. Suppose that C is a collection of subsets
oί Ax A, each of which is an equivalence relation on A, Then, for
a, be A and pe AxA we also use Θc(a, b) to denote [(a, b)]c and Θc{p)
to denote [p]c. Similarly ΘC(S) = [S]c for S £ A x A. Also, for
a,b,ce A, Θc(a, b, c) = θc({(a, b), <6, c>}) - [{<α, &>, <6, c»]c, etc. If

C = ConJL, we will, as usual, use θ(α, 6) instead of ΘConA(a,b). A
principal congruence is one of the form θ(α, δ).

DEFINITION. Suppose C is a collection of subsets of the set A.
C is a δαsis iff the C-closure of each finite subset of A exists and
C = {[F]c: F is a finite subset of A}.

PROPOSITION 1. Given a basis B, then C — {X: X is the union
of an up-directed subset of B] is an algebraic closure system.
Moreover, given any algebraic closure system C, the set B = {[-F7]̂ : F
is a finite subset of \JC} is a basis, and C is the set of unions of
up-directed subsets of B.

LEMMA 2. Suppose C is a collection of subsets of the set A. C
is a basis iff the following hold:

( i ) <C; £> is a join semilattice with zero;
(ii) [a]c exists for every aeA;
(iii) {[a]c: aeA} generates C as a join semilattice.

PROPOSITION 3. Suppose B is a basis on A and X £ B. If in
(B; S ) the meet (or infimum) of X exists, then AX — Γ\X-

LEMMA 4. Suppose A is a partial algebra, φ e Con A, B £ Con A,
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B is a basis on Ax A. If Φ £ Θ for each Θ e B, then BjΦ =
{Θ/Φ:ΘeB} is a basis, and (B; £> is isomorphic to (B/Φ: £>.

Observe that under the above hypotheses, xφx' and yΦyy imply
θB(x, y) = θB(x', y'). Whence ΘB/Φ(x/Φ, y/Φ) = (θB(x, y))/Φ. Lemma 4
follows from Lemma 2.

In the situation under discussion in the preceding paragraph,
the relations ΘB/Φ(x/Φ, y/Φ) and θB(x, y) are completely unambiguous,
even though there may be some ambiguity as to the pair (x, y).
At certain parts of the proofs there will be such x, x', y, yr where
θB(x, y) and ΘB(x', yf) will have different "natural descriptions." This
situation can create an apparent, but spurious, ambiguity in the
meaning of ΘB/Φ(x/Φ, y/Φ).

Suppose C is a basis on Ax A consisting of equivalence relations
on A and D £ A. Then we say "x is the closest thing to y in D,
modulo C" and we write

x CLS y (in D, mod C)

iff the following hold:
( i ) xeD;
(ii) θo(x, y) Q θc{z, y) for every z e D;
(iii) x — y if y e D.
A partial pointed groupoid is a partial algebra (A, , 0> in

which is a binary partial operation and 0 is a nullary operation
and O O is defined and equals 0. A pointed groupoid is a partial
pointed groupoid {A, , 0> in which Dmn( ) = AxA. More generally,
A is a pointed algebra iff A is an algebra and 0 is a nullary operation
of A and {0} is a subalgebra of A.

Suppose A and B are sets, A £ B, Θ is an equivalence relation
on A, and Φ is an equivalence relation on B. Φ is an extension of
Θ i ff Θ = Φ \ A = Φ f ] ( A x A ) .

Suppose A = {A, , 0> is a partial pointed groupoid. The set
A[ - ] is formed by adding to A a new point for each (x, y) such that
x-y is undefined in A. We intend this new point to be the value
of x>y. One obtains a partial pointed groupoid A[-] = <A[ ], , 0>,
in which Dom( , A[-]) = A2, called A freely extended by . Note that
if x y = wv 6 A[ ] — A, then x = u and y = v. A[-] is an extension
of A Set 4[ . ] 0 = <A[.]0, ., 0> - ,4. Set A[.]n + 1 = <A[ ]m+1, , 0> -
(A[ ]J[ ]. The pointed groupoid freely generated by A is Fr{A) —
(Fr(A\ , 0> = <U(A[ ]n: w = 0, 1, •), , 0>. Fr(A) is a pointed
groupoid (i.e., is fully defined), and Fr(A) satisfies an appropriate
universal mapping property. Note that the subalgebra generated by
A in Fr(A) is Fr(A).
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LEMMA 5. Suppose A = (A, «, 0) is a partial pointed groupoid
and ΘeCon(^l). Θ has an extension to a congruence relation of A[ ],
and for its smallest extension, 0[ ], the following hold:

( i ) if a, be A, then a = b (©[•]) iff a = b (0);
(ii) if aeA and b = u v&A. then a = 6 (0[ ]) ijf ίΛere ecmίs

<r, s> e Dom( , A) such that a = r-s (0) , r = u {Θ) and s = v ( 0 ) ;
(iii) if a — x y g A and b = u i ί i , £/te% a = b (0[ ]) ΐ # owe o/

£/&e following holds:
(1111) a? Ξ % (θ) αwd ?/ = v ( 0 ) ;
(1112) ίfeβre β#is£ <p, g), <r, s} eDom( , A) such that x^p (θ), 7/ =

q (0), p g = r-s (β), r Ξ ^ (0), and s = v (<9).

This lemma is simply a specialization of Lemma 3, p. 92 of [8].

Set θ[ ]0 = β and θ[ ] n + 1 = (β[ ] n )H and Fr(θ) = \J(θ[ ]n:n =

LEMMA 6. Suppose A = <A; , 0) is α partial pointed groupoid
and 0 6 Con (A). Then Fr(Θ) is an extension of 0, and it is the
smallest extension of Θ to a congruence relation of Fr(A), the groupoid
freely generated by A.

Suppose L is a lattice of equivalence relations on some set. L
is a type-Z partition lattice, or L has type-Z joins, iff xV y = x°y°x°y
for any x, y e L, where o denotes relation composition. L is type-2
iff every x V y = x°y°x.

Suppose L is an algebraic lattice. C(L) denotes the set or
semilattice of compact elements of L.

We will use xy to stand for x y and Ab or A-b for {ab: ae A} =
{a-b: be A}, etc.

3* Pinched lattices. Suppose a is an ordinal and (Lβ: β < a)
is a family of partially ordered sets. The ordinal sum of (Lβ: β < a),
OΣ(Lβ: β < a), is a poset on the disjoint union of the family (Lβ: β < a)
with the ordering defined by x <̂  y iff x e Lβ and yeLr and β < 7
or else /3 = 7 and a; <; 7/ in Z^. Suppose each Lβ has a greatest
element 1̂  and a least element 0̂ . The collapsed ordinal sum
of the family (Lβ: β < a)—COΣ(Lβ: β < α)—is the maximal homo-
morphic image of OΣ{Lβ: β < a) satisfying 1̂  = 0β+1 for every β such
that β + 1 < α.

PROPOSITION 1. 7/ L is α pinched lattice, then there is a set I
of compact element of L such that I is well ordered by the ordering
of L and such that \/I = 1 and such that each compact element of
L is comparable to every element I.
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PROPOSITION 2. L is a pinched lattice iff one of the following
holds:

(a) L is an algebraic lattice whose unit element is compact;
(b) L is isomorphic to an ordinal sum M + {1} and M is a

collapsed ordinal sum of algebraic lattices each of which has a
compact unit element.

In this section we shall show that each pinched lattice can be
represented as the congruence lattice of a groupoid. The construc-
tion will involve transfinite recursions. The proofs will involve
transfinite induction. The induction hypothesis will include the
following list of conditions. In that list and in what follows V
means the join in (H; S> and not the join in Con A.

(#) (A) A is a partial pointed groupoid.
(B) H £ Con(A) and Δ e H and p: A -> JET.
(C) H is a basis.
(D) Rng(|θ) is a well ordered cofinal subset of (H; £ > .
(E) For every a e A and Φ e H it is the case that p(a) and Φ

are comparable in (H\ £ > .
(F) For every α e A w e have ρ(a) = A ip(b): a = 0 (ρ(b))}.
(G) There i s a ΰ S i such that 0 Φ D x D = Dmn( , A).
(H) For every ae A there is a c e ΰ satisfying c CLS α (in D,

mod if).
( I ) For every a, be A there are c, deD satisfying ΘH(a, b) 2

@H(C, d) such that a and c satisfy the condition in H) and such that
b and c£ also satisfy this condition.

(J) For every u, v, x, yeD we have either ΘH(ux, vy) — ΘH(u, v)V
&H(%, V) o r &H(%, V) = P(U, v, x, y), where p(u, v, x, y) is an abbreviation
for p{u) V ρ{v) V p(x) V p(y).

(K) For every Θ e Con A, Θ contains the iϊ-closure of each of its
finite subsets iff Θ contains the iϊ-closure of each of its elements.

Let u, r, x, ye A. We set Φ(ux9 vy) = θH(u, v) V θH(x, y). Note
that Φ{ux, vy) is defined even if ux or vy is not. We set Ψ(ux, vy) =
ΘH(u, q) V ΘH(x, s) V ΘH(qs, rt) V θs(r, v) V θH(t, y), where qCLS u (in
D, mod H) and r CLS v (in i), mod H) and s CLS x (in D, mod If) and
tCLSy (in D, modJΪ). Suppose (A, H, p) satisfies (#) and Θeif.
Note that Ψ(ux, vy) is independent of the choice of q, r, s, t. It
follows from Lemma 2.5 that if uxe A[ ] ~ A and vyeA[ ] — A,
then ux = vy (©[•]) iff Φ(ux, vy) Q θ or Ψ(uv, xy) Q Θ.

LEMMA 3. Suppose (A, H, p) satisfies (#). Then, for every x, y,
u, v there are q, r, s, t as above also satisfying ΘH(u, v) 2 ΘH(q, r) and
ΘH(x, y) 2 θH(s, ί). Moreover, Ψ(ux, vy) exists and:
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( i ) if ΘH(qs, rt) = θH(q, r) V θH(s, t), then Φ(ux, vy) £ Ψ(ux, vy);
(ii) if θH(qs, rt) Φ ΘH(q, r) V ΘH(s, t) and ΘH(u, q) V ΘH(x, s) V

θn(r, v) V θH(t, y) 2 ρ(q, r, s, t), then Φ(u, vy) £ Ψ(ux, vy);
(iii) if θH(qs, rt) Φ θB(q, r) V ΘH{s, t) and ΘH(u, q) V θH(x, s) V

θH(r, v)VθH(t, y)Qp(q, r, s, ί), then Ψ{ux, vy)QΦ(ux, vy) and θH(x9 y) =
ρ(u, v, x, y);

(iv) Φ(ux, vy) and Ψ(ux, vy) are comparable.

Proof of Lemma 3. By (H) and (I) of (#) such q, r, s, t exist,
and so Ψ(ux, vy) exists. For (iv), keep in mind that Ψ(ux, vy) is in-
dependent of the choice of q, r, s, t. The rest now follows easily from
(D), (E), (F) and (J) of (#) and the following observations. In (ii),
we clearly have Φ(ux, vy) £ θH(u, q) V θH(x, s) V θH(r, v) V θH(t, y). In
(iii), we have p(qf r, s, t) 2 Ψ(ux, vy) and θH(x, y) 2 θH(s, t) =
ρ{q, r, β, t) 2 Φ(ux, vy) 2 θH(x, y). Since θH(x, y) = p(q, r, s, t), by (D)
and (F) of (#), θH(x, y) = p(x, y). Moreover, p(χ9 y) = p(x, y, u, v) =
P(qf r, 8, t).

DEFINITION. Suppose (A, H, p) satisfies (#). (A*, H*, p*) is an
extension of {A, H, p) iff the following hold:

( i ) A* is an extension of A;
(ii) 4 x i S D m n ( . , n
(iii) [θ]ff. Π(4xi) = θ for any θ e H;
(iv) JEΓ* = {[β]jr.:θ6JEΓ};
(v ) For each α e i , we have p*(a) = [/t>(α)]H ;
(vi) Rng(/>*) = {[Θ]̂ .: Θ 6 Rng ^
(vii) (A*9 H*, p*) also satisfies (#).

Note that it is implicit in (iii) of this definition that [Θ]H* is
required to exist for each θ e H.

Next we state the principal lemmas for this section.
Recall that C(L) is the set or semilattice of compact elements

of L.

LEMMA 4. If L is a pinched lattice, then there is a (B, H, p)
satisfying (#) with C(L) = (H; S>.

Set JBΓ[.] = {θ[ ]:θeH}. We define p[ ] by ρ[ ](a) = /t>(α)[ ] if
αe A and /θ[ ](α&) = (Mp(c): ab = 0 (/o(c)[.])})[-].

LEMMA 5. J/ <JL, iϊ, |θ) satisfies (#), ί/̂ ê  i ϊ[ ] is α 6αsis
], H[-]f ρ[-]) is an extension of (A, H, p).

LEMMA 6. Suppose:
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( i ) a is a limit ordinal;
(ii) for any β < 7 < a(Ar, Hr, pr} is an extension of {Aβ, Hβf pβ);
(iii) Aa = (Aa, , 0> = <U(A,: β < a), , 0>;
(iv) for each ΘeH0 we have Θa = \J([θ]Hβ: β < a) and Ha =

( v ) for each ae Aa we have ρa(a) = U (Pβ(a): β < a and a e Aβ).
Then Aa is a pointed groupoid and <Aα, Ha, pa) is an extension of
{Aβ, Hh pβ) for all β < a.

Suppose {A, H, p) satisfies (#). Set <A0, HQ, ρQ) = (A, H, p) and
set (An+1, Hn+19 ρn+1) = (An[Ί Hn[ ], /on[ ]>. Then (Aω, Hωy pω) =
(Fr(A), {Fr(θ):θeH}, pω). So we set Fr{H) = Hω and Fr{p) = pω.

LEMMA 7. 1/ <̂ L, H, p) satisfies (#), ίfeβ^ <JFr{A), Fr{H), Fr(p))
is an extension of {A, H, p}.

Suppose that (A, H, p) satisfies (#) and Dmn( , A) = A2. Also
suppose λ = <α, 6, c, d> 6 A4 and a Φ b and C Ξ ( J (θH(a, &)). Take p, g,
r£ A and set i ' = (A U {p, q, r}, , 0> where x - y is defined (and equal
a?-3/ in A) iff x, y e A. For <9eff with p(α, 6, c, d)=>θ, set Θ' = ΘU
{<P, P>, <?, g>, <r, r>}. For θ 6 £Γ with p(a, b, c, d) S θ, set <9' = 0 U
(0/Θ U {p, q, r})\ (Note that by (E) of (#) Θ' is defined for each θ e
H.) H' = {&: θ 6 H). Set p'{p) = /0f (g) = p'(r) = (/θ(α, &, c, d))' and
i°'(») = (p(ρ))' if ^ s A. Let Φ be the smallest equivalence relation
on A'[ ] which includes (c, ap) and (bp, bq) and <αg, αr> and <δr, d>
Φ is a congruence relation of A'[ ] because Φ\A, is the equality
relation and Dmn( , A'[ ]) = (A')2. Set A, - (A'[.])/Φ = (Ah , 0>.
Since Φ| 4/ = Δ, Aλ is an extension of A'. So we assume A! £ A .̂
For each θe H, let Θ̂  be the smallest congruence relation of Aλ

containing Θ'. We let Hλ = {©/. θ e i ϊ } . For cceA' we set pλ(x) —
((P\X))\A)X, and for xeAλ-A' we set ft(«)

LEMMA 8. Under the above hypotheses the following hold:
( i ) <A', H', p'} is an extension of <A, H, p);
(ii) (Aλ, Hλy pλ) is an extension of (A, H, p);
(iii) in Aλ we have c = d (θ(a, 6)).

The last part of the above lemma means that if Ψ e Con(A^) and
a = b (Ψ), then also c = d (Ψ).

We will prove these lemmas later.

THEOREM 2. If L is a pinched lattice, then there is a pointed
groupoid A satisfying the following:

( i ) Con (A) is isomorphic to L;
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(ii) if c = d (θ(a, &)), then there are p, q, re A so that c = ap
and bp = bq and aq = ar and br = d;

(iii) all joins in Con A are type-Z.

We shall prove this theorem assuming Lemmas 4-8. We can
slightly reduce our total notational complexity by first proving
another lemma.

Suppose A is a pointed groupoid and (A, H, p) satisfies (#). Index
{λ: λ = <α, 6, c, d) e A\ a Φ b, c = d (θH(a, &))} by its cardinal number
tc. Set (A, H, p) = (Ao, Ho, ρ0). Suppose a ^ tc and (Aβ, Hβ, ρβ) has
been defined for all β < a and for Ύ < β < a(Aβ, Hβ, pβ) is an
extension of (Ar, Hr, pr) and Aβ is a pointed groupoid for all β < a.
If a = β + l, set <^α, £Γβ, ̂ > = (Fr((Aβ)λβ), Fr((Hβ)λβ)\ Fr((pβ)λβ)).
If a is a limit ordinal, then we let (Aa, Ha, pa) be given by Lemma
6. Set (A", H", p"} = <AK, Ht, ft>.

LEMMA 9. Under the above hypotheses the following hold:
( i ) A" is a pointed groupoid;
(ii) (A"9 H'\ p") is an extension of (A, H, p)
(iii) if af be A and c = d (θH(a, &)); then there are pf q, re A" so

that c = ap and bp = bq and aq = ar and br = d.
(iv) if a, be A, then in A!' we have Θ(a, b) Ξ2 θH(a, 6).

REMARK. It is a general fact that if <C, K, σ) is an extension
of some (B,H,p), then the mapping which sends Θ—>[Θ]K is an
isomorphism from (H; Q) onto (K; £>. This can be proved by
noting that (iii) of the definition implies Θ £ Φ iff [Θ]κ £ [Φ]κ (and
so the mapping is an order isomorphism) and (iv) of definition implies
this mapping is onto. A further consequence is that if a, b, c, de B
and c = d (ΘH(a, b)), then also c Ξ d (θκ(a, 6)).

Proof. Using the last sentence in the remark and Lemmas 6,
7, and 8 and transfinite induction, one can easily show for each a ^
K that (Aa, Ha, pa} exists and is an extension of each (Aβ, Hβy pβ}
with β <* a and that Aa is a pointed groupoid. Thus (i) and (ii) hold.

Let a, be A, and let c = d (θH(a, 6)). Suppose a Φ b. Then since
(a, b, c, d) is some λ̂  we have the required p, q, r. If A is the one
element algebra, we may (and must) take p = q — r = 0. Suppose
IAI ^ 2 and α = δ. Then, since Δ e H, c = d. Choose any V Φ a.
Then (a, b\ c, d) is some λ̂ . So in A" there is a p with ap = c — d.
So in this case we let q = r = p. Thus (iii) holds, (iv) follows easily
from (iii).

Proof of Theorem 2. Let L be a pinched lattice. Set (AQ, Ho, p0) =
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(Fr{B), Fr(H), Fr(p)) where (B, H, p) is given by Lemma 4. Set
(An+1, Hn+1, ρn+1} = (A"9 H", ρ"+1) using the construction for Lemma
9. Consider (Aω, Hω, pω) as given by Lemma 6. We set A = Aω.
Since A is a direct limit of pointed groupoids, A is also one.
Lemma 4, Lemma 7, Lemma 9, Lemma 6, induction, the transitivity
of the extension relation, and the remark after Lemma 9 all imply
that (Hω; £> = (H; £> = C(L), the semilattice of compact elements
of L.

We claim that Con A is isomorphic to L; i.e., we claim (i) holds.
It suffices to show that the semilattice of finitely generated con-
gruences is isomorphic to C{L)\ i.e., it suffices to show that Hω is
the set of finitely generated congruences of A. By the definition of
basis and (K) of (#), it suffices to show that in A we have Θ(α, 6) =
Θiiω(a> δ) for each a, be A.

If α, b 6 An, we let θn(a, b) denote the smallest congruence relation
of An containing <α, 6>. By (iv) of Lemma 9 and induction, by Lemma
9 and Lemma 6 and the remark after Lemma 9, and from general
principles we have, for each α, be A, that ΘHω(a, b) 2 θ(a9 b) 2
\Jθn+1(a, b): a, beAn)^ \J(θs%(a, b): a, beAn) = ΘHfa, b). But this is
what we were required to prove. Also, (ii) of Theorem 2 now follows
easily from (iii) of Lemma 9. We defer the proof of (iii) till after
the proof of Lemma 4.

Proof of Lemma 4. We suppose L is a pinched lattice. Set
B = C(L), and let 0 be the zero of C(L). Set 0-0 = 0 and Dmn( ) =
{<0, 0>} and B = (B, , 0>. For b e B define Θb by x = y (θh) iff x = y
or x V y ^ 6. We set H = {Θb: beB}. Let I be the set given by
Proposition 1. Define σ: B—> I by σ(b) = f^{iel:b ^ i). Then set
PQ>) = θσ[b). It is not too hard to show that (B, H, p) has the
required properties. Details are left to the reader.

Proof of (iii) of Theorem 2. Let c, d e A and Θ,Φe Con(A). Suppose
c ΞΞ d(Θ V Φ) and c ^ d (Θ) and c ^ d (Φ). Since θ(c, eZ) is compact in
Con(JL), we can find compact <90, Φo such that c = d (β0 V Φo)

 a n ( i Θo £
Θ and Φo £ Φ. For the JS and H of the proof of Lemma 4 we have
BQA and Θ0\BeH and φ o | 5 e i ϊ . So there exist a,beB with ΘOU =
θH(α, 0) and Φ 0 | β = θH(b, 0) and θH(α, 6) = ΘO\BVΦ0U Hence θ 0 = θ(α, 0)
and Φo = 0(6, 0) and Θo V Φo = θ(α, 6). Thus we have c Ξ d (Θ(α, 6)).
By (ii) there exist p, q, r such that c = αp = Op (Θo) and Op = bp =
6g Ξ 0g (Φo) and 0g = aq = α?- = Or (<90) and Or = br = d (Φo). That
is, <c, d> 6 θoφoθoφ.

Proof of Lemma 5. By Lemma 2.5 z/A[ ] = z/A[.]. So (A) and (B)
of (#) hold for A[ ] and H[ ].
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It follows from Lemma 2.5 that Θ[ ]\A = Θ for any ΘeCon(A)
and that H[>] £Con(A[ ]). It follows that <ff[ ]; £> is isomorphic
to the semilattice (H; £>.

Lemma 2.5, (#) and Lemma 3 imply that θBί.i(e, f) exists for
each β,/eA[ ] and that the following hold for θBί.i(e> / ) :

( i ) if e, fe A, then θHί.}(ef f) = (θB(e, /))[•];
(ii) if eeA and / = vy £ A and r CLS v (in D, mod iϊ) and

t CLS y (in D, mod H), then 0H[<](e, /) = (θB(e, rt)\JΘH{r, v)VθH(t, y))[-];
(iii) if e = ttcc g A and f — vy $ A, then βff[.](β, /) is the smaller

of Φ(%05, vi/)[ ] and 5Γ(wίc, vi/)[ ]. (These notations are from before
Lemma 3.)

Lemma 2.2 applied to H, that if[ ] = {θ[-]:θe H}, and the above
imply that JHΓ[ ] satisfies (i)-(iii) of Lemma 2.2. We conclude that
Jff[ ] is a basis. So (C) of (#) holds.

That (D) of (#) holds for p[-] and jff[ ] follows easily from the
isomorphism between (H; £> and <!?[•]; £> and from the definition
of p[ ] and that it holds for p and H. Similarly for (E) and (F) of

(#).
A x A = Dmn( , A[ ]). So (G) of (#) holds.
If ae A, then certainly a CLS α (in A, mod £Γ[ ]). If a = vy & A,

then rίCLSα (in A, modjEf[ ]) for any r, ί satisfying rCLS v (in D,
modiϊ) and tCLSy (in D, mod J5Γ). So (H) of (#) holds.

Consider (I). Let e,feA[ ]. If e,feA, then θH[.](e, /) 2
βtf[.](β> /) w ϋ l suffice. If β 6 A and / g A, we established above there
is a ^ with #CLS/ (in A, mod #[•]). It follows that θ^M(β,/) 2
6W](/, ^) Hence 0H[-](^ /)2θ f f [.](e, fir). Let β = M ί i and / = vy $
A. Using (I) of (#) for A and H, choose q, r, s, t satisfying q CLS u
(in JD, modίί), etc., and θH(u, v)^θH(q, r) and θB(x, y)^θB(8, ί). So
Φ(w, vy) 2 e*(9, r) V θB(s, t) 2 β^tos, rί). Thus we have θBlΛ(et f) 2
ΘH(qs,rt). In the preceding paragraph we established that gsCLSe
(in A, mod JEΓ[ ]) and rt CLS f (in A, mod fΓ[ ]). So (I) of (#) holds.

Given Lemma 3 and descriptions of the ΘHί^(e9 f) and that (J)
holds for A and H, it is easy to show that (J) holds for A[ ] and
H[ ], There are three cases: (i) ux, vyeA; (ii) uxeA and vy&A;
(iii) ux & A and vy ί A. (i) and (iii) are left to the reader. Suppose
ux e A and v̂ / g A. Choose r, t satisfying r CLS v (in D, mod iί) and
t CLS ]/ (in JD, modίZ"). Then ΘHiΛ(ux, vy) = (6^(^, rί) V Φ(rί, ̂ ) )[ ].
The case ΘH(ux, rt) = Φ(w, rί) is easy. Suppose ΘH(ux, rt) Φ Φ(ux, rί).
If Φ(rί, vy)^p(u, x, r, ί), then &Hi^{ux, vy)HΦ(rt, vy)[ ]ΏΦ(ux, vy)[ ]^i
ΘHί.j(ux, vy). So we may suppose by (E) of (#) that Φ(rί, vy) £
p(u, x, r, ί). Now (J) for A and i ϊ implies θB(x, y) = θB(x, t) —
p(u, x, r, ί) = p(u, x, v, y).

Since H is a basis, each member of H is the closure of some
finite subset of A x A. So (K) of (#) for A[ ] and H[ ] follows
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easily from (K) of (#) for A and Hand from θ—> θ[ ] being an order
isomorphism.

The details for showing that (A[ ], H[-], p[-]) is an extension of
(A, H, p) either are easy or appear above.

Proof of Lemma 6. Suppose x, yeAa. Then there is a β < a
with x,yeAβ. (ii) of the definition of extension implies x-y is
defined in Aβ+1. So Aa is a pointed groupoid. Let 7 be the least
ordinal wi th x,ye Ar. We note t h a t θBa(x, y) = ((ΘHγ(x, y)) \ Ao)a =

LKβir/α, V):v£β< a). Obviously J^α = {ΔAQ)a and # α £ Con Aa.
(Ha; Q) is isomorphic to the semilattice (Ho; £ > . Lemma 2.2 applied
to Ho, the definition of extension, that Ha = {βα: 0 e iZo}> and the
above show that (i)-(iii) of Lemma 2.2 hold for Ha. We conclude
that Ha is a basis. Since pa: Aa —• ifα, we have that (A), (B), and
(C) of (#) hold.

Let σ: Ao -> £Γα be defined by α(α) = (po(a))a. Clearly Rng(σ) =
Rng(pa) because of (v) and (vi) of the definition of "extension." Now
(D), (E) and (F) of (#) follow easily.

4 f f x 4 = Dmn( , Aa), and (G) of (#) holds. Since α?CLSίc (in
Aa, ModHa) holds for every xe Aa, (H) and (I) of (#) hold.

Suppose 7, <?, ε are the least ordinals satisfying ux, vy e Ar and
% , v e i δ and x, ye Aε. Note that δ, ε <£ 7. Now

((®Hr(u>x, vy)) 14o)α = ((θH r(u, v) V θjϊ/α, i/)) I ^0)α

= ((θ^(u, ^))L0)α V «βφ, y))\A)a

= θ ^ ( u , v) V θ//α(x, i/)

or βHβ(a?, y) = ((ΘHε(x, y))\Ao)a = {{ΘHγ{x, y))\Ao)a = ((pr(u, v, x, y))\Ao)a =

ρa(u, v, x, y). So (J) of (#) holds.
The proof that (K) of (#) holds is similar to the proof of the

corresponding part of Lemma 5.
Note that if ΦeHβ, then Φ = [Φ\AQ]H3 because (Aβ, Hβ, pβ) is an

extension (Ao, Ho, ρ0).
It is now easy to check that (Aa, Ha, pa) is an extension of

(Aβ, Hβ, pβ) for each β ^ α.

Proof of Lemma 7. This is a corollary of Lemmas 5 and 6.

Proof of Lemma 8. We assume (i), the proof of which is quite
straightforward.

Set X= {xeA: p(x) ^ p(a, b, c, d)} and Y = A - X. Observe
that
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Claim 1. If xf xOf xteX and yeY, then:
( i ) ΘH(xOy x,) £ p(a, b, c, d);
(ii) θE(x, y) 5 P(a, b,c9d);
(iii) p(a, b,c,d)\x = XxX.

It then follows easily from Lemma 2.5 and the definition of the
map θ -> θ' that

Claim 2. If, in A'[ ], & belongs to one of the sets A',
{A ί, r}-{p, ί, r}, Xp9 pX, Xq, qX, rX, Xr, Yp, pY, Yq, qY9 Yr, rY and
y belongs to a different one, then θHfί^(xf y) 2 p'[-](a, b, c, d).

Set T (for trash) = A'[ ] - ( 4 ' U l ^ U l ^ U l r ) . We clearly have

Claim 3. If a? and y are in different blocks of the partition
{A', T, Xp, Xq, Xr}, then θB.iΛ{x, v) 2 j0'[ ](α, 6, c, d).

A'[ ] is pictured in Figure 2 and Â  is pictured in Figure 3.

Θ

FIGURE 2

Θ
FIGURE 3

Recall the relation Φ used in the definition of Aλ. Observe that

ΦΩ(p(a,b,c,d))'[ ].
In what follows we let + denote equivalence relation join. ( +

need not coincide with join in Con(̂ 4'[ ]).) Thus we have

Claim 4. If θe H and θ 2 ρ(a, 6, c, d), then (©'[•] + Φ) = ©'[•].

In order to establish that Hλ is a basis and that each θλ \ A = θ,
we need a fairly detailed description of 0 .̂ We will show for each
ΘeH that (©'[-] + Φ)eCon(JL'[ ]). From this it follows on general
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principles that Θλ = (<9'[ ] + Φ)/Φ. So we will profit from an examina-
tion of ©'[.] + Φ.

Claim 5. The following hold for x, ye A'[ ] and ΘeH:
( i ) iί x and y both belong to one of the sets A! U T, Xp U T,

Xg U Γ , I r U T, then a; s y (©'[.] + Φ) iff a? = y (©'[•]).
(ii) if xeA' and yeXp, then a; Ξ 7/ (©'[•] + Φ) iff a? = c (©'[•])

and ap = y (©'[•]);
(iii) if xe A' and j/eXr, then a; = 7/ (θ'[ ] + Φ) iff x = d (©'[•])

and J r s y (©'[•]);
(iv) if #e A' and yeXq, then ^ | / (©'[.] + i>)iffa; = c (©'['])

and α - 6 (©'[•] and δg Ξ= y (©'[•]);
(v) if x e l p and i/eXg, then x = ^ (©'[.] + φ) iff a? = bp (©'[•])

and 6g = 2/ (©'[•]);
(vi) if a; e Xq and 7/ 6 Xr, then x = y (<9'[ ] + Φ) iff x = αg (©'[•])

and O T Ξ Ϊ (©'[•]);
(vii) if xeXp and #e Xr, then a? Ξ 7/ (θf[ ] + Φ) iff x = αp (©'[•

) and 6r s 7

The proof of the claim is quite routine, and so we leave most
of the proof to the reader. But we prove part (i) as an example.

It is obvious that if x = y (©'[•]), then x = y (Θ'[ ] + Φ). So we
suppose x ΞΞ y (θ'[ ] + Φ) and a; and 7/ both belong to one of the sets
A! l)T,Xpl) T, Xq U T, Xr U T. If θ 2 ^(α, &, c, d), then by Claim 4
a; = y (©'[•]). So ^β suppose θ £ /θ(α, &, c, ώ).

Let x0 e T, xλ e A', x2 e Xp, xz e Xq, x± e Xr. By Claim 3 we have

(*) Xi&x, (©[•]) if ί ^ i .

Since a; = y (θ'[ ] + Φ), there is a sequence a; = s0, , sn = y with
sέ = sί+1 (©'[•]) or s, = s<+1 (Φ), for i = 0, , n - 1. Suppose s0, ••-,«„
is a sequence of shortest length having these properties. Then
Si Φ Sj if iφ j . If i <^ n — 2, then s4 Ξ gi+1 (©'[•]) if and only if
Si m si+1 (Φ) iff si+1 Ξ sί+2 (Φ).

Let us suppose w ^ 2.
Let us also suppose x, y e A' U Γ.
Now x = s0

 Ξ Sj. (Φ) or βi Ξ s2 (Φ). So we take k to be the least
integer such that sk = sk+1 (Φ). Note that x = sk (©'[•]) and sfe Φ sk+1.
From the fact that θ g /θ(α, δ, c, d) and (*) and the definition of Φ,
we may conclude that x e A' and sk e {c, c£}. Suppose sfc = c. The
definition of Φ implies sk+1 = ap. Since 7/ g X^, 7/ ^ β̂ +x and & + 1 =£
n. So there is an sk+2 and S H 1 Ξ S H 2 (©'[•]). Since θ^p(af b, c, d), Claim
3 yields that sk+2eXp and sk+2φy and & + 2 ^ w . So there is an sk+5

with sfc+2 = sk+3 (Φ) and sfc+1 Φ sk+3 Φ sk+2. Now since sk+2 e Xp and
α^, the definition of Φ yields sk+2 e ({ap, bp}) — {ap} —
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{bp}; i.e., sk+2 = bp. Continuing in this fashion we find that sk+B = bq
and sk+i = aq and sfc+5 = αr and sk+6 = δr and sfc+7 = d (and k + 7 ^ n).
Keep in mind that αp = sk+1 = sk+2 = bp (&[-]). Now (iii) of Lemma
2.5 implies a = b (©') or else there exist eff,u,veA (note A2 =
Dom( , A')) with α = e (©') and & = f {&) and β w Ξ f.v (©') and % =
p = v (θ') The latter fact implies that if a Ξ£ b (θ')9 then /0(α, b, c, c?) £
©. Hence a Ξ= ί> (©'). By construction α == 6 (<9). 0 e i ϊ and the hypo-
theses imply c ~ d {&). So c = d (©'[•])• Thus χ = so = c = d —
sk+7 (β't D As a result we see that & = s0, cί = sfc+7, sfc+8, , sπ = y
is a sequence in which consecutive members are equivalent under
θ'[ ] or Φ. Yet it is shorter than the shortest such sequence con-
necting x and y. The case with sk = d is similar.

Let x, ye Xp U T. Suppose x e T. As above we find that a; Ξ
sfc(θ'[ ]), where ske{c, ap, bp, bq, aq, ar, br, d}. But Claim 3 implies
x Ξ£ sk (&[ - ]). So x $ T. Similarly y g T. So x, ye Xp. Now one can
proceed as in the above case and derive a contradiction.

Similar contradictions can be derived for the cases (x, yeXq[jT)
and x,ye (Xr U T).

So n g 2.
If % = 0 or n = 1 and s0 = s2 (Φ), we find that a? = s0 = sx = ?/

(x == y (φ) implies x = y because x, y e A! U T or x, ye Xp U T, etc.).
In this case x = y (©'[•]). The only remaining possibility is w = 0 or
1 and x0 = So = s1 = y (©'[•]).

This conclude our proof of (i). As stated above, the remainder
of the claim is left to the reader. While doing the remainder, keep
in mind that if x e X and θeH and ρ(a, b, c, d) Q θ, then under <9'[ ]
we have the following congruences

= O O Ξ x - p ~ x q == χ - r .

By Claim 5.(i) we have (θ'[ ] + Φ)\Λ, = & for any ΘeH. Then
it clearly follows that θ[ ] + Φ e Con(A;[ ]). From general principles
we have that Θλ = (θ'[ ] + Φ)/Φ for each θe£Γ. That Hλ is a basis
is now easily proved using Lemma 2.2 and Lemma 2.4. Since Φ\A~
AAy Claim 5.(i) implies [θ]Hχ f](AxA) = (©'[•]) Π (A x A) = 0 for each
ΘeH.

It is now clear that (A)-(G) of (#) hold and that (i)-(vi) of the
definition of extension hold.

In order to complete the proof, we need descriptions for θHi(x, y)
for x and y in various subsets of Ax. Essentially, Claim 5 provides
us with these descriptions.

From (i) of this lemma and Lemma 5 we know that for any
a;ei'[ ] there is a z with zCLSx (in A!, modiΓ[ ]), From Claim
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5.(i) it follows, for xeA'UT, that zCLSa; (in A',moάH'[ ]) iff
z CLS x (in A', mod Hλ). So for each x e A! U T we have the required
z. Claim 5 ensures the following: if xe(Xp\J Xq), then cCLSss
(in A', modify); if xe(XqUXr), then dCLSα (in A', moάHx). (We
remind the reader that closest elements need not be unique.) So
(H) of (#) holds.

Consider (I) of (#).
Suppose a j e i ' U Γ . By (i) of this lemma and Lemma 5 and

the preceding paragraph there exist u, v such that θSχ(x, y) =
(β*'[.](3, V) + Φ)/Φ2(θ7r[.](^, v) + Φ)/Φ = β ^ K v) and ^CLSz (in A',
mod Hχ) and v CLS # (in A', mod If*).

Suppose xeT and j/6 Xp U Xq U Xr. Then

©*/», ») - (©H'C.](«, tf) + Φ)IΦ

By Claim 3 we have ©#>[.](#, 1/) 2 /0'[ ](α, 6, cf d). By Claims l.(iii)
and 4 we have c = ί/ == d (θir'[-]( ,̂ 2/))- Let v = c or ώ as appropriate
and choose any u satisfying uChSx (in A', modify). So x Ξ ^
(θίr/[.](ί», i/)). We clearly have θHjl(α;, i/) 2 θHλ(x, v) 2 θH/w, v) since
veA'.

Suppose x e A' and y e Xp U Xq U Xr. Above we established that
there is a 2 satisfying z CLS y (in A', mod flj). We have then
θH?(x, y) 2 θHχ(x, z). Note that x is closest to itself.

If x,ye (Xp U Xg), then θHi(x, y)Ώ, Δ — θHλ(c, c) will suffice.
Similairly for x,ye (Xq U Xr).

If x 6 Xp and 2/ e Xr or vice versa, then Claim 5 implies
θHχ(x9 y) 2 θHi(c, d). But c is closest to x and d is closest to y (or
vice versa).

If x e A', then a? is closest to itself. So if x,ye A', θHλ(x, y) 2
θff/βf 2/) w i l 1 suffice.

So (I) of (#) holds.
Consider (J) of (#) and let {u, v, x, y) £ A'. There are the follow-

ing nondisjoint cases:
( i ) {ux, vy) QA'UT and {{u, x>, (v, y}} Π {<α, p>, <δ, r>} - 0 ;
(ϋ) α = 2/;
(iii) a? Φ y and a? 6 {p, q, r) and % , i ; j e ( l U {p, q, r});
(iv) ^ 1 / and 3/6 {p, g, r} and %,ί),xe(lU {p, g, r});
(v) sc 9̂= 2/ and a; 6 {p, g, r} and u e X and {v, i / } ^ l U {p, g, r};
(vi) x Φ y and y 6 {p, g, r} and ve X and {̂ , a J g l U {p, q, r}.
(i)-(iv) are easy to check, and (vi) follows from (v) since, in

general, θHχ(w, z) = θHχ(z, w). So we shall prove (J) under the addi-
tional hypotheses in case (v).

Observe that χ = 0 = y (θHχ(x, y)). We may assume θH){x, y)ξ^pλ(u,
vf x, y). Note that pλ(u) £ pλ(x) — θHλ(x, 0) £ θHχ(x, y). Since one of
v and y is in Y, (E) of (#) now implies pλ(u, v, x, y) = pλ(v, y). Since
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θHλ(y, 0) £ θHλ(x, y), we have ΘH?(y, 0)ap(v, y) = p(u, v, 0, y). There-
fore, by cases (i)-(iv) we have θHi(u0, vy) = θHλ(uf v) V θHχ(0f y).

If p l u { | ) , tf, r}, then t e Γ , by the hypotheses of case (v).
But then since ueX, we have pλ(u) £ ^(x) £ θHλ(u, v) by Claim l.(ii).
If yeY, then ft(u) £ ft(cc) £ θ/^d/, 0). In any case, we have that
ftfa) £ ft(s) £ ©*>, V) V θHλ(0, y) = θHλ(u0, vy).

Suppose θHλ(ux, vy) £ pλ{x). We know that ux = uO (pλ(x)). Then
we may conclude that θHλ(u, v) V θHλ(0, y) = β^/wO, vy) = /θλ(aj) =
ft(w, α?). Thus we obtain t ; Ξ ^ Ξ θ Ξ ? / Ξ ί c (Pχ(x)). By (F) of (#) we
obtain pλ(u, v, x, y) = ^(ίc) = θ^(ίc, y). This contradicts an early
assumption. So we may conclude by (E) of (#) that pλ(x) £ θHλ(ux, vy).
Therefore uO = ux = vy {βHλ{ux, vy)).

Now we have θH)(ux, vy) = θ^/uθ, v̂ /) V Pχ(x) — θHλ(u, v) V

ΘHX(P, y) V ft(a?) 2 θHi(u, v) V θJί;(x, y) 2 βir,(wa?, vy).
This concludes the proof.

4* Ideals of a distributive lattice* This section amounts to a
repeat of §3 with seemingly minor, but crucial, variations.

In this section we shall prove that the ideal lattice of every
distributive lattice can be represented as the congruence lattice of
a groupoid. The induction hypothesis for the proofs will include
the following list of conditions. We continue the convention of V
meaning the join in (H; £>.
(#) (A) A is a partial pointed groupoid.

(B) i ϊ £ C o n J . and (H; £> is a distributive lattice with zero.
(C) H is a basis.
(D) For some nonempty D, Dmn( , A) = D x D.
(E) For every a,beD, it is true that α O = 6-0 (f\H).
(F) For every ae A there is a ceD satisfying c CLS a (in

D, mod if).
(G) A2 = I\JO a n d

( i ) if <α, δ> 6 0, then α = 0 (6^ (α, 6)), and
(ii) if <#, v) e I, then <v, y) e I, and
(iii) if (y} v) e I, then there is a <<2, /> 6 I n (DxD) satisfy-

ing d GLS i/ (in D, mod i ϊ) and / CLS v (in D, mod H),
and

(iv) if c,d,e,feD and <cϋ, /> 6 I, then
(a) (cd, ef) e I, and
(b) θH(cd, ef) = [ΘH(c, e) Λ θH(d, 0)] V θH(d, / ) ,

and
(v) (x, x) e I for every xe A.

(H) For each θ e H there are a, be A so that θH(α, b) = β.
(I) For every θeCon^l, β contains the H closure of each of its

finite subsets iff θ contains the H closure of each of its elements.
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Let x, y,u,ve A. Set Φ(xy, uv) = [θB(x9 u) A θH(y, 0)] V θH(y, v).
Note that Φ(xy, uv) is defined even in those cases where xy or uv
is not defined. Let c (resp., d, e9 f) be a closest element in D to x
(resp., y9 u, v). Set W(xy, uv) = (ΘH(x, c) A θH(d, 0)) V θB(y, d) V
θB(cd, ef) V (θB(e, u) A θB(f, 0)) V θB(ff v) = Φ(xy, cd) V θB(cd, ef) V
Φ(ef9 uv).

LEMMA 0. (A) If (A)-(P) of (#) hold for A and H, then:
( i ) [ΘA ΘH(b, 0)] V θB(a, b) = [ΘA θB(a, 0)] V θB(a, b) for

any Θe H and any a, be A;
(ii) ΘH(ab, cd) £ Φ(ab, cd) = [θH(α, c) Λ ΘH(&, 0)] V θB(b, d) for

any a, b, c, de D;
(iii) For any x, y, u,v,s,teA it is the case that Φ(xyf uv)V

Φ(uv, st) 2 Φ{xy, st);
(iv) for any x, y, u, v e A, it is the case that Ψ(xy, uv) is

independent of the choice of c, d, e, f
(B) If (A)-(G) of (#) hold for A, H, I and O, then:

( i ) if (vf ^> 6 /, then Φ(xy, uv) £ W(xy, uv);
(ii) if {y, v) e 0, then Ψ(xy, uv) £ θB(yf v) =

Proof (A.i) holds because <iϊ; £> is distributive and θH(a, 0) V
β^(α, b) = ΘH(6, 0) V θH(α, 6). Note that by (E) of (#) we have ab =
aO = cO = cd under θB(b, 0) V θ f f(δ, (Z). (A.ii) now follows from the
distributivity of (H; £ > . (A.iii) is a routine calculation using (A.i)
and distributivity.

Now consider (A.iv). Let c and c' (resp., d and d\ e and e', f
and /') be iϊ-closest elements in D to x (resp., yf u, v). Recall that
Ψ(xy, uv) = Φ(xy, cd) V θH{cd, ef) V Φ(eff uv). We wish to show
Ψ(xy, uv) also = Φ(xy, c'd') V θH(c'd', e'f) V Φ(e'/', uv). Note, by
definition of JEί-closest that θH(x, cf) — θH(x, c), etc. So Φixy, cd) —
[θH(x, c) A θH(y, 0)] V θB(y, d) = [θB(x, c') A θB(y, 0)] V θB(y, d') =
Φ(xy, crdf), etc. Now using (A.ii) and (A.iii) we obtain Φ{xy9 cd) =
Φ(xyf cd) V Φ(xy, c'd') = Φ(xyf c'd') V φ(c'd', cd) 2 Φ(xy9 c'd') V θB(c'd'9
cd) 2 Φ(xyf c'd') = Φ(a?2/, cd). That is, Φ(xτ/, cd) = Φ(χyf c'd') V θ^(c'd',
cd), etc. The desired result follows from this.

Let xf yy u, v, c, d, e, f be as above.
Suppose <j/, v) 6 1 . Then by (G.iii) and (G.iv) of (#) we may

suppose ΘH(cd, ef) = Φ(cd, β/). Then Ψ(xy, uv) = Φ(xy9 cd)VΦ(cd, ef) V
Φ(fif9 uv) 2 Φ(a?i/, uv) by (A.iii) of this lemma.

Suppose (y9 v) e O. Certainly Φ(xy9 uv) 2 θB(y9 v) and y = d =
0 = / = v under θH(y, v). So by (E) of (#) we have θH(cd, ef) £
ΘH(V9 V). Clearly, we also have Φ(xy9 cd) = [θH(x9 c) A ΘH{y, 0)] V
θB(yf d) Q θH(y9 v), etc. Thus ¥(xy9 uv) £ θB(y, v).
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DEFINITION. Suppose (A, H, I, 0) satisfies (#). (A*, H*, /*, O*>
is an extension of (A, H, I, 0) iff:

( i ) JL* is an extension of A;
(ii) 4 x 4 £ D m n ( . , l * ) ;
(iii) I* n A2 = I and 0*nA 2 = 0;
(iv) [Θ]^ n A2 - Θ for any θ e H;
(v) H* = {[θ]H :βeίΓ};
(vi) <,!*, £Γ*, J*, 0*> also satisfy (#).

Note (as in §3) that it is implicit in (iv) of this definition that
[θ]H* is required to exist, for each ΘeH.

LEMMA 1. Suppose (A, H, I, 0) satisfies (#). If (A*, £Γ*, I*, 0*>
satisfies (i)-(v) of the definition of "extension" (with respect to
(A, H, I, 0 » and (A)-(G) o/ (#), ίλen <A*, JET*, I*, 0*> is OM es-
tension of {A, H, J, 0>.

In other words, (H) and (I) of (#) are preserved "for free."

Proof. Since (H) of (#) holds for H and since (iv) and (v) of
the definition hold, if* clearly also satisfies (H) of (#).

Let θ be a congruence of A* containing the IP-closure of each
of its elements. By (iv) and (v) of the definition Θ\A 2 θH(a, b) for
every (a, b)eθ\A. Hence Θ\A contains the Jϊ-closure of each of its
finite subsets.

Let X* be a finite subset of θ. For each p* e X* it is the case
that (ΘH*(P*))\A£H. SO there is a p e i with (ΘAP*))\A = θH(p).
Whence θH*(p*) = θH*(p) by (iv) and (v) of the definition. Choose and
fix one such p for each p*. Let X be the set of such p's. X is a
finite subset of Θ\A and [X]** = [X*]*. By (H) of (*) for H and
by the above, we have, for some α, b, θH(a, b) = [X]H Qθ\A. Hence
<α, b) eθ and θH*(a, b) = [X]H*. So θ 2 [X]^*, ending the proof.

Next we state the principal lemmas of this section.

LEMMA 2. Suppose:

( 0 ) <Λ, flo, 4 O0> βαίώiϊeβ (#);
( i ) a is a limit ordinal;
( i i ) for any β < 7 < a (Ar, Hr, Iγ, Or> is an extension of (Aβ, Hβ,

, Oβ);
(iii) Aa = <ilβf , 0> = <U(A^: β < a), , 0>
(iv) /or βαcfe Θ e Ho we have Θa = U([®]^s : β < oc) and Ha =

v) /« = UK**: /9 < α) and Oα = ( J ^ : /3 < α). Γ/̂ ê  ^4β is a
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pointed groupoid and (Aa, Ha, Ia, Oa) is an extension of (Aβ, Hβ, Ia, Oa)
for all β < a.

This lemma says chain unions are okay. The next lemma gives
us a starting point.

LEMMA 3. If L is a distributive lattice with zero, then there is
a <J», H, I, O> satisfying (#) with L=(H;Q).

Suppose (A,H,I,O) satisfies (#). For a,beA[ ] and ΘeH, let
a = b (£?{•}) iff one of the following holds:

( i ) α, b e A and a = b (θ);
(ii) aeA and b = uvί A and θH(a, ef) V Φ(fif, uv) Q θ, where

eCLS^ (in D, moάH) and fCLSv (in D, modH);
(iii) aί A and 6 6 A and the condition symmetric to (ii) holds;
(iv) a — xy & A and b ~ uvi A and Ψ(xy, uv) Π Φ(xy, uv) £ θ.
Note, as in Lemma (O.iv), the relation described in (ii) is inde-

pendent of one's choice of e, f. Set H{-} = {<9{ }: ΘeH}. For a =
xyeA[*] — A, set C(a) = {cd:cCLSx (in D, modίί) and dGLSy (in
A modίf)}. Set I[ ] = I \J\J {{<μ,b}, <]b, a)}: aeA, be A, and for
some c G C(b) we have <α, c) e /} U {<α, b): a £ A, b ί A, and for some
c e C{a) and d e C(b) we have <c, d> e I}. We set O[ ] = 0 U ((A[ ])2 -
(A2 U ![-])).

LEMMA 4. 1/ <̂ 4, iί, I, O> satisfies (#), ίfcβM, £Γ{ } is α 6αsis
<il[ ], H{ ], /[•], O[ ]> is α^ extension of (A, H, I, O>.

Suppose <il, iϊ, I, 0) satisfies (#). Set <Λ, #o, Io, O0> - <^, H, /, O>
and set (An+1, HΛ+U IB + 1, On+1> = <A>H, H,{ }, !,[•], O,[.]>. Let (Aω,
Hω, Iω, Oω) be given by Lemma 2. Note that Aω = Fr(A). So we
set Fr(H) - £Γβ and Fr(I) = Iω and Fr{0) = Oω.

LEMMA 5. If (A, H, I, O> satisfies (#), ί/^ <Fr(^4), Fr(ίί), Fr{I),
Fr(O)} is an extension of (A, H, I, 0) .

Suppose that (A, H, I, 0) satisfies (#) and Dmn( , A) = A2. Also
suppose λ = <α, b, c, cί> 6 A4 and a^b (f\H) and CΞCZ (θH(a9 b)). Take
p, g, r ί A and set Ar = <A U {p, <?, r}, , 0> where x y is defined (and
equal α? τ/ in A) iff x,yeA. For Θ e ί ί for which it is not the case
that a = b = c = 0 (θ) set θ ' = θ U {<p, p>, <(?, g>, <r, r>}. For ΘeH
with α = 6 = c = 0 (θ) set θ' = θ U (0/0 U {p, q, r}2). Finally set Hf =
{©': θ e i ί } and I ' = I U {<ί>, p>, <?, ?>, <rf r>} and 0 ' = 0 U ((A')2 -
(Γ U A2)). Let Φ be the smallest equivalence relation on A'[ ] which
includes <c, αp> and <6p, 6g> and (aq, ar) and <δr, d). Φ is a con-
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gruence relation of A'[ ] because Φ\A, is the equality relation (this
is because a Φ b) and Dmn( , A'[ ]) - (A')2. Set Aλ = (A'[ ])/Φ =
(Ax, , 0>. Since Φ\A, = J, Aλ is an extension of Ar. So we assume
A'CA2. For each ΘeH, let θ^ be (Θ'W + 0)/φ where + represents
equivalence relation join. Let T = pA' U qAr U rA! U {p, g, r}. Let
<u, v) 6 !•{ iff one of the following holds:

( i ) (u, v) = (x/Φ, y/Φ) with <xf y) eJ'[ ] and a j e A ' U Ϊ 7 ;
(ii) (u, v) e (Ap')2 U (Ag')2 U (ArJ;
(iii) <%, v> e (Aj/ x Ag') U (Aqf x Ar');
(iv) <u, c> satisfies (i) and i; e Ap' U Ag';
(v) (u, d) satisfies (i) and v e Aq' U Ar'\
(vi) (β, d) e I and t6 e Ar' and v 6 Ap';
(vii) <v, u> satisfies one of (iii)-(vi).

Let O, = 0' U (A! - ((A')2 U I2)).

LEMMA 6. Under the above hypotheses the following hold:
( i ) <A', H', /', O'> ώ αw extension of <A, ίί, /, 0>;
(ii) <A;, ίί;, J;, 0̂ > is an extension of (A, H, I, 0);
(iii) in Aλ we have c ΞΞ d (Θ(a, 6)).

The last part of the above lemma means that if ΨeCon(Aλ)
and a - b {Ψ), then also c = d {¥).

We will prove these lemmas later.

THEOREM 3. If L is a distributive lattice, then there is a pointed
groupoid A satisfying the following:

( i ) Con(A) is isomorphic to the lattice of ideals of L;
(ii) if c = d (Θ(a, 6)), then there are p, q, re A so that c — ap

and bp = bq and aq = ar and br — d;
(iii) all joins in Con A are type-3.

We shall prove this theorem assuming Lemmas 2-6. As in §3,
we can reduce our notational complexity by first proving another
lemma.

Suppose A is a pointed groupoid and <A, H, J, 0) satisfies (#).
Index {λ: λ = (a, b, c, d) e A4, a^b (Γ)H), c^d (θH(af b))} by its cardinal
number tc. Set (A, H, I, 0} = <A0, Ho, Io, O0>. Suppose a ^ K and
(Aβ, Hβ, Iβ, Oβ) has been defined for all β < a and for Ύ < β < a
that (Aβ, Hβ, Iβ, Oβy is an extension of <Ar, Hγ, Iγ, Oγ) and Aβ is a
pointed groupoid for all β < α. If a — β + 1, set (Aa, Ha, Ia, Oa) =
<Fr((A,),p,Fr((ii^p,Fr((/^p,Fr((O^p>. If a is a limit ordinal,
then we let <Aα, fία, Iα, Oα> be given by Lemma 2. Set <A", JHΓ",
Γ',O"y = <AK,HK,IK,0K).
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LEMMA 7. Under the above hypotheses the following hold:
( i ) A" is a pointed groupoid;
(ii) (A"f H", Γ, 0"> is an extension of (A, H, I, 0);
(iii) if a, be A and a^b (Γ\H) and c = d (θH(a, δ)); then there

are p, q, re A" so that c — ap and bq — bq and aq — ar and br = d.
(iv) if a, be A and aφb (Γ\H), then in A" we have Θ(α, b) 2

9 b).

REMARK. The "remark" after Lemma 9 of §3, after obvious
trivial changes, applies here as well.

Proof Using the remark and Lemmas 2, 5, and 6 and transίinite
induction, one can easily show for each a ^ fc that (Aa, Ha, Ia, Oa)
exists and is an extension, for each β < a, of (Aβ, Hβ, Iβ, Oβ} and
that Aa is a (total) pointed groupoid. Thus (i) and (ii) hold.

Let α, be A, and let c =Ξ d (θH(a, &)). Suppose a^b (C\H). Then
<α, 6, c, d) is some λ̂ , and we have the required p, q, r. Thus (iii)
holds, (iv) follows easily from (iii).

Proof of Theorem 3. Let L be a distributive lattice. We may
suppose L has a zero. Set (Ao, Ho, IQ, O0> = (Fr(B), Fr(H)9 Fr(I), Fr(O))
where <J5, H, /, O> is given by Lemma 3. Set (An+1, Hn+ι, In+1, On+1) =
{Afήy H", I", 0") using the construction for Lemma 7. Consider
(Aω, Hω, Iω, Oω> as given by Lemma 2. By Lemma 2, Aω is a (total)
pointed groupoid. Lemma 3, Lemma 5, Lemma 7, Lemma 2, induction,
the transitivity of the extension relation, and the remark after
Lemma 7 all imply that (Hω; Q) ^ (H; S> = L.

Claim 1. If a & b (ΓίHω), then θ(a, b) = θHω(a, b).
We suppose a & b (f\Hω). By Lemma 7, Lemma 2, and the

"remark" after Lemma 7 we have a =£ b (Γ\Hn) for any n satisfying
a, be An. If a, be An, we let θn(af b) denote the smallest congruence
relation of An containing (a, 6>. By (iv) of Lemma 7 and induction,
by Lemma 7 and Lemma 2 and the remark after Lemma 7, and
from general principals we have that θHω(a, 6)2θ(α, b)^>\J(θn+1(a, 6):
α, be An)2 \J(θH%{a, b)\ a, be An) = θHω(a, b). This ends the proof of
Claim 1.

Let M be the filter (dual ideal) of Con Aω consisting of all con-
gruences containing (f\Hω).

Claim 2. If θ 6 M, then θ contains the Hω-closure of each of
its finite subsets.

By hypothesis and Claim 1 ΘΏθHω(a, b) for each <α, &> e (9. Now
(I) of (#) finishes the proof of the claim.
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M is an algebraic closure system. Let K = {[X]^ X is a finite
subset of A2

ω}.

Claim 3. K = Hω.

K and Hω are both bases. So it suffices to show that [X]M =
[X]H(ϋ for each finite subset X of A2

ω. Let X be such. By Claim 2
and general principles we have [X]κ = [X]^ 2 [-X]^ 2 [X]oon^ +
(Γ\Hω) = [X]jf = [-3L]*> where + is equivalence relation join. This
establishes the claim.

Set A = ^ft>/(Πffω). Since (K; £> = <i?ω; £> s L, it follows
(see §2) that Con A ~ (M; £> ^ the ideal lattice of L. This establishes
(i) of the theorem.

Suppose c = d (θ(a, δ)) in A.
Suppose that aφb. Let α', δ', c', ef e Aω be such that af/(C[Hω) =

α, etc. Certainly α' ^ 6' (Π H») By general principles and the above
claims, we obtain c' Ξ= d'(θHω(a', &')). Now Lemma 2, Lemma 7 and
"remark" after Lemma 7 yields p', g', r ' satisfying a'p' = c, etc. With
V — Ί>Ί(Γ\Hω), etc., we have ap — c,bp = &g, etc.

Now suppose a — b. Then certainly c = d. If J. is the one
element algebra, p = # : = r = 0 = the one element, will do. If A is
not the one element algebra, choose some δ*^=6. Then c = d (θ(α, &*)).
By the previous case there are p*f q*, r* with αp* = c, δ*p* = &*#*,
etc. With p =: q = r = p* we have c = d = ap = bp = bq = aq —
ar — br — d.

Thus (ii) of the theorem is true. We defer the proof of (iii) till
after the proof of Lemma 3.

Proof of Lemma 3. We suppose L is a distributive lattice with
zero. Set B = L, and let 0 be the zero of L. Set O O = 0 and
Dmn( ) = {<0, 0>} and B = <JS, , 0>. For b e B define θh by x = y (θb)
iff x = y or x V y ^ b. We set H = {θ6: δ 6 £} and J = JS2 and 0 =
0 . It is not too hard to show that (B, H91, 0) has the required
properties. Details are left to the reader.

Proof of (iii) of Theorem 3. For the B and H of the proof of
Lemma 3, we have f]H = Δ9 and so (f\Hω)\B = A. Thus we may
suppose B £ A. Letc, d e i and θ, Φ e Con(^4). Suppose c = d(θ\J Φ)
and c ^ cZ (Θ) and c Φ d (Φ). Since θ(c, d) is compact in Con(^l), we
can find compact β0, ΦQ such that c = d (ΘQ V Φo) and ΘQQ Θ and
ΦQQΦ. Let <9ά and Φί be the congruences of Jlω satisfying
Θ;/(Π-ffα,) = Θo and ΦJ/CΠ -ff«) = Φo θ'o and Φ̂  are in Hω; also neither
equals (Π Hω) So βj|Bejff and Φ ί | ΰ e i ϊ and neither equals Δ. So
there exist nonzero a,beB with θH(a, 0) = ©ί|B and θH(δ, 0) = ΦJ| s
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and ΘH(a, b) = ΘΌ\BV ΦΌU Hence θHω(a, 0) = ΘΌ and ΘHβ>, 0) = Φ'o and

θHω(a, b) = ΘΌ V (Pi. We have now that θ(a, 0) = <90 and θ(b, 0) = Φo

and θ(a, b) = θ0 V Φo The rest is as in the proof of Theorem 2,
ending our proof of Theorem 3.

Proof of Lemma 2. Suppose xf y e Aa. Then there is a β < α
with #, 1/6^. By (ii) of the definition of extension, x-y is defined
in ^ + 1 and, hence, in Aa. Thus Aα is a (total) pointed groupoid.

Since Aa x Aa = Dmn( , Aa), (i)-(v) of the definition of extension
and (D) and (F) of (#) are obvious. Establish that Ha is a basis as
in the proof of Lemma 3.6, yielding (C) of (#). (A) and (B) of (#)
are obvious. Clearly f\Ha = (Π-Ho)« - \J([ΠH0]Hβ: β < a). So (E) of
(#) for Aa and Ha follows. Let α, be Aa. Pick any β < a such that
α, &€ A/s. By the definition of extension (as applied to (Aβ, •••> and
(Ar, •••> for another Ί < a) and the "remark" after Lemma 7, it
is clearly the case that θHa(a, b) = ((θHβ(a, &))U0)β. (G) of (#) for
<Aα, iϊα, Iβ, Oa) now follows easily from the hypotheses and the
definition of extension and from the fact that "D" — Aa. So by
Lemma 1, we are done with the proof of Lemma 2.

Here, finally, is the proof of one of the two crucial lemmas.

Proof of Lemma 4. The first thing we need to establish is that
each <9{ } is a congruence relation on A[-]. Since, by Lemma 0,
Ψ(xy, uv) = Ψ(uv, xy) and Φ{xy, uv) = Φ(uv, xy), we only need to show
that each θ{ ) is transitive. Let ΘeH, and suppose a Ξ= b (θ{ }) and
b = c (©{•}). The only cases we need to consider are:

(a) aeA,beA,c&A;
(b) α6i,6ί4,cei;
(c) a£A,beA,c<£A;
(d) a e A, b $ A, c 0 A;

. (e) a£A,b£A,c&A.
In what follows, "cdeC(xy)" will abbreviate "cd is an element

of C(xy) and cCLSz (in D, modH) and dCLSy (in D, modH)."

Case a. c = rs£ A. For any hieC(rs) the definition of ©{•}
yields a = b = hi (θ) and Φ(hί,rs)g=θ. Thus α = M (θ) and αsc (©{•}).

Case b. b = uvgA. For any fgeC(uv) the definition of Θ{ }
yields a == /c/ = c (θ) and α Ξ C (<9).

c. a = xy ί A and c = rs ί A. For any de e C(α;?/) and hi e
C(rs), the definition of Θ{ } yields Φ(xy, de) £ θ and de = b ̂  hi (Θ)
and Φ(fti, r«) C β. Hence Ψ(xy, rs) S β and a = c (©{•}).
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Case d. 6 = uv £ A and c = rsg A. Let fg e C(uv) and hi e C(rs).
By definition of ©{•} we have a = fg (Θ) and Φ(fg, uv)Qθ. Suppose
(v, s) e 0. By Lemma O.B.(ii) and the definition of ©{•}, Ψ(uv9 r s )£Θ.
But then fg = hi (θ) and Φ(hi, rs) £ 0. Transitivity of θ yields α Ξ
M (Θ). Hence α = c (©{•}). Suppose <v, s> e I". By Lemma O.B.(i) and
the definition of 6>{-}, Φ{uv, rs)£<9. By Lemma O.A.(iii) 6QΦ(rs, fg) =
[θ^(n /) Λ θH{s, 0)] V θH(β, g). Since f, geD and fc and i are the
closest things to r and s, respectively, we have θH(r, f) 2 θH(r, h)
and θH(β, g) 2 ©*(«, ΐ). It follows that θ 2 Φ(rs, /flr) 2 Φ(rs, JW). Using
O.A.(iii) again and O.A.(ii) we have θH(fg9 hi) Q Φ(fg, hi) £ θ. That
is a = fg~hi (θ). By transitivity of Θ, a Ξ /̂ i (θ). Just above we
have Φ(rs, hi)QΘ. By definition, α ^ c (©{•}). (G) of (#) says there
are no more subcases.

Case e. a — xy &A and δ = uv g A and c = re g A. By Lemma
O.A.(iii) and symmetry, the only subcase we need consider is the one
in which (y, v) e 0. Let de e C(xy) and /# e C(uv). Consider W(xy, uv),
which is contained in θ by O.B.(ii). Then by definition and hypothesis,
a = de (©{•}) and de = b (©{•}) and 6 = c (©{•}). Then Case (c) yields
de = c(θ{ }), and Case (b) yields a == c(θ{ }).

It is now clear that (i)-(v) of the definition of extension and
(A), (B), (D) of (#) hold.

The definition of θ{ } for each θ e H makes it obvious that
[<α, b)]H{.}( = θH{.}(a, b)) exists for each α, b e Λ[ ]. For example, if α e A
and & = uv g A and β/e C(uv)f then ΘH{ }(̂ , &) = [®^(^, e/) VΦ(efy uv)]{-}.
Now apply Lemma 2.2 to i ϊ and then to iϊ{ }, concluding that H{-}
is a basis. So (C) of (#) holds.

It is clear that for any α, b e A we have Φ(αO, 60) = f\ H. If
both a,beD, then by 0.A.(ii), we have <αθ, 60> e βH(α0, 60) £
Φ(αO, 60) = Γl-H"£ Π (•#{•}). If neither α nor 6 is in D, we have
<αθ, 60> 6 ©Ht.XαO, 60) £ (Φ(αO, 60)){ } - (Π H){ } - f| (H{ }). Suppose
aeD and 6 g D . There is a cOeC(60). Now θHi }(α0, 60) = (Φ(αO, cO) V
Φ(cO, 60)){ } = (Π£Γ){ } = Π(#{•})• So (E) of (#) holds.

Clearly any c 6 C(a) satisfies c CLS α (in A, mod if{ }) for any
α e A[ ] - A. And we obtain (F) of (#).

Consider (G) of (#). Clearly /[•] U O[ ] = (A[ ])2.
Suppose <α, 6>eO[ ]. If <α, 6>eO, then α = 0 (θH(α, 6)). So

certainly a Ξ= 0 (θHH(a, 6)). Suppose α 6 A and 6 g A. Then <α, 6> g
![•]. So for every ceC(b) we have <α, c>g/. Thus <α, c ) e θ for
every such c, and α = 0 (θH(a, c)). But θH(a, c) £ ΘH{.}(a, 6). Suppose
α ί i and 6<£A. Then for every cdeC(a) and efeC(b) we have

e/> g /. Hence <d, /> g / and cd Ξ 0 (θH(cώ, ef)) and 6> {̂.}(α, 6) =
, &)){•} — This makes sense because a and 6 have unique factori-

zations — and so a = cd = ef = 6 (ΘH{.}(a, 6)), and then a = cd =
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0 (ΘH{.}(a, &)). So (i) of (G) of (#) holds.
(ii) and (iii) of (G) of (#) clearly are satisfied (just look at the

definition of ![•]).
Let c9d9e9feA with (d9 /> e /[•]. It follows that (d, /> e I.

If cd, efeA, then (cd, ef) elQ /[-]. Suppose cdeA and efgA.
By G.(iii) of (#) for / we may choose gheC(ef) with <d, Λ> el. By
G.(iv)(a) of (#) for I we have (cd,gh)el, and so <cd, e/> e/[•].
Suppose cd£ A and ef$A. Similar to the preceding case, we can
find (gh, ij) e I f) (C(cd) x C(ef)), and then <ceZ, β/> e ![-]. Thus
G.(iv)(a) of (#) holds for ![•].

Let us continue with the same c, cZ, e, f. Φ*(xy, uv) will represent
[θHH(x, u)Λθm.}(y, 0)]VθHH(y, v), whileΦ(xy, uv)still equals [θH(x, u)Λ
ΘH(y9 0)] V θH(y, v). If both cd, ef are in A or both are not in A,
we have θHl.}(cd, ef) = (Φ(cd, ef)){-} = Φ*(ccZ, e/), the desired result.
Suppose then that cd e A and ef g A. We may choose f̂c e C(β/) with
{d, h) e J, and then θmΛ(cd, ef) = [θH(cd, gh)VΦ(gh, β/)]{ } = [Φ(cd, ffΛ)V
Φ(^, e/)]{ } 2 [Φ(cd, ef)]{-}. = Φ*(cd, ef) 2 ΘHH(cd, ef), where the last
inequality is supplied by (ii) of (A) of Lemma 0 (note that (A) of the
lemma only requires (A)-(F) of (#)). Thus G.(iv)(b) of (#) holds for

III
Clearly, (v) of (G) of (#) holds for ! [-] .
By Lemma 1, we are done.

Proof of Lemma 5. This follows from Lemma 4, the transitivity
of the extension relation, and Lemma 2.

Now we come to the proof of the last (and second crucial) lemma.

Proof of Lemma 6. First we show that (A', H', I', O'> is an
extension of {A, H, I, O>.

That (i)-(v) of the definition of extension and (A), (B), (D) of (#)
hold is obvious. If x, yeH, then θH,(x, y) — (θH(x, y))r. \ίχφy and
a, V e {p, Q, r)> then θH,(x, y) = (βH{a, &, c, 0))'. If x 6 A and y e {p, q, r},
then θH,(α;, y) = (θH(a, 6, c, 0) V θH(0, x))'. Apply Lemma 2.2 to fί,
use the above and H' = {θ': θ 6 JBΓ}, apply Lemma 2.2 to H', and
conclude that H' is a basis. Whence (C) of (#) holds. For every
a, be A we know <α 0, δ 0> e Γ\H Q (Π-ff)' - ΓK ff'). That is, (E) of
(#) is valid. For any x e [p, q, r] 0 CLS x (in A, mod iϊ') obviously
holds (see the description of θH,(x, y)). (F) of (#) follows.

Clearly (AJ = Γ U 0'. (iii) and (iv) of (G) of (#) follow from
the hypothesis and construction, (i) also follows immediately from
the construction and hypothesis. Consider (ii). If {y, v) e Γ — I,
then <0, 0> will do for the required <d, />. Otherwise, (d, /> = (y, v)
will suffice.

Now (i) of this lemma follows from Lemma 1.
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Next we will show that (Aλ, Hx, Iλ, Oλ) is an extension of
<A', H', Γ, O'>. Then (ii) of this lemma will follow from the transi-
tivity of the extension relation.

Since Θλ — (θ'{ } + Φ)jΦ, we will need a good description of ©'{•} +
Φ in order that we may proceed. The definition of T is before that
of I,.

Claim 1. Let ΘeH.
( i ) I f α Ξ i i Ξ C Ξ O (<9), t h e n Φ Q ©'{•}. Moreover, ({0, c, d} U

ApUAqΌ ArfQ ©'{•}.
(ii) If x9 ye A! U T, then x = y (©'{•} + Φ) iff x = y (©'{•}).
(iii) If (x, y) e (A'p)2 U (A'q)2 U (AV)2, then x = y (©'{•} + Φ) iff

χ = v (θ'W).
(iv) If <α?, y> e A'px A'g, then x = y (θ'{ } + Φ) iff x = 6p (©'{.})

and δg = τ/ (©'{•}).
( v ) If <a?, y>eA'qxA'r, then a? Ξ= T/ (©'{•} + Φ) iff ΛJ Ξ α^ (©'{-})

and αr = y (©'{•}).
(vi) If xeA'UT and y e A'p U A'q, then a? Ξ= y (©'{•} + φ) iff a? =

c (©'{•}) and α^ Ξ y (©'{•} + Φ).
(vii) If x e A' U T and y e A'#U AV, then a? Ξ= y (©'{•} + Φ) iff x =

d (©'{•} and δr = y (©'{•} + Φ).

( i ) of the claim is obvious, (ii)-(vii) are routine. We will
prove (ii) as an example.

Let x, y 6 A' U T and θ e H. If a Ξ 6 = c = 0 (θ), then by (i),
©'{.} + φ = θ'{.}, and so <a?, y> 6 &{-} + Φ iff <cc, y) 6θ'{ }. So we
suppose it is not the case that a = b = c^0 (θ) and x = y (θ'(>) + Φ).
Then there exists x = sQ, - -f sn = y such that st = s i + 1 under either
θ'{ } or Φ. Let us suppose n is minimal. So s* ̂  8y if i Φ j . More-
over, Si ΞΞ s i+1 (©'{•}) iff 8̂  =£ s<+1(Φ) iff 8<+1 Ξ s<+2(Φ). Suppose w > 1.
Choose I minimal so that sz = βϊ+1(Φ). So ϊ = 0 or 1. We have
x = s0Ξsz (θ'{ }). By the assumption about Θ, u^v (θ'{ }) and i?6 A'p
imply u e A'^. Similarly for A'q and AV. Since a? = sQ 0 A'p U A'q U
AV, we have ^ e i ' U Ϊ 1 . Since ΦU/UΓ = /ί> we have sι+1$A'UT.
Now szΦs^+1 implies <βz, sι+1) = <c, αp> or <>*, sz+1> = <d, 6r>.

Let us suppose st = c. sι+1 Φ y because y 6 A' U T. So sι+z exists,
and ap = Sι+1^Sι+2 (©'{•}). By the above reasoning, st+2eA'p and
ŝ +2 ̂  1/ and sι+3 exists and Sι+2Φsι+B. Since s m ^ sz+2 ^ st+3, the
definition of Φ yields sz+2 = 6p and sί+3 = bq. (Here we are using
strongly the fact that a Φb.) Continuing in this way we obtain
sι+7 = d and n ^ 7. Recall sz = c. We have ap = sz+1 = sz+2 =
6p(θ f{ }). Hence ΘH,{.}(a, b) = [θH,}.}(a, b)ΛθH,{.}(P, 0)] = θH,{.}(ap, bp) S
<9'{ }. Thus θH(α, δ ) £ θ and c = d(θ). Thus, ί,Ξ8m(β'{.}), and w is
not minimal. This is a contradiction. The case st = d is similar.
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So n = 1. As in the proof of Lemma 3.8, we have x = y (θ'{ }).
(iii)-(vii) of the claim are left to the reader.
It clearly follows from (ii)-(vii) of Claim 1 and Lemma 2.2 that

{#'{•} + Φ: θ e H} is a basis consisting of congruence relations of A'[ ].
By Lemma 2.4, Hλ = {(©'{•} + Φ)/Φ: θeH} is a basis consisting of
congruence relations of Aλ.

It is clear that (i)-(v) of the extension definition and (A)-(D) of
(#) hold for {Ah Hλ, Ih Oλ) vis-a-vis (A', H\ Γ, O'>.

For any a, be A' we have, in A'{ }, <αθ, &0> 6 Γϊ(H'{ }) = ((!#)'{ } £
((Π-ff)'{•}) + Φ. So in Aλ, we have, for any α, 6 6 A', that <αθ, 60> e
(((Π #)'{•}) + Φ)/Φ - Π-Hi. Thus (E) of (#) holds for A, and iϊ,.

For every xe Af \J T there is an e e A' satisfying e CLS a? (in A',
modiϊ'{ }). By (ii) of Claim 1, we have, given the same x and e,
e CLS x (in A', mod Hχ).

Recall, in what follows, that closest things need not be unique.
Also, it may appear to the reader that there is some apparent
ambiguity as to θHλ(x, y) as given by (ii)-(vii) of Claim 1. Lemma
2.4 assures us that this apparent ambiguity is not real.

(vi) of Claim 1 implies that c CLS x (in A', mod Hλ) holds for
any x e A'p U A'g. (vii) yields that d CLS x (in A', mod Hλ) holds for
any x 6 A!q U AV.

We have established (F) of (#) for Aλ and Hλ.
Certainly A\ = Iλ U Oλ. Suppose (x, y) e Oλ. Then one of the

following holds:
( i ) (x, y) = (u/Φ, v/Φ) and (u, v) eθ'{ } and u,veA'{jT;
(ii) (x, c) satisfies (i) and yeAf/p\jA'q\
(iii) (x, d) satisfies (i) and y e A!q U A!r\
(iv) <c, d) e 0 and x e A'p and y e A'r;
(v) (y, x) satisfies one of (ii)-(iv).
Claim 1 makes it obvious, that in each of these cases, x ~

0 (θHλ(x, y)). We have established (i) of (G) of (#) for Oλ and Hλ. (ii)
of (G) of (#) for Iλ is obvious.

We know Γ[ ] and ίί'{ } satisfy (iii) of (G) of (#). Recall our
description of iJrclosest things in A! and that <c, c> and <d, d) are
in I £ Iλ. Now the definition of Iλ makes it plain that (iii) of (G)
of (#) holds for Hλ and /;.

Suppose e, f,g,he A' and </, h) e Iλ. Then </, fe> e Γ.
If </, fe> e {(p, p), {q, q), <r, r>}, then <β/, βrfe> elλ by (ii) of its

definition. Otherwise, </, Λ> e J and (ef, gh) e A ' U Γ . Whence,
(β/, gh) e Γ{ } and (i) of the definition of Iλ is satisfied. So (a) of
(iv) of (G) of (#) holds for Aλ and Hλ.

If </, fc> e {(p, p}9 <?, g>, <r, r>}, then (iii) of Claim 1 and (#) for
<A'H, #'{.}, •> imply that θHχ{efy gh) = ((θH,{,(ef, gh)) + Φ)/Φ =
((βm.>(e, ί/) Λ » ^ H ( / , 0)) + Φ)/Φ, since / = h, -(((Θ^H(β, flr)) + Φ) Λ
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@H>n(f, o))/Φ, since Φ £ ΘHΊ.}(f, 0) and since Θ —> (θ + Φ) is an order
isomorphism between the bases Hf{ ) and {©'{•} + Φ: θeH}, =
((©*'<•>(*, flO) + W Λ ΘE>M 0)/Φ = Θ^A flf) Λ θ^(/, 0) - [©*>, g) A
®Hχ{f, 0)] V θHλ(f, h) since / = h. So we may suppose </, fc> e I. Then
β/, #fo 6 A' U Γ. Then (ii) of Claim 1 and a similar calculation yield
the desired result. That is, (b) of (iv) of (G) of (#) holds for Aλ

and Hλ.
(i) and (ii) of the definition of Iλ yield (v) of (G) of (#) for Iλ

and Aλ. Now we apply Lemma 1 and transitivity to obtain (ii) of
the lemma.

The proof of (iii) of the lemma is just like the proof of Lemma
3.8. (iii), and it is obvious anyway.

5* Sums and products* In this section we make a few, pre-
viously known and simple observations about congruence relations
on direct products and direct sums of algebras.

Suppose (Aii iel) is a family of pointed algebras. Π ^* a n ( i
JKAtiίel) will denote the direct product of this family. ΣAt8.nd
Σ(Ai. iel) will denote {xe Π At: {ieI: x(i) Φ 0} is finite}. ΣAt and
Σ(At: iel) will denote the corresponding algebra.

Suppose (Aiiie I) is a family of algebras and θέ 6 Con At for each
i. For x.yeJJAi we let x Π θtV (or x = y (Π βt)) iff %&iV for all
iel. If the At

9s are pointed algebras, we will also use Π®* to
denote Π®<]^ A congruence is rectangular iff it is of the form

Π8,
By studying when a pair is in a join of congruence relations we

easily see

Fact 1. (i) If I is finite, then in Con(Π At) the join of rectangular
congruences is rectangular.

(ii) If each At is a pointed algebra, then in Gon(ΣAt) the join
of rectangular congruences is rectangular.

COROLLARY 1. The mapping (θt: iel)->ΐ[θi embeds
iel) into Con(Π Λt), if I is finite, and into Con (ΣAt), if each At

is a pointed algebra.

Since every congruence is a join of principal congruences, we
obtain

COROLLARY 2. (i) Suppose I is finite. If each principal con-
gruence of Π At is rectangular, then every congruence of Π ^% is
rectangular, and Con(Π At) is isomorphic to Π Gon(Ai).

(ii) Suppose each Ai is a pointed algebra. If each principal
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congruence of ΣAt is rectangular, then every congruence relation of
ΣAi is rectangular, and Coτι(ΣAt) is isomorphic to Π Gon(At).

DEFINITION. For i < 4, let tt be the 4-ary term xO'Xt. Let r =
(fu t29 ts}. τ defines the principal congruences of A if and only if
for every α, b, c, de A, it holds that <c, d) e θ(a, δ) iff there exist
p, q, r e A with c = Ua, p, q, r) and Ub, p, q, r) = ί2(δ, p, ?, r) and
*2(α, p, q, r) = ί8(α, p, <?, r) and ί8(δ, p, q, r) = d.

Let a, k Π 4 > assuming definability by τ, one can easily show
Π β(α<, δ<) £ θ(α, δ). The proof works equally well in Π At and in
ΣAt. This yields

Fact 2. Suppose τ defines the principal congruences of each At.
( i ) Every principal congruence of Π -A* is rectangular.
(ii) If each At is a pointed algebra, then every principal con-

gruence of ΣAi is rectangular.
Obviously, we have

THEOREM 4. Suppose τ defines the principal congruences of each
A<.

( i ) If I is finite, then Con(Π At) is isomorphic to Π Con(-A<).
(ii) If each At is a pointed algebra, then Con(2'̂ lί) is isomorphic

to

Obviously, a much more general theorem can be obtained. In
particular, in any variety having Uniform Congruence Schemes the
congruences are "productive." Fried, Gratzer and Quackenbush
observed, essentially, this in the trivial halves of Theorems 3.5 and
5.2 of [6].

6* Final remarks* Clearly Theorem 1 is an immediate conse-
quence of Theorems 2, 3, and 4.

The representation provided in Theorem 1 is type-3. If we also
supposed L is modular, could we then have produced a type-2
representation in the proof of Theorem 1? Most likely, that is the
case. Ideas as to how this might be done can be gleaned from
Appendix 7 of the 2nd edition of [8].

There is an asymmetry vis-a-vis in the representation provided
in the proof of Theorem 3. Do there exist distributive algebraic
lattices which can be represented as congruence lattices of groupoids
but which have no representation as a congruence lattice of a com-
mutative groupoid?

In [25] Walter Taylor provides a countable algebraic lattice that
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is not the congruence lattice of any semigroup. One of course
wonders if there is any countable algebraic lattice that is not the
congruence lattice of a groupoid. It may even be the case that
there is some algebra A of type <2,1> such that Con A is not iso-
morphic to the congruence lattice of any groupoid.

It can also be shown that Taylor's example is not the congruence
lattice of any unary algebra having only finitely many operations.
This we now proceed to do. We suppose the reader has some
familiarity with Taylor's example.

C is to be the semilattice of compact elements.

C consists of the chain α ) ( 0 < l < 2 < 3 < •••) together with elements
aiό (0<;ί<i —1) with i<aio<j. Now we let L be the ideal lattice of G.

THEOREM 5. If L is isomorphic to Con A and A is a unary
algebra, then A has infinitely many operations.

Proof. Suppose on the contrary that L ~ Con A and A is a
unary algebra having only finitely many operations. Note that in
C, or in L, the filter (dual ideal) generated by n, [n), is isomorphic
to C, or L, as the case may be.

Thus, we may assume there is an element Oe A such that /(0) = 0
for each of the finitely many operations of A. That is, we may
assume A is a pointed algebra.

By an abuse of notation, we will refer to the congruences of A
by their preimages under the isomorphism, namely 0, 1, α02, α03, α04,
•••,2, α13, ••• etc. (Note 0 names both an element of A and a
congruence of A. Context should make clear which is which.)

We may also assume, using the above fact about n e ω, that
1 = 0(0, x) for some x e A. We see that <0, x) e a02 V α03 and
<0, x) e aoi V α05. So we have sequences 0 = s0, slf , sk — x and
0 = r0, ru , rm — x with st = si+1 under α02 or α03 and r< = ri+1

under α04 or α05, for each possible i. We may suppose s0 Φ sλ and
r0 Φ rx. Let u = st and v = rx. We have 0(0, u) — α02 or α03 and
0(0, v) = α04 or α05.
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Case 1. (9(0, u) — a02 and 0(0, v) — α04. Θ(u, v) is compact, and
thus, in C. Also α04 = 0(0, v) £ 0(0, u) V θ(u, v) = α02 V θ(u, v), and
α02 = 0(0, u) £ 0(0, v) V 0(^, v) = α04 V θ(w, v), and θ(u, v) Q 0(0, u) V
<9(0, t>) = α02 V α04. By inspecting C, we see that 0(u, v) is either 4
or α14 or α24. In any case θ(u, v) ^ 1 = 0(0, a;).

Since JL is a unary algebra, every unary algebraic function of
A is a unary term (unary polynomial) or a constant function. For
any unary term t, we obviously have ί(0) = 0. Now, since <0, x) e
Θ(u,v), there are unary terms ίx, •• ,ί z such that 0 6 {^(u), tx{v)}
and for 1 ^ ί < i fe(^), ίίW}Π{ίί+i(u), ti+1(v)} Φ® and x e { φ ) , iz(^)}.
Since tx is a term, ίt(0) = 0. Since x = (̂%) or a; = tι(v), we have
<0, a;> G 0(0, u) or <0, x) 6 0(0, -v). So 1 = 0(0, x) £ 0(0, u) = α02 or
1 — (9(0, #) £ 0(0, t?) = α04. But 1, α02, α04

 a r e distinct atoms.
The three remaining cases yield similar contradictions. So the

initial contrary assumption is false. This ends the proof.

Consider MaΓtsev's lemma (Theorem 3, p. 54, [8]). The above
proof actually shows that whenever L = Con A, the sequences of
unary algebraic functions "p0, , pn__" cannot all be sequences of
unary terms (term functions). In other words, the above provides
some "technical specifications" for any successful representation of
L as Con A, where A is of finite type, even if A is nonunary.

Clearly, all of the above is true for a very "narrow" sublattice
of L. Condition (*) (see Part I) and Lemma 1 of Part I did not
enter into the proof.

Ralph Freese has shown that this same L is not the congruence
lattice of any groupoid possessing a two-sided identity element.

The conclusion of Lemma 1 of Part I is now called the term
condition or T. C. (1, 1, 0). This condition has become quite important
in a context quite unrelated to Part I. R. McKenzie coined the term
after first seeing Lemma 1. The condition first appeared in Theorem
9 of H. Werner's paper [26], McKenzie employed this condition in
[18]. My first exposure to it occurred when McKenzie's paper was
presented in our Hawaii seminar in 1976. This was six months
before I proved Lemma 1. I had forgotten about the contents
of [18] till Taylor's paper [25] reminded me in 1979. (This ex-
plains why this paragraph is in Part II instead of Part I, where it
belongs.)

Although it is a fairly well-known theorem, in [17] I gave only
some corollaries of the following

Folklore Theorem. If L is a distributive, algebraic, and dually
algebraic lattice, then L is isomorphic to the congruence lattice of
some groupoid.
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Proof. Such an L is isomorphic to the lattice of nonempty-
hereditary subsets of some partially ordered set P having a least
element 0. Let A — <P, •> where x-y = y if y ^ x and x-y = 0
otherwise. Each congruence has at most one nontrivial class and
this class is a hereditary subset of P. The required isomorphism is
obvious.

By generalizing Fact 2 of §5 appropriately, one can now show
easily that if L is isomorphic to the product of a family of lattices
each of which is either a pinched lattice, or the ideals of a distribu-
tive lattice, or a distributive, algebraic and dually algebraic lattice,
then L can be represented as the congruence lattice of a groupoid.
There is still a lot to be done. This does not even exhaust the
class of distributive algebraic lattices.

We remind the reader of the problems listed in Part I (see [5]).

REFERENCES

1. H. Andreka and I. Nemeti, Similarity types, pseudosimple algebras and congruence
representation of chains, Algebra Universalis, 13 (1981), 293-306.
2. P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Engle-
wood Cliffs, N. J., 1973.
3. G. Fraser and A. Horn, Congruence relations in direct products, Proc. Amer. Math.
Soc., 26 (1970), 390-394.
4. R. Freese, Congruence lattices of finitely generated modular lattices, Proc. Lattice
Theory Conf., Ulm 1975, G. Kalmbach, Editor, 62-70.
5. R. Freese, W. A. Lampe, and W. Taylor, Congruence lattices of algebras of fixed
similarity type, I. Pacific J. Math., 82 (1979), 59-68.
6. E. Fried, G. Gratzer, and R. Quackenbush, Uniform congruence schemes, Algebra
Universilis, 10 (1980), 176-188.
7. 1 The equational class generated by weakly associative lattices with the
unique bound property, 1978 manuscript.
8. G. Gratzer, Universal Algebra, D. Van Nostrand Co., Inc. Princeton, N. J., 1968,
or Springer-Verlag New York Inc., New York, N. Y., 1979.
9. 1 Lattice Theory, First Concepts and Distributive Lattices, H. M. Freeman,
San Francisco, 1971.
10. G. Gratzer and E. T. Schmidt, On congruences of lattices, Acta Math. Acad. Sci.
Hungar., 13 (1962), 179-185.
11 m f Characterizations of congruence lattices of abstract algebras, Acta Sci.
Math. (Szeged), 2 4 (1963), 34-59.
12. W. Hanf, Representations of lattices of subalgebras (Preliminary report), Bull.
Amer. Math. Soc, 62 (1956), 402.
13. B. Jόnsson, Topics in Universal Algebra, Lecture Notes in Mathematics, vol. 250,
Springer-Verlag, Berlin, 1972.
14. , Varieties of algebras and their congruence varieties, Proc. Int. Congress
Math., Vancouver, (1974), 315-320.
15. W. A. Lampe, The independence of certain related structures of a universal
algebra I-IV, Algebra Universalis, 2 (1972), 99-112, 270-283, 286-295, 296-302.
16. , Notes on the congruence lattices of algebras of finite type, 1975 manuscript.
17. , Congruence lattice representations and similarity type, Colloquiua Mathe-



508 WILLIAM A. LAMPE

matica Societatis Janos Bolyai, 29. Universal Algebra, Esztergom, (Hungary) 1977, North
Holland 1980, 495-500.
18. R. McKenzie, On minimal, locally finite varieties with permuting congruence
relations, 1976 manuscript.
19. , Para primal varieties', a study of finite axiomatizability and definable
principal congruences in locally finite varieties, Algebra Universalis, 8 (1978), 336-348.
20. P. Pudlak, A new proof of the congruence lattice representation theorem, Algebra
Universalis, 6 (1976), 269-275.
21. E. T. Schmidt, Kongruenzrelationen algebraischer Strukturen, Mathematische
Forschungsberichte, VEB Deutscher Verlag, Berlin, 1969, MR 47 #136.
22. , Every finite distributive lattice is the congruence lattice of a modular
lattice, Algebra Universalis, 4 (1974), 49-57.
23. , Congruence lattices of complemented modular lattices, Colloquia Mathe-
matica Societatis Janos Bolyai, 29. Universal Algebra, Esztergom, (Hungary) 1977, North
Holland 1980.
24. , The ideal lattice of a distributive lattice with 0 is the congruence lattice
of a lattice, 1980 manuscript.
25. W. Taylor, Some applications of the term condition, Algebra Universalis, 14 (1982),
11-24.
26. H. Werner, Congruences on products of algebras, Algebra Universalis, 4 (1974),
99-105.

Received January 14, 1981.

UNIVERSITY OF HAWAII

HONOLULU, HI 96822




