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CONGRUENCE LATTICES OF ALGEBRAS
OF FIXED SIMILARITY TYPE, 1I

WiLLiaAM A. LAMPE

A celebrated theorem of G. Gritzer and E. T. Schmidt
shows that every algebraic lattice can be represented as the
congruence lattice of some universal algebra. That result
naturally provokes questions concerning possible refinements.
This paper provides sufficient conditions for an algebraic
lattice to be representable as the congruence lattice of a
groupoid.

Part I, [5], showed that the subspace lattice of each infinite
dimensional vector space over any uncountable field is not the
congruence lattice of any algebra of countable similarity type. It
also presented some necessary conditions for an algebraic lattice to
be representable as the congruence lattice of an algebra of countable
similarity type.

Suppose L is an algebraic lattice. We shall say that L is a
pinched lattice iff there exists a set I of compact elements of
L such that Vv I=1 and such that each compact element of
L is comparable to every element of I. Each algebraic lattice
with a compact unit element is a pinched lattice. So are ordinal
sums of such lattices and certain homomorphic images of such
sums.

The principal result of this paper is

THEOREM 1. L 4s isomorphic to the comgruence lattice of a
groupoid if L is isomorphic to one of the following:

(i) a pinched lattice;

(ii) the lattice of ideals of a distributive lattice;

(iii) a direct product of lattices satisfying (i) or (ii).

In his 1980 paper [24], E. T. Schmidt shows that the ideal
lattice of any distributive lattice can be represented as the congruence
lattice of a lattice. From the lattice theory point of view this is
a vast improvement over the the appropriate part of Theorem 1.
Also, using McKenzie’s type reduction theorem (see [17]), one obtains
as a corollary that any such lattice has a representation in similarity
type <2, 1>. As yet, there is no reduction theorem which reduces
finite type to type <(2). Theorem 1 provides representations in the
latter type.

Theorem 1 was announced in 1977 lectures in Budapest, at the
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Esztergom Colloquium and in [17]. The latter includes a survey of
this field.

By Theorem 1 we see that the class of lattices isomorphic to
congruence lattices of groupoids includes all finite lattices, all chains,
and all projective planes. Also, each algebraic lattice L is a retract
of an element in this class (see Figure 1).

FiGURE 1

The above theorem was discovered before the results of Part I.
In fact, the failure of the author’s attempts to improve Theorem 1
led to Part I.

§2 of the paper contains preliminaries. §3 is devoted to part
(i). The proof of (ii) is in §4. §5 contains a generalization of (iii).
It provides sufficient conditions so that the congruence lattice of a
direct sum of algebras is the direct product of the congruence lattices
of the algebras. Theorem 1 is a representation theorem. §6 contains
a nonrepresentation theorem (Theorem 5) and concluding remarks.
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than it might have been. The research for an early version of this
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a member of the Institute for Advanced Study in 1974-75.

2. Preliminaries. The various lemmas in this section are either
well known or trivial. So no proofs are included.

Generally, the terminology will be as in Gratzer’s book [8], but
the notations will differ somewhat. For example, we will use bold-
face letters, such as A, to denote algebras, while letters such as A
will denote the underlying set of an algebra. Suppose 6 is an
equivalence relation. a/@ will denote the O class to which a belongs.
Both a=b (M) and a®b will be used to denote <{a, by € 6. For a subset
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S of the domain of @, ©|s; will denote ® N (SxS). 4 is the diagonal
or equality relation. Dmn and Rng are used as abbreviations for
domain and range, respectively. For example, Dmn(-, 4) will mean
the domain of the partial operation - in the partial algebra A.
Con A and Con(A) will both variously denote the set and lattice of
congruence relations of A.

Suppose A is a set and C is some set of subsets of 4. For
S< A we set

Sl = N(XeC: S < X)

provided this intersection s an element of C. Otherwise, [S]; is
undefined. We call [S]; the C-closure of S. As usual, [a], abbreviates
[{a}]c. Obviously, when it exists, [S]; is the XeC satisfying: (i)
SC XeC; (i) SS€YeC implies X Y. Recall that C is a closure
system iff [S]; exists for each SS A. C is an algebraic closure system
iff C is a closure system and the union of any up-directed subset of
C is also an element of C. Suppose that C is a collection of subsets
of A X A, each of which is an equivalence relation on A. Then, for
a,bc A and pc Ax A we also use O(a, b) to denote [<a, b)], and 6,(p)
to denote [p],. Similarly 64S) =[S], for SS A x A. Also, for
a,b, ce A, Oa,bd, c) = 0q{a, b, O, c>}) = [{a, b), <b, )}s, ete. If
C =Con A, we will, as usual, use O(a, b) instead of O .(a, d). A
principal congruence is one of the form O(a, b).

DEFINITION. Suppose C is a collection of subsets of the set A.
C is a basis iff the C-closure of each finite subset of A exists and
C = {[F'].: F is a finite subset of A4}.

ProPOSITION 1. Given a basis B, then C = {X: X is the union
of an wup-directed subset of B} is an algebraic closure system.
Moreover, given any algebraic closure system C, the set B = {{F'];: F
is a finite subset of \UC} is a basis, and C is the set of unions of
up-directed subsets of B.

LEMMA 2. Suppose C is a collection of subsets of the set A. C
18 a basis iff the following hold:

(i) <C; &) s a join semilattice with zero;

(ii) [alc exists for every ac A,

(iii) {[als: a € A} generates C as a join semilattice.

PRrROPOSITION 3. Suppose B is a basis on A and X < B. If in
(B; &) the meet (or infimum) of X exists, then AX = NX.

LEMMA 4. Suppose A is a partial algebra, ¢ € Con A, B < Con A,
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B is a basis on AxXA. If @ <6 for each ©e B, then B/® =
{6/@: 6 B} is a basis, and {(B; =) is isomorphic to {B/D: <).

Observe that under the above hypotheses, xz@x’ and y@y’ imply
05(x, y) = O5(«', y'). Whence 0y,(x/?, y/0) = (Ox(x, ¥))/@. Lemma 4
follows from Lemma 2.

In the situation under discussion in the preceding paragraph,
the relations 6;,,(x/®@, y/®) and O(x, y) are completely unambiguous,
even though there may be some ambiguity as to the pair <z, ¥).
At certain parts of the proofs there will be such x, 2/, y, ¥' where
Oz(x, y) and Oy, ") will have different “natural descriptions.” This
situation can create an apparent, but spurious, ambiguity in the
meaning of O,(x/0, y/®).

Suppose C is a basis on A x A consisting of equivalence relations
on A and DZ A. Then we say “x s the closest thing to y in D,
modulo C"' and we write

2 CLSy (in D, mod C)

iff the following hold:

(i) zeD;

(il) Oq(z, y) S 04(2, y) for every ze D;

(iii) x=y if yeD.

A partial pointed groupoid is a partial algebra (A4, -, 0> in
which - is a binary partial operation and 0 is a nullary operation
and 0-0 is defined and equals 0. A pointed groupoid is a partial
pointed groupoid (A, -, 0> in which Dmn(-) = Ax A. More generally,
A is a pointed algebra iff A is an algebra and 0 is a nullary operation
of A and {0} is a subalgebra of A.

Suppose A and B are sets, A & B, O is an equivalence relation
on A, and @ is an equivalence relation on B. @ is an extension of
Oiff O=0|,=0N(A X A).

Suppose 4 = (4, -,0) is a partial pointed groupoid. The set
A[-] is formed by adding to A a new point for each <z, ) such that
2-y is undefined in A, We intend this new point to be the value
of 2-y. One obtains a partial pointed groupoid A[-] = <{4][-], -, 0>,
in which Dom(-, A[-]) = A% called A freely extended by -. Note that
if 2oy =u-veA[-] — A4, then x =u and y = v. A[-] is an extension
of A. Set A[-],=<A[‘], -, 00 =A. Set A[-]... =<A[-]ass, -, O =
(A[-1)[-]. The pointed groupoid freely generated by A is Fr(A) =
(Fr(4), -, 00 =<UJA[-l.:n=0,1,---),-,00. Fr(4) is a pointed
groupoid (i.e., - is fully defined), and Fr(A4) satisfies an appropriate
universal mapping property. Note that the subalgebra generated by
A in Fr(A) is Fr(A).
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LEMMA 5. Suppose A = (A4, -, 0> is a partial pointed groupoid
and 6 cCon(d). O has an extension to a congruence relation of A[-],
and for its smallest extemsion, O[-], the following hold:

(i) if a,be A, then a=0b (O[-]) @ a =0b (O);

(ii) 2f acA and b =u-ve A. then a =0b (O]-]) [ there exists
{r, s) € Dom(-, A) such that a = r-s (@), r =u (O) and s = v (O);

(iii) ifa=2x-y¢eA and b =u-v¢ A, then a = b (O]-]) iff one of
the following holds:

(iii;) z=u (O) and y =v (O);

(iiiy) there exist {p, @), {r, s) € Dom (-, A) such that x=p (0), y =
qg 0),p-gq=7rs 0),r=u (0), and s =v (0).

This lemma is simply a specialization of Lemma 3, p. 92 of [8].
Set O[], =6 and O[-],,, = O[-]1)[-] and Fr(@) = U6 ].:n =

0:19" )

LEMMA 6. Suppose A = {(A4; -, 0> is a partial pointed groupoid
and O©ecCon(4). Then Fr(0) is an extension of O, and it is the
smallest extension of O to a congruence relation of Fr(A), the groupoid
freely gemerated by A.

Suppose L is a lattice of equivalence relations on some set. L
is a type-3 partition latiice, or L has type-3 joins, iff  \V y = xoyoxoy
for any x, y € L, where o denotes relation composition. L is type-2
iff every « V y = xoyou.

Suppose L is an algebraic lattice. C(L) denotes the set or
semilattice of compact elements of L.

We will use zy to stand for x-y and Ab or A-b for {ab: a e A} =
{a-b: be A}, ete.

3. Pinched lattices. Suppose « is an ordinal and (L;: 8 < «)
is a family of partially ordered sets. The ordinal sum of (L;,: 8 < av),
023(L;: B < o), is a poset on the disjoint union of the family (L;: 8 < «)
with the ordering defined by « <y iff xe L; and ye L, and g <7
or else 3=7 and 2 <y in L,. Suppose each L, has a greatest
element 1; and a least element 0,. The collapsed ordinal sum
of the family (L;: 3 < a)—CO3(L;: 8 < a)—is the maximal homo-
morphic image of 03 (L,: 8 < a) satisfying 1, = 0,,, for every g such
that s+ 1 < a.

ProrosITION 1. If L is a pinched lattice, then there is a set I
of compact element of L such that I is well ordered by the ordering
of L and such that VI =1 and such that each compact element of
L 1is comparable to every element I.
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PROPOSITION 2. L is a pinched lattice iff one of the following
holds:

(a) L is an algebraic lattice whose unit element is compact;

(b) L s isomorphic to an ordinal sum M + {1} and M is a
collapsed ordinal sum of algebraic lattices each of which has a
compact unit element.

In this section we shall show that each pinched lattice can be
represented as the congruence lattice of a groupoid. The construc-
tion will involve transfinite recursions. The proofs will involve
transfinite induction. The induction hypothesis will include the
following list of conditions. In that list and in what follows V
means the join in (H; <) and not the join in Con A.

() (A) A is a partial pointed groupoid.

(B) H< Con(4) and 4e H and p: A— H.

(C) H is a basis.

(D) Rng(p) is a well ordered cofinal subset of (H; ).

(E) For every ac A and @c H it is the case that p(a) and @
are comparable in {H; ).

(F) For every ac A we have p(a) = A {o(b): a = 0 (o(b))}.

(G) There is a D < A such that @ # D x D = Dmn(-, A).

(H) For every ac A there is a ce D satisfying ¢CLSa (in D,
mod H).

(I) For every a,be A there are ¢, de D satisfying 64(a, b) 2
Oy4(e, d) such that a and ¢ satisfy the condition in H) and such that
b and d also satisfy this condition.

(J) For every u, v, x, y € D we have either 0 (uzx, vy)=04(u, v)V
Oy(x, y) or Oy(x, y)=p(u, v, x, y), where o(u, v, ¢, ¥) is an abbreviation
for po(uw) V p(v) V p(x) V o(y).

(K) For every ©cCon A, © contains the H-closure of each of its
finite subsets iff © contains the H-closure of each of its elements.

Let u,r, x, ye A. We set O(uzx, vy) = Oyx(u, v) V O4(x, y). Note
that @(ux, vy) is defined even if ux or vy is not. We set T(uz, vy) =
Ox(u, q) V Oxx, s) V Oxgs, rt) V Oxlr, v) \V Ox(t, y), where ¢CLS u (in
D, mod H) and » CLS» (in D, mod H) and sCLS z (in D, mod H) and
tCLSy (in D, mod H). Suppose {4, H, o) satisfies (¥) and ©c H.
Note that U(ux, vy) is indepvendent of the choice of q,r,s t. It
follows from Lemma 2.5 that if wxe A[-] — A and vyec A[-] — A4,
then ux = vy (O]-]) iff @(uzx, vy) = O or ¥(uvw, xy) < 6.

LEMMA 3. Suppose {A, H, o) satisfies (). Then, for every x, y,
u, v there are q, r, s, t as above also satisfying Ox(u, v) 20O4(q, r) and
Ou(x, y) 2 Oy(s, t). Moreover, ¥(ux, vy) exists and:
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(1) if Bulgs, rt) = Oulg, 1) V Oy(s, 1), then O(ux, vy) = ¥ (ux, vy);

(i1) 4f Ogl(gs, rt) # Ox(g, v) V Ou(s, t) and Ox(u, q) V Ox(x, 3) V
On(r, v) V 04, y) 2 p(q, 7, 8, 1), then O(u, vy) < ¥(ux, vy);

(iii) f Oulgs, rt) # Ox(q, ) V Oy(s, 1) and Ox(u, q) V Oyxx, s) V
Ox(r, v)VOLE, y)<=0(g, 7, s, 1), then ¥(ux, vy) SO(uZ, vy) and Oy, y) =
o(u, v, , Y);

iv) O(ux, vy) and Tlux, vy) are comparable.

Proof of Lemma 3. By (H) and (I) of (%) such gq, 7, s, t exist,
and so ¥'(ux, vy) exists. For (iv), keep in mind that ¥(ux, vy) is in-
dependent of the choice of g, 7, s, t. The rest now follows easily from
D), (E), (F) and (J) of () and the following observations. In (ii),
we clearly have O(ux, vy) S Oy(u, q) V Ox(x, 8) V Og(r, v) V 05, y). In
(ili), we have p(q, 7, s, t) 2 T(ux, vy) and Oy, y) 2 Ox(s, 1) =
o(g, 7, s, t) 2 @(ux, vy) 2 Ox(x, y). Since Ox(x, y) = o(q, 7, 5, 1), by (D)
and (F) of (%), Ou(x, y) = p(x, y). Moreover, o(z, y) = o(x, ¥y, w, v) =
o(g, 7, s, ).

DEFINITION. Suppose {4, H, p) satisfies (#). <{(A* H* p*) is an
extension of (A, H, o) iff the following hold:

(i) A* is an extension of A;

(ii) A X A< Dmn(-, 4%);

(iii) [@]x+N (A X A) = O for any Oc H;

(iv) H* = {[@]y.: Oc H};

(v) For each ac A, we have p*(a) = [p(a)]a;

(vi) Rng(p*) = {[6],.: 6 € Rng p};

(vii) (A% H* p*) also satisfies (%).

Note that it is implicit in (iii) of this definition that [@];. is
required to exist for each ©¢ H.

Next we state the principal lemmas for this section.
Recall that C(L) is the set or semilattice of compact elements
of L.

LEMMA 4. If L is a pinched lattice, then there is a (B, H, p)
satisfying (%) with C(L) = (H; <).

Set H[-] =1{0[-]: 0 H}. We define p[-] by po[-l(a) = p(a@)[-] if
ac A and of-](ab) = (A{o(c): ab =0 (o(c)[-DHI-]-

LEMMA 5. If (A, H, p) satisfies (%), then H[-] is a basis and
CA[-], H[:], o[- ]> is an extension of {A, H, p).

LEMMA 6. Suppose:
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(i) a is a limit ordinal;

(ii) for any B <Y < ald,, H;, 0;) is an extension of {A,;, H;, 0s);

(iil) A4,=<4, -, 0 =UAsB<a), -, 0);

@iv) for each ©ec H, we have O, = U([@]H_S: B<a) and H,=
{6.: O € Hy;

(v) for each ac A, we have p(a) = U (0s(a): B < a and a € Ay).
Then A, is a pointed groupoid and {4, H, p,) is an extension of
{4y, Hy, 05) for all g < a.

Suppose {4, H, p)> satisfies (). Set {4, H, 0,y = {4, H, o) and
Set <An+1; Hn+17 ton+1> = <An[']7 Hn[.]y pn[']>' Then <Awy Hw; toa)> =
{Fr(A), {Fr(®): 0¢ H}, p,y>. So we set Fr(H) = H, and Fr(p) = p..

LemmA 7. If (A, H, p) satisfies (), then (Fr(A), Fr(H), Fr(p))
18 an extension of <A, H, p).

Suppose that <A, H, o) satisfies (§) and Dmn(-, A) = A*. Also
suppose » = {a, b, ¢, d) € A* and a+#b and ¢=d (Oy(a, d)). Take p,q,
r¢ A and set A’ = (AU {p, q, 1}, -, 0) where z-y is defined (and equal
z-y in A) iff x, ye A. For ©Oc H with p(a, b, ¢, d)D6, set O =6U
{{p, », <q, @, {r,r)}. For ©c H with p(a, b, ¢, d) =6, set 6 =0O6U
0/ U{p, q, r})’. (Note that by (E) of () @ is defined for each @€
H) H ={0:0ec¢H}). Set p'(p)=01(9q) =0 = (p(a,b,ec d) and
o'(x) = (o(x)) if e A. Let @ be the smallest equivalence relation
on A'[-] which includes {¢, ap) and <{bp, bg> and {aq, ar) and {br, d).
@ is a congruence relation of A’[-] because @], is the equality
relation and Dmn(-, A[-]) = (4")>. Set A, = (A'[-])/® = {4,, -, 0).
Since @], = 4, A; is an extension of A’. So we assume A’ C A,
For each @< H, let ©, be the smallest congruence relation of A,
containing @'. We let H, ={0,: 0 H}. For xzc A’ we set p,(x) =
((0'(®))] )2 and for ze A, — A" we set p,(2) = (A{ole): 0= (o))}

LeEmMA 8. Under the above hypotheses the following hold:
(i) <A, H', 0" is an extension of {A, H, p);

(i) <4;, Hy, 02> is an extension of {A, H, 0);

(iii) 4m A; we have ¢ = d (6(a, b)).

The last part of the above lemma means that if ¥ ¢ Con(4;) and
a=0b ), then also ¢ =d ¥).
We will prove these lemmas later.

THEOREM 2. If L s a pinched lattice, then there is a pointed
groupoid A satisfying the following:
(i) Con(A) is isomorphic to L;
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(ii) 4f ¢=d (6(a, b)), then there are p,q, rc A so that ¢ = ap
and bp = bq and aq = ar and br = d;
(iii) all joins im Con A are type-3.

We shall prove this theorem assuming Lemmas 4-8. We can
slightly reduce our total notational complexity by first proving
another lemma.

Suppose A4 is a pointed groupoid and (A, H, p) satisfies (¥). Index
{Mn=<a,bec,dye A a*b c=d (Oya,b)} by its cardinal number
k. Set {4, H, o) = {A,, H,, p,). Suppose a =< £ and {4,, H, 0;> has
been defined for all 8< a and for v < B8 < ald;, H, ps; is an
extension of {(4,, H,, o, and A4; is a pointed groupoid for all B < a.
If a=p8+1, set (4, H,p) = Fr(A4),), Fr(Hy),), Fr(0):,))-
If o is a limit ordinal, then we let (4, H,, 0, be given by Lemma
6. Set <A4”, H”, p"> = {(A,, H,, 0.).

LeMMA 9. Under the above hypotheses the following hold:

(i) A” is a pointed groupoid;

(ii) <A4”, H”, 0" is an extension of {A, H, p);

(iii) if a,be A and ¢ =d (Oy(a, b)); then there are p, q, re A" so
that ¢ = ap and bp = bg and aqg = ar and br = d.

(iv) 4f a,be A, then in A" we have O(a, b) 2 O4(a, b).

REMARK. It is a general fact that if {C, K, ¢) is an extension
of some (B, H, o), then the mapping which sends 6 —[0]; is an
isomorphism from (H; <) onto (K; <). This can be proved by
noting that (iii) of the definition implies & < @ iff [O]; < [?]x (and
so the mapping is an order isomorphism) and (iv) of definition implies
this mapping is onto. A further consequence is that if a, b, ¢, de B
and ¢ = d (04(a, b)), then also ¢ = d (Bkl(a, b)).

Proof. Using the last sentence in the remark and Lemmas 6,
7, and 8 and transfinite induction, one can easily show for each a =
k that {4, H, p, exists and is an extension of each (A4, H;, py)
with 8 <« and that 4, is a pointed groupoid. Thus (i) and (ii) hold.

Let a,be A, and let ¢ =d (Oy(e, b)). Suppose a = b. Then since
{a, b, ¢, d) is some A, we have the required p, ¢, r. If A is the one
element algebra, we may (and must) take p = ¢ = = 0. Suppose
|A| =2 and a =b. Then, since 4e H,¢ =d. Choose any b’ +# a.
Then {a, ', ¢, d) is some A;. So in A” there is a p with ap = ¢ = d.
So in this case we let ¢ = » = p. Thus (iii) holds. (iv) follows easily
from (iii).

Proof of Theorem 2. Let L be a pinched lattice. Set {(A,, H,, 0,) =
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{Fr(B), Fr(H), Fr(o)) where (B, H, p) is given by Lemma 4. Set
(A1, Hoiyy 0nrry = (A7, HY, 07> using the construction for Lemma
9. Consider <{4,, H,, o,y as given by Lemma 6. We set 4 = 4,.
Since A4 is a direct limit of pointed groupoids, 4 is also one.
Lemma 4, Lemma 7, Lemma 9, Lemma 6, induction, the transitivity
of the extension relation, and the remark after Lemma 9 all imply
that (H,; &) = (H; &) = C(L), the semilattice of compact elements
of L.

We claim that Con A is isomorphic to L; i.e., we claim (i) holds.
It suffices to show that the semilattice of finitely generated con-
gruences is isomorphic to C(L); i.e., it suffices to show that H, is
the set of finitely generated congruences of A. By the definition of
basis and (K) of (%), it suffices to show that in A we have 6(a, b) =
Oy (a, b) for each a, be A.

If a,bc A,, we let 6,(a, b) denote the smallest congruence relation
of A4, containing (a, b). By (iv) of Lemma 9 and induction, by Lemma
9 and Lemma 6 and the remark after Lemma 9, and from general
principles we have, for each a, be A, that O, (a, b) 2 6(a, d) 2
U0,..(a, b):a,be A,) 2 U(Oy,(a, b): a,be A,) = Oy (a, b). But this is
what we were required to prove. Also, (ii) of Theorem 2 now follows
easily from (iii) of Lemma 9. We defer the proof of (iii) till after
the proof of Lemma 4.

Proof of Lemma 4. We suppose L is a pinched lattice. Set
B = C(L), and let 0 be the zero of C(L). Set 0-0 = 0 and Dmn(-) =
{<0, 0>} and B = (B, -, 0>. For bec Bdefine ©, by x =y (0, if c =y
or xVy=b We set H=1{0,beB}). Let I be the set given by
Proposition 1. Define ¢: B— 1 by o(b) = A{tel:b=1}. Then set
o) =6,,. It is not too hard to show that (B, H, p> has the
required properties. Details are left to the reader.

Proof of (iii) of Theorem 2. Letc,dc Aand 6, ® € Con(A). Suppose
c=d@Vd)andc=d (@) and ¢ =d (@). Since O(c, d) is compact in
Con(4), we can find compact 6,, @, such that c=d (6,V @,) and 6,<
O and 9,S @. For the B and H of the proof of Lemma 4 we have
BZ A and 6,|;¢ H and ¢,|z€ H. So there exist a, be B with 6,|; =
O4(a, 0) and @y|;= OL(b, 0) and Oy(a, b) = O,|5\V @,|5. - Hence 6, = 6(a, 0)
and @, = 6(b, 0) and 6,V @, = 6(a, b). Thus we have ¢ =d (6(a, b)).
By (ii) there exist p, ¢, r such that ¢ = ap = 0p (6,) and 0p = bp =
bg =0q (@) and 0q = aq = ar = 0r (O,) and Or = br = d (@,). That
is, {¢, d) € OooP-D.

Proof of Lemma 5. By Lemma 2.5 4,[-] = 4,3. So (A) and (B)
of (%) hold for A[-] and HI-].
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It follows from Lemma 2.5 that O[-]|, = 6 for any O e Con(4)
and that H[-] < Con(4[-]). It follows that (H[-]; <) is isomorphic
to the semilattice (H; ).

Lemma 2.5, (#) and Lemma 38 imply that O,.1(e, f) exists for
each ¢, f € A[-] and that the following hold for O..(e, f):

(1) if e, fe A, then Ouile, £) = Oule, NI-1;

(ii) if eeA and f=vy¢A and rCLSwv (in D, mod H) and
tCLS y (in D, mod H), then Oy (e, f) = (Oxle, rt)\V Oy(r, v)VOzE, )]

(iii) if e=ux¢ A and f = vy ¢ A, then Oy4(e, f) is the smaller
of @(ux, vy)[-]1 and ¥(ux, vy)[-]. (These notations are from before
Lemma 3.)

Lemma 2.2 applied to H, that H[-] = {€[-]: ©® € H}, and the above
imply that HJ[.] satisfies (i)-(iii) of Lemma 2.2. We conclude that
HJ-] is a basis. So (C) of (#) holds.

That (D) of (¥) holds for p[-] and HJ[-] follows easily from the
isomorphism between (H; =) and (H[-]; &) and from the definition
of p[-] and that it holds for o and H. Similarly for (E) and (F) of
#)-

A x A =Dmn(-, A[-]). So (G) of (%) holds.

If ac A, then certainly a CLSa (in 4, mod H[-]). Ifa =wvye¢ A,
then 7t CLS @ (in A, mod H[-]) for any 7, ¢t satisfying » CLS» (in D,
mod H) and tCLSy (in D, mod H). So (H) of () holds.

Consider (I). Let e, feA[-]l. If e fcA, then Oy.i(e, )2
Ourale, f) will suffice. If ec A and f ¢ A, we established above there
is a g with gCLS f (in 4, mod H[-]). It follows that O,.4(e, f) 2
Ouri(f, 9). Hence Oyq(e, f)20pu1(e, 9). Lete=ux¢ Aand f =vy¢
A. Using (I) of (%) for A and H, choose g, 7, s, t satisfying ¢ CLSu
(in D, mod H), ete., and Oz(u, v)204(q, r) and Ogx(x, ¥)2O4(s, t). So
O(ux, vy) 2054(q, )V Oyi(s, t) 2 04(gs, rt). Thus we have Oypq(e, f) 2
O4(gs, rt). In the preceding paragraph we established that ¢gsCLSe
(in A, mod H[-]) and »¢tCLS f (in A, mod H[-]). So (I) of (#) holds.

Given Lemma 3 and descriptions of the O,..(e, f) and that (J)
holds for 4 and H, it is easy to show that (J) holds for A[-] and
H[-]. There are three cases: (i) ux, vye 4; (ii) uxec A and vy ¢ A4;
(iii) ux ¢ A and vy ¢ 4. (i) and (iii) are left to the reader. Suppose
ure A and vy¢ A. Choose 7, ¢t satisfying » CLS» (in D, mod H) and
tCLSy (in D, mod H). Then 6, (uzx, vy) = (Ox(ux, rt) \V @(rt, vy))[-].
The case O,(ux, rt)y = @(ux, rt) is easy. Suppose Oy(uzx, rt) = O(uzx, rt).
If o(rt, vy)2p0(u, x, 7, t), then O, (ux, vy) 20(rt, vy)[- 120 (ux, vy)[-]12
Ouri(ux, vy). So we may suppose by (E) of (§) that &(srt, vy) S
o(u, z,r,t). Now (J) for A and H implies Oy(w, y) = Oylx, t) =
o(u, , 7, t) = o(u, 2, v, Y).

Since H is a basis, each member of H is the closure of some
finite subset of A x A. So (K) of (¥) for A[-] and HJ-] follows
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easily from (K) of (#) for A and H and from ® — 6[-] being an order
isomorphism.

The details for showing that {A[-], H[-], o[-])> is an extension of
(A, H, p) either are easy or appear above.

Proof of Lemma 6. Suppose x, ye A,. Then there is a g < «
with «, ye A;.  (ii) of the definition of extension implies x-y is
defined in A4;.,. So A, is a pointed groupoid. Let 7 be the least
ordinal with », ye A;. We note that O (%, y) = (O, (%, ¥))|4). =
U@y (2, 9):7 = 8 < a). Obviously 4,, = (4,), and H, < ConA,.
(H,; <) is isomorphic to the semilattice (H;; &). Lemma 2.2 applied
to H, the definition of extension, that H, = {#,: ©¢c H;}, and the
above show that (i)-(iii) of Lemma 2.2 hold for H,. We conclude
that H, is a basis. Since o, A, — H,, we have that (A), (B), and
(C) of (%) hold.

Let 0: A,— H, be defined by o(a) = (0/(a)),. Clearly Rng(o) =
Rng(p,) because of (v) and (vi) of the definition of “extension.” Now
(D), (E) and (F) of (£) follow easily.

A, x A, = Dmn(-, A,), and (G) of (%) holds. Since xCLSz (in
A,, Mod H,) holds for every zc A,, (H) and (I) of (#) hold.

Suppose 7, 9, ¢ are the least ordinals satisfying wux, vy e A, and
u, ve A; and x, ye A.. Note that d,¢e =v. Now

O, (ux, vy) = (On,(ux, vY))| 1)e = (On, (4, V) V O (x, Y))| 1,)a
= ((On,(w, V) |4y V Ou, (@, Y)lap)ea
= (@, (u, V) |4y N (On (@, Y))|a))a
= ((On,(u, V) ap)a V (On, (%, ¥))|4)a
= Oy, (u, v) V Oy, (2, ¥)

or Oy, (z, ¥) = (On, (@, ¥))|i)e = (On (@, Y1) = (0w, v, T, Y))|4)a =
o, v, x, ). So (J) of (¥) holds.

The proof that (K) of (%) holds is similar to the proof of the
corresponding part of Lemma 5.

Note that if @ e H;, then @ = [@],],, because (4;, H;, 0;) is an

extension {4,, H, 0,). '
It is now easy to check that {4, H, p,) is an extension of

{A;, H;, 05y for each g < a.
Proof of Lemma 7. This is a corollary of Lemmas 5 and 6.

Proof of Lemma 8. We assume (i), the proof of which is quite
straightforward.

Set X ={xeA: p(x) < p(a, b, ¢, d)} and Y =A — X. Observe
that
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Claim 1. If z,x, 2,€ X and ye Y, then:
(i) Oglm, z) < 0(a, b, ¢, d);

(11) @H(x’ y) —Qv p(a’, b’ C, d);

(iii) p(a, b, ¢, d)|, =X x X.

It then follows easily from Lemma 2.5 and the definition of the
map 6 — O’ that

Claim 2. If, in A'[-],x Dbelongs to one of the sets A,
{p, g, }+{p, q, 7}, Xp, pX, Xq, ¢X, rX, Xr, Yp, pY, Yq,qY, Yr,rY and
y belongs to a different one, then O.1(x, ¥) 2 0'[-1(a, b, ¢, d).

Set T (for trash) = A'[-]— (A'UXpUXqUXr). We clearly have

Claim 3. If x and y are in different blocks of the partition
{AI9 Tr Xp; Xq, XT}’ then @H’[-](w; y) = lo'['](a” b; ¢, d)-

A'[-] is pictured in Figure 2 and A, is pictured in Figure 3.

O 0 o

Te
e
-~ e

FIGURE 2

bp =ba— /cq =ar

Q) )
L] e
p r

FIGURE 3

Recall the relation @ used in the definition of 4;. Observe that
/e ((o(a‘) br ¢, d)),[']'

In what follows we let + denote equivalence relation join. (+
need not coincide with join in Con(4’[-]).) Thus we have

e

Claim 4. If 6 H and 6 2 p(a, b, ¢, d), then (6'[-] + @) = O'[-].

In order to establish that H, is a basis and that each 6,|, = 6,
we need a fairly detailed description of @,. We will show for each
@ec H that (0'[-] + @)e Con(A'[-]). From this it follows on general
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principles that 6, = (0'[-]+@)/®. So we will profit from an examina-
tion of O'[-] + @.

Claim 5. The following hold for z, ye€ A'[-] and O ¢ H:

(i) if x and y both belong to one of the sets A’UT, Xp U T,
XqUT, XrUT, then x =y (O[] + 0) iff x =y (O7-]).

(ii) if xe A’ and ye Xp, then x =y (O[] + @) iff x=¢ (O]-])
and ap =y (0-]);

(iii) if xe A’ and ye Xr, then x =y @[-]+ @) if x =d (O]-])
and br =y (6'[-]);

(iv) if xe A’ and ye Xq, then z =y (O'[-] + @) iff z = ¢ (O]-])
and ¢ = b (0'[-] and bg =y (O'[-]);

(v) if xe Xp and ye Xq, then x =y (0'[-] + @) iff x = bp (O'[-])
and bg = y (O'[-];

(vi) if xe Xq and ye Xr, then z =y (O'[-] + @) iff x = aq (O'[-])
and ar =y (0']-]);

(vii) if xe Xp and ye Xr, then x =y (O'[-] + @) iff x = ap (O'[-])
and ¢ =d (@[ ]) and br =y (O'[-]).

The proof of the claim is quite routine, and so we leave most
of the proof to the reader. But we prove part (i) as an example.

It is obvious that if x =y (0'[-]), then x =y (O'[-] + @). So we
suppose x =y (O'[-] + @) and « and y both belong to one of the sets
AUT, XpUT, XqUT, XrUT. If ©2p(a,bd,c,d), then by Claim 4
x =1y (O'[]). So we suppose ® & p(a, b, ¢, d).

Let 2,e T, x, e A’, x,€ Xp, x,€ Xq, x,€ Xr. By Claim 3 we have

(*) 2, Fx; O] if 1#7.
Since x = y (0'[-] + @), there is a sequence x = s, - - -, s, = y with
$i=8,0O[-Dors, =s,, (@),fori=0,---,n—1. Suppose s, -+, s,

is a sequence of shortest length having these properties. Then
s;#s8; if i#j5. If i<n—2, then s, =s,,, (0'[-]) if and only if
8 Z 8y (D) i 5,4, = 814, (D).

Let us suppose n = 2.

Let us also suppose xz, ye A" U T.

Now ¢ =5, =8, (@) or s, = s, (@). So we take k to be the least
integer such that s, = s,,, (@). Note that z=s, (0'[-]) and s, # s34
From the fact that 0 & o(a, b, ¢, d) and (*) and the definition of @,
we may conclude that xe A’ and s,e{c, d}. Suppose s, =c¢. The
definition of @ implies s,,, = ap. Since y¢ Xp, y # 8, and k + 1+
n. So there is an s, and s,,,=s8,,, (0'[-]). Since 6% p(a, b, ¢, d), Claim
3 yields that s,.,€ Xp and s,,,*y and k+2s~%n. So there is an s,,,
with s,., = 8445 (@) and s,,, # Si4s 7 Sis2. NOW since s,.,€ Xp and
Spis 7 Spy. = ap, the definition of @ yields s,.,€ ({ap, bp}) — {ap} =
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{bp}; i.e., 8,4 = bp. Continuing in this fashion we find that s,.; = bg
and s,,, = aq and s,.; = ar and s, = brand s,., = d (and k + 7 =< n).
Keep in mind that ap = s, = 8,4, = bp (0'[-]). Now (iii) of Lemma
2.5 implies a =b (0') or else there exist ¢, f, u,ve A (note 4*=
Dom(-, A")) with a =¢ (@) and b= f (0') and ¢-u = f-v (0') and u =
p=wv (0"). Thelatter fact implies that if a #b (0'), then p(a, b, ¢, d) =
©. Hence a=b (). By construction a=>b(0). e H and the hypo-
theses imply ¢=d (). So ¢=d (O'-]). Thus a=s,=c=d =
Sper (O'[-]). As a result we see that & = s, d = 5,41, S0, **, 8, = ¥
is a sequence in which consecutive members are equivalent under
O'[-] or @. Yet it is shorter than the shortest such sequence con-
necting « and y. The case with s, = d is similar.

Let ,ye Xp UT. Suppose x€T. As above we find that z =
$,(0'[-]), where s, € {c, ap, bp, bq, aq, ar, br, d}. But Claim 3 implies
xZ£s8, (0'[-]). SoxeT. Similarly y¢T. Sox, ye Xp. Now one can
proceed as in the above case and derive a contradiction.

Similar contradictions can be derived for the cases (x, ye Xq U T)
and z, ye (Xr U T).

So n £ 2.

If n=0or n=1and s,=3 (@), we find that x =5, =85, =y
(x =y (@) implies « = y because z,yc A’ UT or z, yec Xp U T, ete.).
In this case x = y (O'[:]). The only remaining possibility is % = 0 or
1and 2, =8, =s, =% (O]-]).

This conclude our proof of (i). As stated above, the remainder
of the claim is left to the reader. While doing the remainder, keep
in mind that if e X and @€ H and p(a, b, ¢, d) < 0, then under 6'[-]
we have the following congruences

i
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By Claim 5.(i) we have (O[] + @)|, = 6" for any ©c H. Then
it clearly follows that @[] + ® € Con(4'[-]). From general principles
we have that 6, = (@'[-] + @)/@ for each ©c H. That H, is a basis
is now easily proved using Lemma 2.2 and Lemma 2.4. Since @], =
44, Claim 5.(i) implies [0];, N (A X A) = (6'[-]) N (A X A) = O for each
Oec H.

It is now clear that (A)-(G) of (#) hold and that (i)~(vi) of the
definition of extension hold.

In order to complete the proof, we need descriptions for 0,,(x, ¥)
for x and y in various subsets of A,. Essentially, Claim 5 provides
us with these descriptions.

From (i) of this lemma and Lemma 5 we know that for any
xe A'[-] there is a z with 2CLSz (in A’, mod H'[-]). From Claim
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5.(i) it follows, for xe A’ U T, that 2CLS«2 (in A’, mod H'[-]) iff
2CLS 2 (in A’, mod H,). So for each xe¢ A’ U T we have the required
z. Claim 5 ensures the following: if xze (Xp U Xq), then ¢CLS«x
(in A’, mod H)); if xe(Xq U Xr), then dCLS 2 (in A’, mod H;). (We
remind the reader that closest elements need not be unique.) So
(H) of (¢) holds.

Consider (I) of (%).

Suppose z, ye A’ UT. By (i) of this lemma and Lemma 5 and
the preceding paragraph there exist w,v such that 6, (z, y) =
Bura, y) + 9)P2(Oya(u, v) + @)@ = Oy (u, v) and w CLS 2 (in A/,
mod H;) and vCLSy (in A’, mod H,)).

Suppose e T and ye Xp U Xq U Xr. Then

@H,{(x, Z/) = (@H'['](xy y) =+ @)/@ .

By Claim 3 we have Oy4(z, ¥) 2 0'[-1(a, b, ¢, d). By Claims 1.(iii)
and 4 we have c=y =d (Oy(1(%, ¥)). Let » = ¢ or d as appropriate
and choose any u satisfying «CLSz (in A’,mod H)). So z=w
(Opra(x, ). We clearly have 0 (x, ¥) 2 0,,(x, v) 2 Oy,(u, v) since
ve A

Suppose xe¢ A’ and ye Xp U Xqg U Xr. Above we established that
there is a z satisfying 2CLSy (in A4’, mod H;). We have then
Ox (2, ¥) 2 Oy (2, 2). Note that x is closest to itself.

If z,ye(XpU Xq), then O, (x,y) 24 = 0Oy, ¢) will suffice.
Similarly for z, y e (Xq U X7).

If xeXp and ye Xr or vice versa, then Claim 5 implies
Ou,(®, ¥) 2 Oy,(c, d). But ¢ is closest to » and d is closest to y (or
vice versa).

If ze A’, then « is closest to itself. So if z, ye 4’, Oy ,(%, ) 2
Oy, (x, y) will suffice.

So (I) of () holds.

Consider (J) of (%) and let {u, v, 2, y} & A’. There are the follow-
ing nondisjoint cases:

(1) fux, vy} S A"UT and {<u, ), <v, ¥} N {{a, p), <b, 1} = J;

(ii) z=1y;

(iii) 2+ vy and ze{p, q, v} and u, v, ye (X U {p, q, 7});

(iv) x+#y and ye{p, q, r} and u, v, xc (X U {p, g, 7});

(v) x#y and 2e{p, q,r} and ue X and {v, y} £ X U {p, q, 7};

(vi) z+#y and ye{p, q, r} and ve X and {u, 2} £ X U {p, q, 7}.

(i)-(iv) are easy to check, and (vi) follows from (v) since, in
general, 6, (w, 2) = O4,(2, w). So we shall prove (J) under the addi-
tional hypotheses in case (V).

Observe that x=0=y (04,(x, ¥)). We may assume 0, (x, ¥)S 0:(%,
v, z, y). Note that o,(u) S 0;(x) = Oy, (2, 0) S Oy (2, y). Since one of
v and y is in Y, (E) of (¥) now implies o,(u, v, z, ¥) = 0,(v, ). Since
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Ou,(y, 0) = O (x, y), we have Oy (y, 0)Cpo(v, y) = (4, v, 0, y). There-
fore, by cases (i)-(iv) we have 0,,(u0, vy) = 64,(u, v) V 04,0, ¥).

If yeXU({p,q,r}, then ve Y, by the hypotheses of case (v).
But then since ue X, we have 0,(u) S 0;(x) S 04,(u, v) by Claim 1.(ii).
If yeY, then p,(u) S px(x) S Op,(y, 0). In any case, we have that
0x(u) S 02(%) S Oy (u, v) V 64,0, y) = 0,,(u0, vy).

Suppose O (ux, vy) S P;(x). We know that ux = u0 (0,(x)). Then
we may conclude that O,(u, v) V 04,0, ¥) = Oy, (u0, vy) = (x) =
0:(w, ). Thus we obtain v =u=0=y =z (0,(x)). By (F) of (#) we
obtain ©,(u, v, x, y) = 0:(%) = Oy (2, y). This contradicts an early
assumption. So we may conclude by (E) of (§) that p;(x) S 04, (ux, vy).
Therefore u0 = ux = vy (04 (ux, vy)).

Now we have Oy (ux, vy) = 04,0, vy) V 0i(x) = Oy (u, v) V
01,00, ¥) V 0x(x) 2 Oy, (u, v) V O (2, y) 2 Oy, (uz, vy).

This concludes the proof.

4. Ideals of a distributive lattice. This section amounts to a
repeat of §3 with seemingly minor, but crucial, variations.

In this section we shall prove that the ideal lattice of every
distributive lattice can be represented as the congruence lattice of
a groupoid. The induction hypothesis for the proofs will include
the following list of conditions. We continue the convention of V
meaning the join in {H; &).

() (A) A is a partial pointed groupoid.

(B) H<Z Cond and (H; &) is a distributive lattice with zero.

(C) H is a basis.

(D) For some nonempty D, Dmn(-, A) =D X D.

(E) For every a,be D, it is true that a-0 =5-0 (N H).

(F) For every acA there is a ce D satisfying ¢CLSa (in
D, mod H).

(G) A*=1T1UO and

(i) if <a,b)€O, then a =0 (6, (a, b)), and

(ii) if {y, vy eI, then (v, y) e I, and

(iii) if <y, v) € I, then there is a {d, f) € IN (D x D) satisfy-
ing dCLSy (in D, mod H) and fCLS% (in D, mod H),
and

(iv) if ¢, d,e, feD and {d, f) eI, then
(a) <ed,ef)el, and
(b) Oxled, ef) = [Oxlc, e) N Ox(d, 0)] V Ox(d, f),

and

(v) <(x,x)el for every xe A.

(H) For each ©® e H there are a,bec A so that Oy(a, b) = 6.

(I) For every ©cCon A4, 6 contains the H closure of each of its
finite subsets iff ® contains the H closure of each of its elements.
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Let z, y, u,ve A. Set O(xy, uv) = [Ogx(x, u) A Ox(y, 0)] V B4y, v).
Note that @(xy, uv) is defined even in those cases where zy or uw
is not defined. Let ¢ (resp., d, e, f) be a closest element in D to z
(resp., ¥, u, v). Set ¥(xy, uv) = (Ox(®, ¢) A Ox(d, 0)) V Ox(y, d) V
Ox(cd, ef) V (Oxle, w) N\ Ox(f, 0)) V Ox(f, v) = O(xy, cd) V Oxlcd, ef) V
D(ef, uv).

LeMMA 0. (A) If (A)-(F) of (%) hold for A and H, then:
(i) [0 A Oxd, 0)] V Ox(a, b) = [0 A Oxla, 0)] V Ox(a, b) for
any Oc H and any a, be A,
(ii) Oy(ab, cd) S D(ab, cd) = [Ox(a, ¢) A\ Ox(b, 0)] V Ox(b, d) for
any a, b, ¢, de D;
(iii) For any x,y, w, v, s, t€ A it is the case that O(xy, uv)V
O(uvw, st) 2 O(xy, st);
@iv) for any z,y, w,ve A, it is the case that ¥(xy, uv) s
independent of the choice of ¢, d, e, f.
(B) If (A)-(G) of (&) hold for A, H, I and O, then:
(i) if <y, v)el, then O(xy, uwv) S ¥(xy, uv);
(ii) if <y, v) €0, then ¥(xy, uv) S Ox(y, v) = @(xy, uv).

Proof. (A.i) holds because (H; <) is distributive and @4(a, 0) V
Ou(a, b) = Ogx(b, 0) \V O4(a, b). Note that by (E) of () we have ab =
a0 = ¢0 = c¢d under O4(b, 0) \VV Ox(b, d). (A.ii) now follows from the
distributivity of (H; &). (A.iii) is a routine calculation using (A.i)
and distributivity.

Now consider (A.iv). Let ¢ and ¢’ (resp., d and d’,e and ¢, f
and f’) be H-closest elements in D to x (resp., v, u, v). Recall that
T(xy, uv) = O(xy, cd) V Oxled, ef) V D(ef, uv). We wish to show
¥(xy, wv) also = O(xy, ¢'d’) \V Oxc'd, ¢'f') \V @' f’, uv). Note, by
definition of H-closest that O,(x, ¢’) = Oy(x, ¢), ete. So @(xy, e¢d) =
[6u(z, ¢) A Ouly, 0)] V Ox(y, d) = [On(z, ¢') A\ Ox(y, 0)] V Ox(y, d') =
D(xy, c'd"), etec. Now using (A.ii) and (A.iii) we obtain @(ay, c¢d) =
D(xy, cd) V O(xy, ¢'d’) = O(xy, 'd’) V o(c'd, ed) 2 O(xy, 'd’) V Oy4(c'd,
cd) 2 O(xy, ¢’'d’) = O(xy, ed). That is, O(xy, ed) = O(xy, 'd") V O4(c'd,
cd), ete. The desired result follows from this.

Let 2, y, u, v, ¢, d, ¢, f be as above.

Suppose <{y,v)€l. Then by (G.iii) and (G.iv) of (¥) we may
suppose Oy(ed, ef) = @(cd, ef). Then ¥(xy, uv)=0(xy, cd)\ D(cd, ef) \V
D(ef, uv) 2 O(xy, uv) by (A.iii) of this lemma.

Suppose <y, v) € 0. Certainly @(xy, uv) 2 Ox(y, v) and y=d =
0= f=v under Oy, v). So by (E) of (#) we have Oyled, ef) =
O4(y, v). Clearly, we also have O(xy, cd) = [Ox(x, ¢) A Oy, 0)] V
64y, d) S Ox(y, v), ete. Thus ¥(xy, uv) S B4y, v).



CONGRUENCE LATTICES AND SIMILARITY TYPE, II 493

DEFINITION. Suppose {4, H, I, O) satisfies (§). <4*, H*, I*, 0*)
is an extension of {4, H, I, O) iff:

(i) A* is an extension of A4;

(ii) A X A S Dmn(-, 4*);

(iii) I*N A* =1 and O* N 4 = O;

(iv) [OlzN A* = © for any O e H;

(v) H*={[6]y:0¢cH};

(vi) (4% H*, I*, O*) also satisfy (#).

Note (as in §3) that it is implicit in (iv) of this definition that
[©]x« is required to exist, for each @ ¢ H.

LEMMA 1. Suppose (A, H, I, O) satisfies (£). If (A*, H* I*, O*)
satisfies (1)-(v) of the definition of “extension” (with respect to
{4, H, I, 0})) and (A)-(G) of (&), them <A*, H* I* O0*) is an ex-
tension of {A, H, I, O).

In other words, (H) and (I) of (#) are preserved “for free.”

Proof. Since (H) of (%) holds for H and since (iv) and (v) of
the definition hold, H* clearly also satisfies (H) of (%).

Let © be a congruence of A* containing the H*-closure of each
of its elements. By (iv) and (v) of the definition 6|, 2 Ox(a, b) for
every {(a, by € ®|,. Hence 0|, contains the H-closure of each of its
finite subsets.

Let X* be a finite subset of ©. For each p*e X* it is the case
that (0,(p*))|.e€ H. So there is a pe A with (O;(p*)|. = Ox(p).
Whence 0,.(p*) = O,(p) by (iv) and (v) of the definition. Choose and
fix one such p for each p*. Let X be the set of such p’s. X is a
finite subset of 6|, and [X]; = [X*]z. By (H) of (*) for H and
by the above, we have, for some a, b, O4(a, b) = [X], S ©|,. Hence
{a, by € @ and Oy.(a, b) = [X]zm. So 6 2[X]4., ending the proof.

Next we state the principal lemmas of this section.

LEMMA 2. Suppose:

(0) <4, H, I, Oy satisfies (¥);

(1) «a s a limit ordinal;

(ii) for any B<v<a {4, Hy, I, O;) is an extension of {As;, Hg,
Iy, O;

(i) 4, = (4, -, 0 = U4y B <a), -, 0

(iv) for each @c H, we have 0,= U([Ols,: B< @) and H,=
{6.: 6 ¢ Hy; |

(v) I,=UIzp<a) and O,=UOp::8< a). Then A, is a
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pointed groupoid and {4,, H,,I,,0,> is an extension of {4z, H;, I,, 0,
Jor all B < «a.

This lemma says chain unions are okay. The next lemma gives
us a starting point.

LemMA 3. If L is a distributive lattice with zero, then there is
a (B, H, I, O) satisfying (%) with L = (H; <).

Suppose <4, H, I, O) satisfies (§). For a,bec A[-] and Oc H, let
e = b (6{-}) iff one of the following holds:

(i) a,beAd and a =0 (O0);

(ii) acA and b=uv¢ A and Oyla, ef) V O(ef, uv) S 6, where
¢CLS % (in D, mod H) and fCLS% (in D, mod H);

(iii) a¢ A and be A and the condition symmetric to (ii) holds;

(iv) a=a2y¢ A and b =uv¢ A and T(xy, uv) N O(xy, uv) < 6.

Note, as in Lemma (0.iv), the relation described in (ii) is inde-
pendent of one’s choice of ¢, /. Set H{-} ={0{-}: ®c H}. For a =
xye Al-] — A, set Cla) = {cd: ¢cCLS 2 (in D, mod H) and dCLSy (in
D, mod H)}. Set I[-]=IUU{a,d),<b, ay}:ac A, b¢ A, and for
some c € C(b) we have <a,¢)el}U{{a,b):ag¢ A b¢ A, and for some
ceC(a) and de C(b) we have {¢c,dyel}. Weset O[-] =0U{A[-])’—
(4* U I[-])).

LemmA 4. If (A, H, I, O) satisfies (%), then H{-} is a basis and
LA[-], H{-}, I[-], O[- 1> s am extension of {4, H, I, O).

Suppose {4, H, I, O) satisfies (¥). Set (4,, H, I,, O,y =<4, H, I, O)
and set <An+1) H,., In+1’ 0n+1> = <An['], H.{-}, In['], On[]> Let <4,,
H, I, O, be given by Lemma 2. Note that A, = Fr(4). So we
set Fr(H) = H, and Fr(I) = I, and Fr(O) = O,

LEMMA 5. If (4, H, I, O) satisfies (%), then {Fr(A), Fr(H), Fr(I),
Fr(0)) is an extension of {A, H, I, O).

Suppose that (4, H, I, O) satisfies (¥) and Dmn(-, 4) = 4*. Also
suppose ) = {a, b, ¢, d) € A* and a%b (N H) and c=d (Oy(a, b)). Take
p,q,r¢A and set A’ = (A U{p,q, r}, -, 0) where x-y is defined (and
equal xz-y in A) iff , ye A. For ©c H for which it is not the case
that a =b=¢=0 (0) set @ =06 U {p, »), {q, @, {r, )}. For Oc H
witha=b=c¢=0(0)set ® =6 U (0/60U{p, q, }>). Finally set H =
{¢': 6 H} and I' =IU {{p, »), {q, @, <{r,r>} and O' =0 U ((A") —
(I' U A%). Let @ be the smallest equivalence relation on A'[-] which
includes {e, ap) and <{bp, bg) and {aq, ar) and <br,d). @ is a con-
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gruence relation of A’[-] because @], is the equality relation (this
is because @ % b) and Dmn(-, A[-]) = (4" Set 4;=AT-]/® =
{4,, -, 0>. Since @|, = 4, A, is an extension of A’. So we assume
A'CA,. For each Oc H, let 6, be (0'{-} + @)/p where + represents
equivalence relation join. Let T = pA'UqA' UrA’U{p, q, r}. Let
{u, vy € I, iff one of the following holds:

(i) <u, vy = {x/®, y/®) with <{z,yyeI'[-] and z,yc A’ U T}

(ii) <w, vy € (Ap')* U (A¢')* U (A7)

(iii) <w, v) € (Ap" X Aq¢") U (Ad" x Ar");

@iv) <u, ¢y satisfies (i) and ve Ap' U A¢’;

(v) <u, d) satisfies (i) and v e Aq' U Ar';

(vi) <e,dyel and we Ar' and ve Ap';

(vii) <w, uy satisfies one of (iii)-(vi).
Let O, =0"U (45 — (4" U Ip)).

LEMMA 6. Under the above hypotheses the following hold:
(i) <4, H', I, O is an extension of {4, H, I, O);

(ii) <4, H,, I,, 0, is an extension of {4, H, I, O);

(iii) in A, we have ¢ = d (6(a, b)).

The last part of the above lemma means that if ¥ e Con(4,)
and a = b (¥), then also ¢ = d (¥).
We will prove these lemmas later.

THEOREM 3. If L is a distributive lattice, then there is a pointed
groupoid A satisfying the following:

(i) Con(A) is isomorphic to the lattice of ideals of L;

(ii) <f ¢ =d (6(a, b)), then there are p,q, r< A so that ¢ = ap
and bp = bg and aqg = ar and br = d;

(iii) all joins in Con A are type-3.

We shall prove this theorem assuming Lemmas 2-6. As in §3,
we can reduce our notational complexity by first proving another
lemma.

Suppose A is a pointed groupoid and {4, H, I, O) satisfies (%).
Index (M n={a, b, ¢, d) € A%, a£b (NH), c=d (O4(a, b))} by its cardinal
number k. Set {4, H, I, 0) = {A,, H,, I,, O,y). Suppose a < k and
{As, H;, I, O) has been defined for all 8 < a and for ¥ < < a
that {A,, H;, I;, O;) is an extension of {4, H,, I, 0,) and 4, is a
pointed groupoid for all g < a. If a =g+ 1, set <4,, H,, I, 0,) =
CFr((Aghy), Fr((Hp)y), Fr((Ip),), Fr((Op),)>. If a is a limit ordinal,
then we let {4,, H,, I,, O,) be given by Lemma 2. Set {4”, H”,
I",0" = {4, H, I, O,).
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LeMMA 7. Under the above hypotheses the following hold:

(i) A" is a pointed groupoid,;

(ii) 4", H",I", 0") is an extension of {A, H, I, 0);

(iii) if a,bc A and a £b (NH) and ¢c=d (O4(a, d)); then there
are p,q,r€ A" so that ¢ = ap and bqg = bq and aqg = ar and br = d.

@iv) if a,be A and a #=b (NH), then in A” we have 6(a, b) 2
Ox(a, b).

REMARK. The “remark” after Lemma 9 of §3, after obvious
trivial changes, applies here as well.

Proof. Using the remark and Lemmas 2, 5, and 6 and transfinite
induction, one can easily show for each a < k¢ that {4,, H,, L, O.)
exists and is an extension, for each B < a, of {4, H;, I;, O;) and
that A4, is a (total) pointed groupoid. Thus (i) and (ii) hold.

Let a,bec A, and let ¢c=d (Oz(a, b)). Suppose a #b (NH). Then
{a, b, ¢, d) is some Az, and we have the required p, q, . Thus (iii)
holds. (iv) follows easily from (iii).

Proof of Theorem 3. Let L be a distributive lattice. We may
suppose L has a zero. Set {A,, H, I,, O,> ={Fr(B), Fr(H), Fr(I), Fr(0))
where (B, H, I, O) is given by Lemma 3. Set {4,.,, H,.1, L,11, Ons) =
(A, H;, I', 0, using the construction for Lemma 7. Consider
4, H,, 1, 0, as given by Lemma 2. By Lemma 2, 4, is a (total)
pointed groupoid. Lemma 3, Lemma 5, Lemma 7, Lemma 2, induction,
the transitivity of the extension relation, and the remark after
Lemma 7 all imply that (H,; &> = (H; &) = L.

Claim 1. If a #b (NH,), then O(a, b) = 64 (a, b).

We suppose a =#b (NH,. By Lemma 7, Lemma 2, and the
“remark” after Lemma 7 we have a = b (N H,) for any n satisfying
a,be A, If a,bc A,, we let 0,(a, b) denote the smallest congruence
relation of A4, containing {(a, b). By (iv) of Lemma 7 and induction,
by Lemma 7 and Lemma 2 and the remark after Lemma 7, and
from general principals we have that 6, (a, b)26(a, b)) 2U(0,..(a, b):
a,bec 4,)2U Oy, (a,d):a,be A,) = Oy (a,b). This ends the proof of
Claim 1.

Let M be the filter (dual ideal) of Con A4, consisting of all con-
gruences containing () H,).

Claim 2. If ©e M, then © contains the H,-closure of each of
its finite subsets.

By hypothesis and Claim 1 626, (a, b) for each (a, b) € . Now
(I) of (%) finishes the proof of the claim.
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M is an algebraic closure system. Let K = {[X],: X is a finite
subset of AZ%}.

Claim 3. K = H,.

K and H, are both bases. So it suffices to show that [X], =
[X]n, for each finite subset X of 4. Let X be such. By Claim 2
and general principles we have [X]x = [X]y 2 [X]x, 2 [X]cons, +
(NH,) =[X]y = [X]x, where + is equivalence relation join. This
establishes the claim.

Set 4 = Aw/(NH,). Since (K; &) = (H,; =) = L, it follows
(see §2) that Con A = (M; <) = the ideal lattice of L. This establishes
(i) of the theorem.

Suppose ¢ = d (6(a, b)) in A.

Suppose that a = b. Leta/, ¥, ¢, d’ € A, be such that a’'/(N H,) =
a, ete. Certainly o’ b’ (N H,). By general principles and the above
claims, we obtain ¢’ = d'(04,(a’, b")). Now Lemma 2, Lemma 7 and
“remark” after Lemma 7 yields p/, ¢/, »’ satisfying a'p’ = ¢, ete. With
» = 9’ [(N H,), ete., we have ap = ¢, bp = bg, ete.

Now suppose a = b. Then certainly ¢ =d. If A is the one
element algebra, p = ¢ = » = 0 = the one element, will do. If A4 is
not the one element algebra, choose some b*=b. Then ¢=d (6(a, b*)).
By the previous case there are p*, ¢* »* with ap* = ¢, b*p* = b*¢*,
ete. With p =g=7r=p* we have c=d=ap=bp=0bg =aq =
ar =br =d.

Thus (ii) of the theorem is true. We defer the proof of (iii) till
after the proof of Lemma 3.

Proof of Lemma 3. We suppose L is a distributive lattice with
zero. Set B= L, and let 0 be the zero of L. Set 0-0 =0 and
Dmn(-) = {0, 0>} and B = (B, -, 0>. For be B define &, by x =1y (6,)
if c=yoraVys<b Weset H={0,bcB} and I = B? and O =
@. It is not too hard to show that (B, H, I, O) has the required
properties. Details are left to the reader.

Proof of (iii) of Theorem 3. For the B and H of the proof of
Lemma 3, we have (YH = 4, and so (Y H,)|s = 4. Thus we may
suppose BC A. Lete, de A and 6, @ € Con(4). Suppose c=d (6 V )
andc#d (©) and ¢#d (@). Since O(c, d) is compact in Con(4), we
can find compact 6, @, such that ¢e=d (0, V @, and 6, < & and
P, = @. Let 6, and &, be the congruences of A, satisfying
6,/(NH,) = 6, and ¢;/(NH,) = ®,. O, and @, are in H,; also neither
equals (NH,. So 6]z H and ;| H and neither equals 4. So
there exist nonzero a, bc B with O4(a, 0) = 6,|; and O4(b, 0) = @],
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and Oy(a, b) =065V @;|5. Hence 04 (a, 0)=06; and O, (b, 0)=@; and
Oy (a,b) =6,V @. We have now that 6(a, 0) = 6, and 6(b, 0) = @,
and O(a, b) =6, \/ @,. The rest is as in the proof of Theorem 2,
ending our proof of Theorem 3.

Proof of Lemma 2. Suppose z, y<€ A,. Then there is a < «
with », ye€ A;. By (ii) of the definition of extension, x-y is defined
in A,,,; and, hence, in 4,. Thus A, is a (total) pointed groupoid.

Since A, X A, = Dmn(-, A,), (i)~(v) of the definition of extension
and (D) and (F) of (%) are obvious. Establish that H, is a basis as
in the proof of Lemma 3.6, yielding (C) of (¥). (A) and (B) of (%)
are obvious. Clearly NH, = (NH,). = U([ﬂHO]Hﬁ: B < a). So (E)of
(%) for A, and H, follows. Let a,be A,. Pick any 8 < a such that
a,be A,. By the definition of extension (as applied to (4, ---) and
{A;, ---) for another 7 < ) and the “remark” after Lemma 7, it
is clearly the case that 6y (a, d) = ((@Hﬂ(a, 0))| 4))ar (G) of (%) for
{A4,, H,, I,, 0,> now follows easily from the hypotheses and the
definition of extension and from the fact that “D” = A,. So by
Lemma 1, we are done with the proof of Lemma 2.

Here, finally, is the proof of one of the two crucial lemmas.

Proof of Lemma 4. The first thing we need to establish is that
each O{-} is a congruence relation on A[-]. Since, by Lemma 0,
U(xy, uv) = T(uv, xy) and O(xy, uv) = O(uv, xy), we only need to show
that each ©{-} is transitive. Let ©® € H, and suppose a = b (6{-}) and

= ¢ (0{-}). The only cases we need to consider are:

(a) acA,beA ceAd,;

(b) acA begA ceA;

(¢) agA,bed ce¢A,

(d) acA,beA ceA;

(e) ag¢A,beg A, céeA.

In what follows, “cd € C(xy)” will abbreviate “cd is an element
of Clxy) and ¢ CLS 2 (in D, mod H) and d CLSy (in D, mod H).”

Case a. ¢=1rs¢A. For any hieC(rs) the definition of 6&f-}
yields a=b=hi (0) and @(hi, rs)=60. Thus a=hi (0) and a=c (6{-}).

Case b. b=wuv¢A. For any fgeCluv) the definition of 6{-}
yields a = fg=¢ (0) and a = ¢ (O).

Case c. a=2y¢ A and ¢ =1rs¢ A. For any dee C(xy) and hie
C(rs), the definition of O{-} yields @(xy, de) = @ and de = b = hi (O)
and O(hi, rs) £ 6. Hence ¥(xy, rs) S 6 and a = ¢ (6{-}).
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Case d. b=uv¢Aandc =rs¢ A. Let fgeCluv) and ki e C(rs).
By definition of 6{-} we have a = fg () and @(fg, uv)=6. Suppose
{v, 8y € 0. By Lemma 0.B.(ii) and the definition of &{-}, T (uv, rs)<6.
But then fg=hi (0) and @(hi, rs) S 0. Transitivity of 6 yields a =
hi (©). Hence a=c (6{-}). Suppose (v, sy €I. By Lemma 0.B.(i) and
the definition of 6{-}, @(uw, rs)=6. By Lemma 0.A.(iii) 620(rs, fg) =
[0u(r, ) N Ouls, 0)] V Ouls, g). Since f,geD and h and 4 are the
closest things to » and s, respectively, we have Oy(r, f) 2 O4(r, h)
and O4(s, 9) 2 Ox4(s, ©). It follows that @2 @(rs, fg) 290(rs, hi). Using
0.A.(iii) again and 0.A.(ii) we have 04(fg, hi) = O(fg, hi) S 0. That
is a = fg=hi (0). By transitivity of 6, a = hi (0). Just above we
have @(rs, hi) = 6. By definition, a =c¢ (6{-}). (G) of (¥) says there
are no more subcases.

Casee. a=a2y¢A and b=uv¢ A and ¢ =rs¢ A. By Lemma
0.A.(iii)) and symmetry, the only subcase we need consider is the one
in which {y, v> € 0. Let dec C(xy) and fg € Cluv). Consider ¥(xy, uv),
which is contained in @ by 0.B.(ii). Then by definition and hypothesis,
a=de (6{-}) and de =b (6{-}) and b=c (O{-}). Then Case (c) yields
de=¢(0{-}), and Case (b) yields a = ¢(6{-}).

It is now clear that (i)-(v) of the definition of extension and
(4), (B), (D) of (%) hold.

The definition of ©{-} for each ©¢ H makes it obvious that
[{a, )]z, (=0g,. (a, b)) exists for each a, be A[-]. For example,if ac A
and b= uv ¢ A and ef € Cuv), then 64 ,(a, b) =[Ox(a, ef) VI(ef, uv)}{-}.
Now apply Lemma 2.2 to H and then to H{-}, concluding that H{-}
is a basis. So (C) of (%) holds.

It is clear that for any a,bc A we have @(a0, b0) = N H. If
both a,beD, then by 0.A.(ii), we have <a0, b0) € Oy(a0, b0) =
@(a0, b0) = NH < N(H{-}). If neither ¢ nor b is in D, we have
a0, b0} € Oy (a0, b0) = (9(a0, bO)){-} = (NH){-} = N(H(-}). Suppose
acDand b¢D. Thereisac0cC(b0). Now Oy.,(al, b0) = (&(a0, c0) Vv
@(c0, 00)){-} = (NH){-} = N(H{-}). So (E) of (¥) holds.

Clearly any ce C(a) satisfies ¢CLSa (in A, mod H{-}) for any
acA[l-]— A. And we obtain (F) of (¥).

Consider (G) of (#). Clearly I[-1U O[-] = (4] -]

Suppose <{a, by € O[-]. If {(a,b)ecO, then a =0 (O4(a,d)). So
certainly ¢ =0 (0., (a, b)). Suppose a € A and b¢ A. Then {a, b) ¢
I[-]. So for every ceC(b) we have {a,c)¢Il. Thus <a,c)cO for
every such ¢, and a =0 (Ogx(a, ¢)). But Oy(a, ¢) = Oy, (a, b). Suppose
a¢A and b¢ A. Then for every cdeC(a) and ef € C(b) we have
{ed,efy¢I. Hence {d, f>¢Iand ¢cd =0 (O4(cd, ef)) and Oy (a, b) =
(¥(a, b)){-} — This makes sense because ¢ and b have unique factori-
zations — and so a =cd =ef =b (Og.,(a, b)), and then a =cd =
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0 Oy (a, b). So (i) of (G) of (#) holds.

(i) and (iii) of (G) of (%) clearly are satisfied (just look at the
definition of I[-]).

Let ¢,d, e, fe A with {d, fyelI[-]. It follows that {d, f)el.
If cd,efeA, then {cd,efy)cI< I[-]. Suppose cdc A and ef ¢ A.
By G.(iii) of (%) for I we may choose gh € C(ef) with {d, h) € I. By
G.(iv)(a) of (#) for I we have {ed, gh) eI, and so {ed,ef)cI[-].
Suppose cd¢ A and ef ¢ A. Similar to the preceding case, we can
find <{gh, 95> € IN (C(ed) x C(ef)), and then <(ed, efy€I[-]. Thus
G.(iv)(a) of (%) holds for I[-].

Let us continue with the same ¢, d, ¢, f. @*(wy, wv) will represent
[0 \(, W) AOp (Y, O]V Oy, (y, v), While @(xy, uv) still equals [Ox(x, u) A
G4y, 0)] V Oy, v). If both cd, ef are in A or both are not in A,
we have 0. (cd, ef) = (@(cd, ef)){-} = @*(cd, ef), the desired result.
Suppose then that cde A and ef ¢ A. We may choose gh € C(ef) with
{d, hy € I, and then Oy (cd, ef)=[Oxlcd, gh)\V ®(gh, ef)|{-}=[D(cd, gh)V
O(gh, ef)){-} 2 [0(cd, ef)){-} = O*(cd, ef) 2 Oy, (cd, ef), Where the last
inequality is supplied by (ii) of (A) of Lemma 0 (note that (A) of the
lemma only requires (A)-(F) of (#)). Thus G.(iv)(b) of (%) holds for
I[-].

Clearly, (v) of (G) of (¥) holds for I[-].

By Lemma 1, we are done.

Proof of Lemma 5. This follows from Lemma 4, the transitivity
of the extension relation, and Lemma 2.
Now we come to the proof of the last (and second crucial) lemma.

Proof of Lemma 6. First we show that <4’ H',I', O") is an
extension of {4, H, I, O).

That (i)-(v) of the definition of extension and (A), (B), (D) of (¥)
hold is obvious. If x, y € H, then O,.(x, y) = (Ox(x, ¥))’. If x =y and
x, y € {p, g, r}, then Oy(», y) = (Oxla, b, ¢,0)). Ifxe Aandyelp,q,r}
then O..(x, y) = (Oxla, b, ¢, 0) \V 040, x))’. Apply Lemma 2.2 to H,
use the above and H' = {#":0c H}, apply Lemma 2.2 to H’, and
conclude that H' is a basis. Whence (C) of (#) holds. For every
a,be A we know <a-0,6-00 e VH < (NH) = ((H'). That is, (E) of
(#) is valid. For any z¢€([p, q, ] 0CLSz (in A, mod H’) obviously
holds (see the description of @4.(x, y)). (F) of (#) follows.

Clearly (A’ =I1'UO'. (ii) and (iv) of (G) of (¥) follow from
the hypothesis and construction. (i) also follows immediately from
the construction and hypothesis. Consider (ii). If <y, vy el — I,
then <0, 0> will do for the required <{d, f>. Otherwise, {d, f) = {y, v)
will suffice.

Now (i) of this lemma follows from Lemma 1.
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Next we will show that (A4, H, I, 0,) is an extension of
KA', H', I’ O'). Then (ii) of this lemma will follow from the transi-
tivity of the extension relation.

Since 0, = (6'{-} + @)/®, we will need a good description of &'{-} +
@ in order that we may proceed. The definition of T is before that
of I,.

Claim 1. Let ©¢ H.

(i) f a=b=c¢=0 (0), then ® S 0{-}. Moreover, ({0, c, d}U
Ap U Aq U Ar) < 6'{-}.

(ii) If ¢, yc A UT, then x =y (0'{-} + @) iff x =y (O'{-}).

(iii) If <z, y)e(A'p)* U (A'q)* U(A'r), then x =y (0'{-} + @) iff
x =y (O'{-}.

(iv) If (x,ypc A'px A'q, then x =y (O'{-} + @) iff 2 = bp (O'{-})
and bg =y (6'(-}).

(v) If <x,ypeA'qxA'r, then x =y (0'{-} + @) iff x = aq (6'{-})
and ar =y (0'{-}).

(vi) If e A’UT and yec A’'pUA'q, thenz =y (O'{-} + @) iff x =
¢ (0'{-}) and ap =y (6'{-} + ?).

(vii) If x€e AUT andye A'qUA'r,thenx =y (O'{-} + @) iff x =
d (0'{-} and br = y (O'{-} + D).

(i) of the claim is obvious. (ii)-(vii) are routine. We will
prove (ii) as an example.

Let 2, ye A’UT and ©cH. If a=b=c¢c=0 (0), then by (i),
O'{-} + 0 =0'{-}, and so {z,yeO{-}+ @ iff (x,y)eO'{-}. So we
suppose it is not the case that a=b=¢=0 () and z =y (6'(-) + D).
Then there exists x = s, ---, s, = y such that s, = s;,, under either
©'{-} or ®. Let us suppose n is minimal. So s, #s; if ¢ 5. More-
over, s; = s,,,(0'{-}) iff s, # 5,.,(®) iff s, = 8;..(D). Suppose n > 1.
Choose | minimal so that s, =s,,.,(0). So I =0 or 1. We have
x =8, =8, (0{-}). By the assumption about @, u =v (0'{-}) and ve A'p
imply we€ A'p. Similarly for A’q and 4’r. Since x =s,¢ A'pUA’'qU
A'r, we have s,e A’UT. Since @|,, = 4, we have s,,, ¢ A" UT.
Now §,@s,,, implies (s, 5,.) = {¢, ap) or s, 8;..) = <d, br).

Let us suppose s; =c¢. 8, # ¥ because yc A’ UT. So sy, exists,
and ap = 8;., = 84, (0'{-}). By the above reasoning, s,.,€ A'p and
S, #* 9y and s, exists and s;,.,0s,,,. Since s, # 8, +* S5, the
definition of @ yields s,,, = bp and s,,, = bg. (Here we are using
strongly the fact that a % b.) Continuing in this way we obtain
s;.e=d and n=T. Recall s;,=c¢c. We have ap =s,,=58,=
bp(0'{-}). Hence Oy (\(a, b) = [0, (a, D)AOy (D, 0)] = O, (ap, bp) &
0’{-}. Thus O4(a, b)) SO and ¢=d(0). Thus, s,=s5,.,(0'{-}), and n is
not minimal. This is a contradiction. The case s, = d is similar.
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So » =1. As in the proof of Lemma 3.8, we have x =y (6'{:}).

(iii)-(vii) of the claim are left to the reader.

It clearly follows from (ii)-(vii) of Claim 1 and Lemma 2.2 that
{¢’{-} + @: ©c H} is a basis consisting of congruence relations of A'[-].
By Lemma 2.4, H, = {(@'{-} + @)/®: O c H} is a basis consisting of
congruence relations of A,.

It is clear that (i)-(v) of the extension definition and (A)-(D) of
(#) hold for {4,, H,, I,, 0,) vis-a-vis {4’, H', I', O').

For any a, be A’ we have, in A’{-}, <a0, 80> e N(H'{-}) =(NH){-} <
(NH){-}) + @. So in A;, we have, for any a, be A’, that (a0, b0) €
(((NHY{-}) + @)/® = N H;,. Thus (E) of (#) holds for A; and H,.

For every xe A’ UT there is an ec A’ satisfying e CLS z (in A4’,
mod H'{-}). By (ii) of Claim 1, we have, given the same 2 and e,
¢CLS 2 (in A’, mod H,)).

Recall, in what follows, that closest things need not be unique.
Also, it may appear to the reader that there is some apparent
ambiguity as to O4(x, y) as given by (ii)-(vii) of Claim 1. Lemma
2.4 assures us that this apparent ambiguity is not real.

(vi) of Claim 1 implies that ¢CLSx (in A’, mod H;) holds for
any xe A'p U A’q. (vii) yields that d CLS« (in A’, mod H,) holds for
any xe A'q U A'r.

We have established (F) of (§) for 4, and H,.

Certainly A% = I, U O,. Suppose <z, y)»€0,. Then one of the
following holds:

(i) <,y = u/®,v/®) and {u, v) €O0'{-} and u,ve A" U T}

(ii) <=, ¢y satisfies (i) and ye A'p U A'g;

(iii) <=, d) satisfies (i) and ye A'q U A'r;

(iv) {e,dy€O and x€ A'p and ye A'r;

(v) <(y,x) satisfies one of (ii)-(iv).

Claim 1 makes it obvious, that in each of these cases, z =
0 (@4 (x, y)). We have established (i) of (G) of (¥) for O, and H,. (ii)
of (G) of (#) for I; is obvious.

We know I'[-] and H'{-} satisfy (iii) of (G) of (#). Recall our
description of H;-closest things in A’ and that (¢, ¢) and {d, d) are
in I < I,, Now the definition of I, makes it plain that (iii) of (G)
of (£) holds for H,; and I,.

Suppose ¢, f, g, he A" and {f, hy €I,. Then {f, hyecl'.

If {f, hy e{{v, P, <q, ©, <{r, )}, then (ef, gh) eI, by (ii) of its
definition.  Otherwise, (f,h) el and <ef, ghpe A’ UT. Whence,
lef, ghy € I'{:} and (i) of the definition of I, is satisfied. So (a) of
@iv) of (G) of (%) holds for A4; and H,.

If (f, by e {{p, v), <q, @), {r, r>}, then (iii) of Claim 1 and (¥) for
(A1, H'{), ---> imply that 6y(ef, gh) = (O (ef; gh) + B)® =
((@nii(e, 9) A\ Onr([, 0)) + @)/@, since f = h, =(((Ox.(¢, 9)) + ) A
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Oy, (f, 0)]®, since @ & O ,(f, 0) and since 6 — (O + @) is an order
isomorphism between the bases H'{-} and {0'{-} + @:0c H}, =
(Bx1(e, 9)) + DY A Oy (£, 0)/® = Br, (e, 9) A Ou(F, 0) = [Bufe, ) A
Ou,(f, OV Oy ,(f, h) since f = h. So we may suppose {f, hy € I. Then
ef,ghe A’ UT. Then (ii) of Claim 1 and a similar calculation yield
the desired result. That is, (b) of (iv) of (G) of (#) holds for A4;
and H,.

(i) and (ii) of the definition of I, yield (v) of (G) of (#) for I,
and 4;, Now we apply Lemma 1 and transitivity to obtain (ii) of
the lemma.

The proof of (iii) of the lemma is just like the proof of Lemma
3.8.(iii), and it is obvious anyway.

5. Sums and products. In this section we make a few, pre-
viously known and simple observations about congruence relations
on direct products and direct sums of algebras.

Suppose (A,:1el) is a family of pointed algebras. J[ 4; and
11 (4;:ieI) will denote the direct product of this family. 3 A4, and
J(A;:1eI) will denote {xe ] A;: {te: x(7) + 0} is finite}. YA, and
2(A;:1eI) will denote the corresponding algebra.

Suppose (4;: i€ I) is a family of algebras and 6, c Con A, for each
1. For z,yel A, we let x [I 0,y (or x =y (I16,)) iff 0,y for all
tel. If the A,’s are pointed algebras, we will also use [] O, to
denote ] 6,]-,,. A congruence is rectangular iff it is of the form
11 6..

By studying when a pair is in a join of congruence relations we
easily see

Fact 1. (i) If I is finite, then in Con(J] 4,) the join of rectangular
congruences is rectangular.

(ii) If each A, is a pointed algebra, then in Con(XA4,) the join
of rectangular congruences is rectangular.

COROLLARY 1. The mapping {O,;:1¢€ 1) — ] 0, embeds [[(Con(4,):
1el) into Con(I] 4,), if I is finite, and into Con (ZA,), if each A,
18 a pointed algebra.

Since every congruence is a join of principal congruences, we
obtain

COROLLARY 2. (i) Suppose I is finite. If each primcipal con-
gruence of I1 A, is rectangular, then every congruence of [ A, is
rectangular, and Con(Il A;) is isomorphic to I Con(4,).

(ii) Suppose each A; is a pointed algebra. If each principal
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congruence of XA, is rectangular, then every congruence relation of
YA, is rectangular, and Con(JA,) is isomorphic to [] Con(A4,).

DEFINITION. For 7 < 4, let ¢, be the 4-ary term =z,-x;,. Let =
(ty toy tsy. T defines the principal congruences of A if and only if
for every a,b,¢,de A, it holds that (¢, d) € O(a, b) iff there exist
D, ¢, 7€ A with ¢ =1t(a, p,q 7) and (b, p, g, r) = (b, p, ¢, ) and
t(a, p, ¢, 1) = ta, p, ¢, r) and 4O, v, ¢, r) = d.

Let a, b€ I] A;, assuming definability by z, one can easily show
II 6(a;, b)) < O(a, b). The proof works equally well in J] 4; and in
2A;. This yields

Fact 2. Suppose 7 defines the principal congruences of each A4,.

(i) Every principal congruence of J] 4, is rectangular.

(ii) If each A, is a pointed algebra, then every principal con-
gruence of YA, is rectangular.

Obviously, we have

THEOREM 4. Suppose v defines the principal congruences of each
A,
(1) If I is finite, then Con(I] A;) is 1somorphic to [] Con(4,).
(ii) If each A; is a pointed algebra, then Con(XA,) is isomorphic
to T Con(4,).

Obviously, a much more general theorem can be obtained. In
particular, in any variety having Uniform Congruence Schemes the
congruences are ‘“productive.” Fried, Gratzer and Quackenbush
observed, essentially, this in the trivial halves of Theorems 3.5 and
5.2 of [6].

6. Final remarks. Clearly Theorem 1 is an immediate conse-
quence of Theorems 2, 3, and 4.

The representation provided in Theorem 1 is type-3. If we also
supposed L is modular, could we then have produced a type-2
representation in the proof of Theorem 1?7 Most likely, that is the
case. Ideas as to how this might be done can be gleaned from
Appendix 7 of the 2nd edition of [8].

There is an asymmetry vis-d-vis - in the representation provided
in the proof of Theorem 8. Do there exist distributive algebraic
lattices which can be represented as congruence lattices of groupoids
but which have no representation as a congruence lattice of a com-
mutative groupoid?

In [25] Walter Taylor provides a countable algebraic lattice that
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is not the congruence lattice of any semigroup. One of course
wonders if there is any countable algebraic lattice that is not the
congruence lattice of a groupoid. It may even be the case that
there is some algebra A of type <(2,1) such that Con 4 is not iso-
morphic to the congruence lattice of any groupoid.

It can also be shown that Taylor’s example is not the congruence
lattice of any wunary algebra having only finitely many operations.
This we now proceed to do. We suppose the reader has some
familiarity with Taylor’s example.

C is to be the semilattice of compact elements.

C consists of the chain w (0<1<2<3< ---) together with elements
a;; (0=1<j—1) with i<a,;;<j. Now we let L be the ideal lattice of C.

THEOREM 5. If L is isomorphic to ConA and A 1s a unary
algebra, then A has infinitely many operations.

Proof. Suppose on the contrary that L = ConAd and A4 is a
unary algebra having only finitely many operations. Note that in
C, or in L, the filter (dual ideal) generated by =, [n), is isomorphic
to C, or L, as the case may be.

Thus, we may assume there is an element 0 € A such that f(0)=0
for each of the finitely many operations of A. That is, we may
assume A is a pointed algebra.

By an abuse of notation, we will refer to the congruences of 4
by their preimages under the isomorphism, namely 0, 1, ag, Go, Qs
cee, 2,0y, -+ etec. (Note 0 names both an element of A and a
congruence of A. Context should make clear which is which.)

We may also assume, using the above fact about » e w, that
1=06(00,2) for some xzcA. We see that (0, xz)eay,V a, and
0, z) €ay V @, So we have sequences 0 =s, s, -+, 8, =« and
O0=12y7y -, r. =2 with s, =s,,, under a, or a, and », = r,,
under a, or a,, for each possible 7. We may suppose s, # s, and
ro#=7r. Let u=s and v=7. We have 6(0, u) = a, or a, and
6(0, v) = @y Or Q.



506 WILLIAM A. LAMPE

Case 1. 60, u) = a,, and €(0, v) = a,. O(u, v) is compact, and
thus, in C. Also a, = 6(0, v) S 6(0, u) V O(u, v) = a, V 6(u, v), and
@y, = 6(0, u) = 6(0, v) \V O(u, v) = ay V Ou, v), and O(u, v) S 60, u) V
6(0, v) = ay, V ay. By inspecting C, we see that O(u, v) is either 4
or a, Or a,. In any case O(u, v) =1 = 6(0, x).

Since A is a unary algebra, every unary algebraic function of
A is a unary term (unary polynomial) or a constant function. For
any unary term ¢, we obviously have #(0) = 0. Now, since <0, x) €
O(u, v), there are unary terms ¢, ---,¢ such that 0e¢{t,(u), t,(v)}
and for 1 < ¢ <1l {t,(u), t;(@)}N {ta(u), t,(v)} =@ and x € {t,(u), t,(v)}.
Since ¢, is a term, £,(0) = 0. Since z = ¢,(u) or z = ,(v), We have
{0, 2y €00, u) or <0,x)€B,v). So 1=06(0,x) <60, u) =a, or
1 =00, z) < 900, v) = a,,. But 1, a, a, are distinct atoms.

The three remaining cases yield similar contradictions. So the
initial contrary assumption is false. This ends the proof.

Consider Mal’tsev’s lemma (Theorem 3, p. 54, [8]). The above
proof actually shows that whenever L = Con A4, the sequences of
unary algebraic functions “p,, ---, p,_,” cannot all be sequences of
unary terms (term funections). In other words, the above provides
some “technical specifications” for any successful representation of
L as Con A, where 4 is of finite type, even if A is nonunary.

Clearly, all of the above is true for a very “narrow” sublattice
of L. Condition (*) (see Part I) and Lemma 1 of Part I did not
enter into the proof.

Ralph Freese has shown that this same L is not the congruence
lattice of any groupoid possessing a two-sided identity element.

The conclusion of Lemma 1 of Part I is now called the term
condition or T. C. (1, 1, 0). This condition has become quite important
in a context quite unrelated to Part I. R. McKenzie coined the term
after first seeing Lemma 1. The condition first appeared in Theorem
9 of H. Werner’s paper [26]. McKenzie employed this condition in
[18]. My first exposure to it occurred when McKenzie’s paper was
presented in our Hawail seminar in 1976. This was six months
before I proved Lemma 1. I had forgotten about the contents
of [18] till Taylor’s paper [25] reminded me in 1979. (This ex-
plains why this paragraph is in Part II instead of Part I, where it
belongs.)

Although it is a fairly well-known theorem, in [17] I gave only
some corollaries of the following

Folklore Theorem. If L is a distributive, algebraic, and dually
algebraic lattice, then L is isomorphic to the congruence lattice of
some groupoid.
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Proof. Such an L is isomorphic to the lattice of nonempty
hereditary subsets of some partially ordered set P having a least
element 0. Let 4 =<(P,-> where z-y =y if y<o and z-y =0
otherwise. Each congruence has at most one nontrivial class and
this class is a hereditary subset of P. The required isomorphism is
obvious.

By generalizing Fact 2 of §5 appropriately, one can now show
easily that if L is isomorphic to the product of a family of lattices
each of which is either a pinched lattice, or the ideals of a distribu-
tive lattice, or a distributive, algebraic and dually algebraic lattice,
then L can be represented as the congruence lattice of a groupoid.
There is still a lot to be done. This does not even exhaust the
class of distributive algebraic lattices.

We remind the reader of the problems listed in Part I (see [5]).
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