SHADOW AND INVERSE-SHADOW INNER PRODUCTS FOR A CLASS OF LINEAR TRANSFORMATIONS

George Golightly

Abstract

Suppose $\{H,(\cdot, \cdot)\}$ is a complete inner product space and H_{1} is a dense subspace of H. In case T is a linear transformation from H_{1} to H_{1} (perhaps not bounded), a necessary and sufficient condition is obtained in Theorem 1 for the existence of an inner product $(\cdot, \cdot)_{1}$ for H_{1} such that (i) the identity is continuous from $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ to $\{H,(\cdot, \cdot)\}$ and (ii) T is bounded in $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$. When this condition holds, the inverse-shadow inner product is defined on H_{1}, for sufficiently large positive numbers β, by $(x, y)_{\beta, T}=\sum_{p=0}^{\infty}\left((T / \beta)^{p} x\right.$, $\left.(T / \beta)^{p} y\right)$. An extension of Theorem 1 provides a necessary and sufficient condition for the existence of an inner product $(\cdot, \cdot)_{1}$ for H_{1} such that $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ is complete and (i) and (ii) hold. This latter condition, stated in Theorem 5 in terms of a pair of inverse-shadow inner products, depends on a description of those complete inner product spaces $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$, with H_{1} dense in H, for which (i) holds. According to this description, given in Theorem 4, each such inner product $(\cdot, \cdot)_{1}$ is a scalarmultiple of an inverse-shadow inner product $(\cdot, \cdot)_{\delta, c}$, where C is a bounded operator on H mapping H_{1} to H_{1} and $\delta=1$.

This pattern was developed in an investigation, other results of which are in [4]. If H_{1} is a linear subspace of $H,(\cdot, \cdot)_{1}$ is an inner product for H_{1}, and the identity is continuous from $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ to $\{H,(\cdot, \cdot)\},\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ is said in [6] to be continuously situated in $\{H,(\cdot, \cdot)\}$. The setting in Theorem 4 of a pair of complete inner product spaces, one continuously situated in the other, is discussed in [1], [2], [6], and [7]. Additional results in Theorems 2 and 3 relate the shadow inner product, the inner product $\left(\left(1-T^{*} T / \beta^{2}\right) \cdot, \cdot\right)^{\prime}$ in those theorems, and the inverse-shadow inner product $(\cdot, \cdot)_{\beta, r}$. In contrast to Theorem 4, an example at the end of the paper shows that $\left\{H_{1},(\cdot, \cdot)_{\beta, T}\right\}$ may be complete even when the closure in $H \times H$ of T is not a function.

Here is an example to which Theorem 1 applies (with $H=H_{1}$). Start with a complete infinite dimensional inner product space $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$, a one-to-one (continuous) operator T on H^{\prime} with range a dense, proper subspace of H^{\prime}, and a closed subspace Z of H^{\prime} such that $Z \cap T\left(H^{\prime}\right)$ is $\{0\}$. Now, with P the orthogonal projection of H^{\prime} onto Z^{\perp}, there is, by the Axiom of Choice, an algebraic complement H_{1} of Z in H^{\prime} of which $T\left(H^{\prime}\right)$ is a subspace and, with (\cdot, \cdot) the inner product on H_{1} such that $(x, y)=(P x, P y)^{\prime},\left\{H_{1},(\cdot, \cdot)\right\}$ is com-
plete and for x in $H_{1}(x, x) \leqq(x, x)^{\prime}$. Yet the restriction of T to H_{1} is not continuous in $\left\{H_{1}(\cdot, \cdot)\right\}$. Of course, the above construction uses the Axiom of Choice, as the result of [8] implies it must. However, this use is not in constructing T but in selecting the subspace H_{1} of H^{\prime}.

Throughout the paper, $\{H,(\cdot, \cdot)\}$ is a complete infinite dimensional inner product space and H_{1} a dense subspace of H. If some variation of the symbols ' (\cdot, \cdot) ' denotes an inner product for the space S, then the corresponding variation of ' $\|\cdot\|$ ' denotes the corresponding norm for S. For instance, $\|x\|_{\beta, T}=\left[(x, x)_{\beta, T}\right]^{1 / 2}$. An operator on $\{H,(\cdot, \cdot)\}$ is a continuous linear transformation from all of H to (into) H. A closed operator in $\{H,(\cdot, \cdot)\}$ is a linear transformation from a dense subspace of H to H whose graph is closed in $H \times H$. If Z and Z^{\prime} are two subspaces of H such that $Z \cap Z^{\prime}$ is $\{0\}$ and H is the linear span of Z and Z^{\prime}, then Z is said to be an algebraic complement in H of Z^{\prime} and that linear transformation ϕ on H such that ϕ is the identity 1 on Z and 0 on Z^{\prime} is called the algebraic projection of H onto Z with kernel Z^{\prime}. If Z is a subset of H, \bar{Z} is the closure of Z in H.

THEOREMS AND EXAMPLES

Theorem 1. Suppose that T is a linear transformation from H_{1} to H_{1}. In order that there be a norm $\|\cdot\|_{1}$ for H_{1} such that (i) there is a positive number c such that $\|\cdot\| \leqq c\|\cdot\|_{1}$ on H_{1} and (ii) T is continuous in $\left\{H_{1},\|\cdot\|_{1}\right\}$ it is necessary and sufficient that there be a positive number β such that for x in $H_{1} \sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2}$ converges. In case there is such a norm $\|\cdot\|_{1}$, if β is a number exceeding the operator-norm for T in $\left\{H_{1},\|\cdot\|_{1}\right\}$ then for x and y in H_{1} the formula $(x, y)_{\beta, T}=\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)$ defines an inner product $(x, y)_{\beta, T}$ for H_{1} such that
(1) there is a positive number d such that for x in $H_{1}\|x\| \leqq$ $\|x\|_{\beta, T} \leqq d\|x\|_{1}$,
(2) for x in $H_{1} \lim _{p \rightarrow \infty}\left\|(T / \beta)^{p} x\right\|_{\beta, T}=0$, and
(3) for x and y in $H_{1}(T x, T y)_{\beta, T}=\beta^{2}\left[(x, y)_{\beta, T}-(x, y)\right]$.

Proof. In case there is a positive number β for which $\sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2}$ converges on H_{1}, we have for x and y in H_{1} and n a positive integer,

$$
\begin{aligned}
& \sum_{p=0}^{n}\left|\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)\right| \\
& \quad \leqq \sum_{p=0}^{n}\left\|(T / \beta)^{p} x\right\|\left\|(T / \beta)^{p} y\right\|
\end{aligned}
$$

$$
\leqq\left(\sum_{p=0}^{n}\left\|(T / \beta)^{p} x\right\|^{2}\right)^{1 / 2}\left(\sum_{p=0}^{n}\left\|(T / \beta)^{p} y\right\|^{2}\right)^{1 / 2},
$$

so that $\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)$ converges absolutely. Moreover, the formula $(x, y)_{\beta, T}=\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)$ defines as inner product for H_{1}.

Suppose that there is a norm $\|\cdot\|_{1}$ for H_{1} for which (i) and (ii) hold. Suppose n is a positive integer, β is a positive number, and r is a number greater than 1 such that for x in $H_{1} r\|T x\|_{1} \leqq \beta\|x\|_{1}$. Then for x and y in H_{1}
(A)

$$
\begin{aligned}
& \sum_{p=0}^{n}\left|\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)\right| \\
& \leqq \sum_{p=0}^{n}\left\|(T / \beta)^{p} x\right\|\left\|(T / \beta)^{p} y\right\| \\
& \leqq c^{2} \sum_{p=0}^{n}\left\|(T / \beta)^{p} x\right\|_{1}\left\|(T / \beta)^{p} y\right\|_{1} \\
& \leqq c^{2} \sum_{p=0}^{n}\|x\|_{1}\|y\|_{1}\left(1 / r^{2 p}\right) \\
&=c^{2}\|x\|_{1}\|y\|_{1} r^{2} /\left(r^{2}-1\right)
\end{aligned}
$$

Thus, for x and y in H_{1} the series $\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)$ converges absolutely and, replacing y by x in (A), we have

$$
\begin{equation*}
\sum_{p=0}^{n}\left\|(T / \beta)^{p} x\right\|^{2} \leqq c^{2}\left(\|x\|_{1}\right)^{2} r^{2} /\left(r^{2}-1\right) \tag{B}
\end{equation*}
$$

Note that (1) follows from (B) with $d=c r /\left(r^{2}-1\right)^{1 / 2}$. To establish (2), observe that for x in H_{1}

$$
\begin{gathered}
\left(\left\|(T / \beta)^{p} x\right\|_{\beta, T}\right)^{2}=\sum_{q=0}^{\infty}\left\|(T / \beta)^{p+q} x\right\|^{2} \longrightarrow 0 \\
\text { as } p \longrightarrow \infty,
\end{gathered}
$$

since $\sum_{q=0}^{\infty}\left\|(T / \beta)^{q} x\right\|^{2}$ converges. The equality (3) is established by noting that

$$
\begin{aligned}
& (T x, T y)_{\beta, T} \\
& \quad=\sum_{p=0}^{\infty}\left((T / \beta)^{p} T x,(T / \beta)^{p} T y\right) \\
& \quad=\beta^{2} \sum_{p=1}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right) \\
& \quad=\beta^{2}\left[\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)-(x, y)\right] \\
& \quad=\beta^{2}\left[(x, y)_{\beta, T}-(x, y)\right] .
\end{aligned}
$$

The following example is offered in connection with Lemma 1. This lemma is useful in the proof of Theorems 3 and 4.

Example 1. Suppose that S is the subspace of $L^{2}[0,1]$ of all absolutely continuous f on $[0,1]$ such that f^{\prime} is in $L^{2}[0,1]$ and for such $f T f=f^{\prime}$, so that T is a closed operator in $L^{2}[0,1]$. Suppose H_{1} is the set of all f in S such that for $p \geqq 0 T^{p} f$ is in S and $\sum_{p=0}^{\infty} \int_{0}^{1}\left|T^{p} f\right|^{2}$ converges. Then H_{1} is a dense subspace of $L^{2}[0,1]$ and, with $\beta=1$ and $(f, g)_{\beta, T}=\sum_{p=0}^{\infty} \int_{0}^{1}\left[T^{p} f\right]\left[T^{p} g\right]^{*}$ on $H_{1},\left\{H_{1},(\cdot, \cdot)_{\beta, T}\right\}$ is complete.

Lemma 1. Suppose that T is a closed operator in $\{H,(\cdot, \cdot)\}$ and $\beta>0$. Then the set H_{2} of all x in H such that for $p>0 x$ is in the domain of T^{p} and $\sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2}$ converges is a linear space such that $T\left(H_{2}\right)$ lies in H_{2}. Also, if $(\cdot, \cdot)_{\beta, T}$ is the inner product for H_{2} given, as in Theorem 1, by $(x, y)_{\beta, T}=\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)$ then $\left\{H_{2},(\cdot, \cdot)_{\beta, T}\right\}$ is complete. In case T is self-adjoint in $\{H,(\cdot, \cdot)\}$, then the restriction of T to H_{2} is self-adjoint in $\left\{H_{2},(\cdot, \cdot)_{\beta, T}\right\}$.

The following argument is offered. In general (when T is only closed and not defined everywhere), H_{2} need not be dense in H. Suppose x is in H_{2}. Then $\sum_{p=0}^{\infty}\left\|(T / \beta)^{p} T x\right\|^{2}=\beta^{2} \sum_{p=1}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2}$, so that $T x$ is in H_{2}. To show that H_{2} is a linear space, suppose S_{1} is the linear space of all H-valued sequences, S_{2} is the subspace of S_{1} to which z belongs only in case $\sum_{p=0}^{\infty}\left\|z_{p}\right\|^{2}$ converges, and for z and w in $S_{2}\langle z, w\rangle=\sum_{p=0}^{\infty}\left(z_{p}, w_{p}\right)$, so that $\left\{S_{2},\langle\cdot, \cdot\rangle\right\}$ is a complete inner product space. Suppose D is the set of all x in H such that for $p>0 x$ is in the domain of T^{p} and \widetilde{T} the linear transformation from D to S_{1} such that for $p \geqq 0(\widetilde{T} x)_{p}=(T / \beta)^{p} x$. Note that $H_{2}=\widetilde{T}^{-1}\left(S_{2}\right)$, a linear space, and that \widetilde{T}, restricted to H_{2}, is a linear isometry from $\left\{H_{2},(\cdot, \cdot)_{\beta, 7}\right\}$ onto a subspace of S_{2}. Suppose y is a convergent sequence in $\left\{H_{2},(\cdot, \cdot)_{\beta, r}\right\}$. Then $\widetilde{T} y$ is convergent in S_{2}, with limit z in S_{2}. Since, for $p \geqq 0$ the sequence $\left\{(T / \beta)^{p} y,(T / \beta)^{p+1} y\right\}$ has values in the closed transformation T / β and limit $\left\{z_{p}, z_{p+1}\right\}$ in $H \times H, z_{p+1}=$ $(T / \beta) z_{p}$. Thus, for $p \geqq 0 z_{p}=(T / \beta)^{p} z_{0}$, so that $z=\widetilde{T} z_{0}$. Since \widetilde{T} is an isometry, y has limit z_{0} in $\left\{H_{2},(\cdot, \cdot)_{\beta, T}\right\}$. Suppose T is self-adjoint in $\{H,(\cdot, \cdot)\}$. Then for x and y in H_{2}

$$
\begin{aligned}
(T x, y)_{\beta, T} & =\sum_{p=0}^{\infty}\left((T / \beta)^{p} T x,(T / \beta)^{p} y\right) \\
& =\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} T y\right)=(x, T y)_{\beta, T}
\end{aligned}
$$

so that T is self-adjoint on the complete space $\left\{H_{2},(\cdot, \cdot)_{\beta, T}\right\}$.
Example 2. This example shows that in case $\{H,(\cdot, \cdot)\}$ is separable the set of linear transformations T with domain H and
range lying in H for which there is a positive number β such that $\sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2}$ converges on H is not a linear space.

Suppose y is in $H,\|y\|=1$, and Y is the linear span of $\{y\}$. Suppose $\left\{e_{m}\right\}_{1}^{\infty}$ is a complete orthonormal sequence in $H \ominus Y$. Suppose for $m>0 u_{m}=e_{m}+(m!) y$. The linear span U of $\left\{u_{m}\right\}_{1}^{\infty}$ is dense in H. One sees this by noting that $y=\lim _{m \rightarrow \infty}\left(u_{m} / m!\right)$. Hence, for $p>0 e_{p}=u_{p}-(p!) y$ is in \bar{U}. Thus, the linear space \bar{U} includes both Y and $H \ominus Y$. Suppose that Z is an algebraic complement of Y in H of which U is a subspace. Suppose ϕ is the algebraic projection of H onto Z with kernel Y and that C is the operator on H such that $C y=0$ and for m a positive integer $C e_{m}=e_{m+1}$. Since the operator-norm of C is $1, \sum_{p=0}^{\infty}\left\|(C / 2)^{p} x\right\|^{2}$ converges on H. Since for $p>0(\phi-1)^{p}=(-1)^{p+1}(\phi-1), \quad \sum_{p=0}^{\infty}\left\|[(\phi-1) / 2]^{p} x\right\|^{2}$ converges on H.

Suppose T is $C+(\dot{\phi}-1)$ and m is the number-sequence such that $m_{1}=1$ and for $n>0 m_{n+1}=(n+1)!-m_{n}$. Then for $n>0$ $T^{n}\left(e_{1}\right)=e_{n+1}+m_{n} y$ and $\left\|T^{n} e_{1}\right\|^{2}=1+m_{n}^{2}$. Note that for $n \geqq 1$ $n!-(n-1)!\leqq m_{n} \leqq n!$, so that $m_{n+1} \geqq n!$. Thus, for $\beta>0$ $\sum_{p=0}^{\infty}\left\|(T / \beta)^{p} e_{1}\right\|^{2}$ diverges.

THEOREM 2. Suppose that $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ is a complete inner product space, T is an operator on $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$, and H_{1} is a dense subspace of H^{\prime} such that $T\left(H_{1}\right)$ lies in H_{1}. Suppose, moreover, that there is a positive number β such that for each of x and y in $H_{1}(x, y)^{\prime}=$ $\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)$. Then (i) β is not less than the operator-norm for T in $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$, (ii) with T^{*} the adjoint of T in $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ and x and y in $H_{1}(x, y)=\left(\left(1-T^{*} T / \beta^{2}\right) x, y\right)^{\prime}$, and (iii) in case $H^{\prime} \neq H_{1}$ and $\left\{H_{1},(\cdot, \cdot)\right\}$ is complete, so that $H=H_{1}$, then β is the operator-norm for T in $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ and for T on H_{1} in $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$.

Proof. Since H_{1} is dense in H^{\prime} and T continuous on H^{\prime}, the operator-norm for T in $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ is the operator-norm for T on H_{1} in $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$. Suppose that for x and y in $H_{1}(x, y)^{\prime}=\sum_{p=0}^{\infty}\left((T / \beta)^{p} x\right.$, $\left.(T / \beta)^{p} y\right)$. Then for x in H_{1}

$$
\left(\|T x\|^{\prime}\right)^{2}=\beta^{2}\left[\left(\|x\|^{\prime}\right)^{2}-\|x\|^{2}\right] \leqq \beta^{2}\left(\|x\|^{\prime}\right)^{2}
$$

Thus, β is not less than the operator-norm for T in $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$. Also, on H_{1}

$$
\begin{aligned}
(x, y) & =(x, y)^{\prime}-((T / \beta) x,(T / \beta) y)^{\prime} \\
& =\left(\left(1-T^{*} T / \beta^{2}\right) x, y\right)^{\prime}
\end{aligned}
$$

so that (ii) is established.
To prove (iii), note that, since $H^{\prime} \neq H_{1}, H_{1}$ is not closed in H^{\prime}.

Also, the identity function from $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ to $\left\{H_{1},(\cdot, \cdot)\right\}$ is continuous. Since $\left\{H_{1},(\cdot, \cdot)\right\}$ is complete, the identity function from $\left\{H_{1},(\cdot, \cdot)\right\}$ to $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ is not continuous. By the Closed Graph theorem, the set Z of all $\|\cdot\|^{\prime}$-limits in H^{\prime} of H_{1}-sequences having $\|\cdot\|$-limit 0 is nondegenerate. Since Z is the kernel of $\left(1-T^{*} T / \beta^{2}\right)^{1 / 2}$, there is a nonzero point x of H^{\prime} such that $x=\left(T^{*} T / \beta^{2}\right) x$. Thus, $\left(\|T x\|^{\prime}\right)^{2}=\beta^{2}\left(\|x\|^{\prime}\right)^{2}$. In view of (i), (iii) is established.

Remark. Here I will describe why I call an inner product, $\left(\left(1-T^{*} T / \beta^{2}\right) \cdot, \cdot\right)^{\prime}$, a shadow inner product. The point of view taken by the author is that one starts with $\{H,(\cdot, \cdot)\}$, a linear transformation T from H to H, not continuous in $\{H,(\cdot, \cdot)\}$, and a positive number β such that $\sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2}$ converges on H. (T might be the transformation $\phi-1$ of Example 2 with $\beta=2$). One builds the space $\left\{H,(\cdot, \cdot)_{\beta, T}\right\}$ with a completion $\left\{H^{\prime}(\cdot, \cdot)^{\prime}\right\}$ so that H is a proper subspace of H^{\prime}, dense in H^{\prime}. Now T has continuous linear extension to H^{\prime}, also denoted by T, with adjoint T^{*} in $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$. Then by Theorem 2, $(x, y)=\left(\left(1-T^{*} T / \beta^{2}\right) x, y\right)^{\prime}$ on H. The identity function from $\left\{H,(\cdot, \cdot)^{\prime}\right\}$ to $\{H,(\cdot, \cdot)\}$ is continuous. If $\{H,(\cdot, \cdot)\}$ is complete, by Note 5 of [4], the set Z of all $\|\cdot\|^{\prime}$-limits in H^{\prime} of sequences in H with $\|\cdot\|$-limit 0 is closed in H^{\prime} and also an algebraic complement of H in H^{\prime}, and if P is the orthogonal projection of H^{\prime} onto Z^{\perp} then (\cdot, \cdot) is equivalent on H to $(P \cdot, P \cdot)^{\prime}$. That is, the inner product $\left(\left(1-T^{*} T / \beta^{2}\right) x, y\right)^{\prime}$ on H is equivalent to the inner product $(P x, P y)^{\prime}$ on H, the inner product in H^{\prime} of the shadow of x in Z^{\perp} with the shadow in Z^{\perp} of y. Another point of view, starting with a complete space $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$, an operator T on $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$, and a dense, proper subspace H_{1} of H^{\prime}, and yielding a shadow inner product $\left(\left(1-T^{*} T\right) \cdot, \cdot\right)^{\prime}$ for H_{1} such that $\left\{H_{1},\left(\left(1-T^{*} T\right) \cdot, \cdot\right)^{\prime}\right\}$ is complete, will be pursued in Example 3.

Theorem 3. Suppose, as in Theorem 2, that $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ is a complete inner product space, that H_{1} is a dense subspace of H^{\prime}, and that T is an operator on $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ such that $T\left(H_{1}\right)$ lies in H_{1}. Suppose that β is a positive number and that, with T^{*} the adjoint of T in $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$, (i) β is not less than the operator-norm for T in $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ and (ii) $1-T^{*} T / \beta^{2}$ is a one-to-one transformation on H_{1}. Then for x and y in H_{1} the formula $(x, y)^{\prime \prime}=\left(\left(1-T^{*} T / \beta^{2}\right) x, y\right)^{\prime}$ defines an inner product $(\cdot, \cdot)^{\prime \prime}$ for H_{1} such that if (\cdot, \cdot) denotes $(\cdot, \cdot)^{\prime \prime}$ on H_{1} then for x in $H_{1} \sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2}$ converges, with limit not exceeding $\left(\|x\|^{\prime}\right)^{2}$. In case $\lim _{p \rightarrow \infty}\left(\left\|(T / \beta)^{p} x\right\|^{\prime}\right)=0$ on H_{1}, then on $H_{1}(x, y)^{\prime}=(x, y)_{\beta, T}$ and if, in addition, $\left\{H_{1},(\cdot, \cdot)\right\}$ is complete, so that $\left(1-T^{*} T / \beta^{2}\right)^{1 / 2}\left(H_{1}\right)$ is closed in H^{\prime}, and $H^{\prime} \neq H_{1}$ then the restriction of T to H_{1} is not continuous in $\left\{H_{1},(\cdot, \cdot)\right\}$. (Despite the conven-
tion of the introduction, here (\cdot, \cdot) is not given beforehand).
Proof. Note that, since $1-T^{*} T / \beta^{2}$ is a one-to-one function when restricted to $H_{1},\left\{H_{1},(\cdot, \cdot)^{\prime \prime}\right\}$ is isometrically isomorphic to the subspace $\left(1-T^{*} T / \beta^{2}\right)^{1 / 2}\left(H_{1}\right)$ of $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$. Thus, writing (\cdot, \cdot) in place of $(\cdot, \cdot)^{\prime \prime},\left\{H_{1},(\cdot, \cdot)\right\}$ is complete if and only if $\left(1-T^{*} T / \beta^{2}\right)^{1 / 2}\left(H_{1}\right)$ is closed in H^{\prime}. Suppose n is a positive integer and each of x and y is in H_{1}. We have

$$
\begin{align*}
& \sum_{p=0}^{n}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right) \\
&= \sum_{p=0}^{n}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)^{\prime} \tag{C}\\
& \quad-\sum_{p=0}^{n}\left((T / \beta)^{p+1} x,(T / \beta)^{p+1} y\right)^{\prime} \\
&=(x, y)^{\prime}-\left((T / \beta)^{n+1} x,(T / \beta)^{n+1} y\right)^{\prime} .
\end{align*}
$$

Hence, in case $\lim _{p \rightarrow \infty}\left\|(T / \beta)^{p} x\right\|^{\prime}=0$ on H_{1} then on $H_{1}(x, y)^{\prime}=$ $(x, y)_{\beta, T}$. Now for x in H_{1} the number-sequence $\left\{\left\|(T / \beta)^{p} x\right\|^{\prime}\right\}_{p=0}^{\infty}$ is nonincreasing with limit α_{x}. By (C), for x in H_{1}

$$
\begin{aligned}
& \sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2} \\
& \quad=\left(\|x\|^{\prime}\right)^{2}-\left(\alpha_{x}\right)^{2} \leqq\left(\|x\|^{\prime}\right)^{2}
\end{aligned}
$$

Suppose $H^{\prime} \neq H_{1},(x, y)^{\prime}=(x, y)_{\beta, T}$ on H_{1}, and $\left\{H_{1},(\cdot, \cdot)\right\}$ is complete. Then, by Lemma 1 , in case T on H_{1} is continuous in $\left\{H_{1},(\cdot, \cdot)\right\}$, $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ is complete, so that H_{1} is closed in H^{\prime}. Since H_{1} is dense in H^{\prime} and $H_{1} \neq H^{\prime}, H_{1}$ is not closed in H^{\prime}. Hence, T on H_{1} is not continuous in $\left\{H_{1},(\cdot, \cdot)\right\}$.

Example 3. Suppose that on $l^{2}\langle f, g\rangle=\sum_{p=0}^{\infty} f_{p} g_{p}^{*}$ and that y is the point of l^{2} such that $y_{0}=1$ and for $p>0 y_{p}=0$. Suppose Y is the linear span of $\{y\}, P$ the orthogonal projection of l^{2} onto Y^{\perp}, and T the operator on l^{2} such that $T(c)$ is the sequence d, with $d_{0}=\sum_{p=1}^{\infty} c_{p} / 2^{p+1}, d_{1}=c_{0}$, and for $p>1 d_{p}=c_{p-1} / 2^{2 p-1}$. Now $T^{*}(c)$ is the sequence e such that $e_{0}=c_{1}$ and for $p>0 e_{p}=c_{0} / 2^{p+1}+c_{p+1} / 2^{2 p+1}$ and $T^{*} T(c)$ the sequence f such that $f_{0}=c_{0}$ and for $p>0 f_{p}=$ $\left[\sum_{p=1}^{\infty} c_{q} / 2^{q+1}\right] / 2^{p+1}+c_{p} / 2^{4 p+2}$. Hence,

$$
\begin{aligned}
& \left\langle\left(1-T^{*} T\right) c, c\right\rangle \\
& \quad=\sum_{p=1}^{\infty}\left[1-1 / 2^{4 p+2}\right]\left|c_{p}\right|^{2}-\sum_{p=1}^{\infty}\left\{\left[\sum_{q=1}^{\infty} c_{q} / 2^{q+1}\right] c_{p}^{*} / 2^{p+1}\right\} \\
& \quad=\sum_{p=1}^{\infty}\left[1-1 / 2^{4 p+2}\right]\left|c_{p}\right|^{2}-\left|\sum_{p=1}^{\infty} c_{p} / 2^{p+1}\right|^{2} \\
& \quad \geqq(63 / 64) \sum_{p=1}^{\infty}\left|c_{p}\right|^{2}-\left[\sum_{p=1}^{\infty}\left|c_{p}\right|^{2}\right]\left[\sum_{p=1}^{\infty} 1 / 2^{2 p+2}\right]
\end{aligned}
$$

$$
\geqq(1 / 2) \sum_{p=1}^{\infty}\left|c_{p}\right|^{2} .
$$

By the above inequality,

$$
\begin{equation*}
\langle P c, P c\rangle \geqq\left\langle\left(1-T^{*} T\right) c, c\right\rangle \geqq(1 / 2)\langle P c, P c\rangle . \tag{D}
\end{equation*}
$$

Since $\langle c, c\rangle-\langle T c, T c\rangle \geqq 0$ on l^{2}, the operator-norm for T does not exceed 1. However, $T^{2}(c)=g$, where $g_{0}=c_{0} / 4+\sum_{p=2}^{\infty}\left(c_{p-1}\right) / 2^{3 p}$, $g_{1}=\sum_{p=1}^{\infty} c_{p} / 2^{p+1}, g_{2}=c_{0} / 8$, and for $p>2 g_{p}=\left(c_{p-2}\right) / 2^{4 p-4}$. Computation reveals that the operator-norm for T^{2} does not exceed $1 / 2$. Hence, $\lim _{p \rightarrow \infty}\left\langle T^{p} c, T^{p} c\right\rangle$ is 0 on l^{2}. Note that $T\left(l^{2}\right) \cap Y$ is $\{0\}$. Also, with z the l^{2}-sequence such that for $p \geqq 0 z_{p}$ is the sequence w with $w_{q}=2^{p+1}$ or 0 accordingly as $q=p$ or not, $T z$ has limit y in l^{2}. Hence, y is in $\overline{T\left(l^{2}\right)}$. Since $\overline{P T\left(l^{2}\right)}$ is Y^{\perp}, we conclude that $T\left(l^{2}\right)$ is dense in l^{2}.

Suppose H_{1} is an algebraic complement of Y in l^{2} and $T\left(l^{2}\right)$ is a subspace of H_{1}. Then the formula $(x, y)^{\prime \prime}=\langle P x, P y\rangle$ defines an inner product for H_{1} such that $\left\{H_{1},(\cdot, \cdot)^{\prime \prime}\right\}$ is complete. By (D), the formula $(x, y)=\left\langle\left(1-T^{*} T\right) x, y\right\rangle$ defines an inner product for H_{1} equivalent to $(\cdot, \cdot)^{\prime \prime}$. Of course, with $\beta=1$, by Theorem $3\langle\cdot, \cdot \cdot\rangle=$ $(\cdot, \cdot)_{\beta, T}$ on H_{1}. It is of interest to note that $\left[(x, y)^{\prime \prime}\right]_{\beta, T}$ ($=\sum_{p=0}^{\infty}\left\langle P T^{p} x, P T^{p} y\right\rangle$) is equivalent to $\langle\cdot, \cdot\rangle$ on H_{1}. For

$$
(1 / 2)\left[\|x\|^{\prime \prime}\right]^{2} \leqq\|x\|^{2} \leqq\left[\left\|x^{\prime \prime}\right\|^{2}\right]
$$

implies

$$
(1 / 2)\left[(x, x)^{\prime \prime}\right]_{\beta, T} \leqq(x, x)_{\beta, T} \leqq\left[(x, x)^{\prime \prime}\right]_{\beta, T}
$$

on H_{1}.
Note 1. An argument for most of the following, known to the author through work of MacNerney [6], may be found in [1] (Lemma, p. 316), in which it is partly attributed to Friedrichs [3]. No argument will be offered here.

Suppose $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ is complete and continuously situated in $\{H,(\cdot, \cdot)\}$, in the sense that H_{1} lies in H and there is a positive number c such that $\|\cdot\| \leqq c\|\cdot\|^{\prime}$ on H_{1}, that H_{1} is dense in H, and that B is the adjoint of the identity function from $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ to $\{H,(\cdot, \cdot)\}$, so that B is that linear transformation from H to H_{1} such that for x in H_{1} and y in $H(x, y)=(x, B y)^{\prime}$. Suppose C is an operator on $\{H,(\cdot, \cdot)\}$. Then
(1) B is positive definite in $\{H,(\cdot, \cdot)\}$ and the operator-norm for B in $\{H,(\cdot, \cdot)\}$ does not exceed c;
(2) with $B^{1 / 2}$ the positive definite square-root of B in $\{H,(\cdot, \cdot)\}$
and $B^{-1 / 2}=\left(B^{1 / 2}\right)^{-1}, H_{1}=B^{1 / 2}(H)$ and $(\cdot, \cdot)^{\prime}=\left(B^{-1 / 2} \cdot, B^{-1 / 2} \cdot\right)$ on H_{1};
(3) if $C(H)$ lies in H_{1} then C is continuous from $\{H,(\cdot, \cdot)\}$ to $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$;
(4) if $C B=B C$, then $C B^{1 / 2}=B^{1 / 2} C$ so that $C\left(H_{1}\right)$ lies in H_{1} and for x and y in H, with $x \neq 0,\left\|C B^{1 / 2} x\right\| /\left\|B^{1 / 2} x\right\|^{\prime}=\|C x\| /\|x\|$ and $\left(C B^{1 / 2} x, B^{1 / 2} y\right)^{\prime}=(C x, y)$; hence, the operator-norm in $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ for the restriction C_{1} of C to H_{1} is the operator-norm for C in $\{H,(\cdot, \cdot)\}$ and if C is nonnegative in $\{H,(\cdot, \cdot)\} C_{1}$ is nonnegative in $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$; and (5) if $C(H)$ is dense in H and C is one-to-one the formula $(x, y)^{\prime \prime}=\left(C^{-1} x, C^{-1} y\right)$ defines an inner product for $C(H)$ such that $\left\{C(H),(\cdot, \cdot)^{\prime \prime}\right\}$ is complete and continuously situated in $\{H,(\cdot, \cdot)\}$ and the adjoint of the identity function from $\left\{C(H),(\cdot, \cdot)^{\prime \prime}\right\}$ to $\{H,(\cdot, \cdot)\}$ is $C C^{*}$ on H, where C^{*} is the adjoint of C as an operator of H into itself. Moreover, for the adjoint $C^{+}: C(H) \rightarrow H$ of $C: H \rightarrow C(H)$ we have $C C^{*}=C^{+} C$ (or $C^{+}=C C^{*} C^{-1}$).

Theorem 4. Suppose that H_{1} is a dense subspace of H. Then in order that $(\cdot, \cdot)_{1}$ be such an inner product for H_{1} that $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ is complete and continuously situated in $\{H,(\cdot, \cdot)\}$ it is necessary and sufficient that for some operator C on $\{H,(\cdot, \cdot)\}$ and positive number $d H_{1}$ is the set of all x in H such that $\sum_{p=0}^{\infty}\left\|C^{p} x\right\|^{2}$ converges and, if each of x and y is in $H_{1},(x, y)_{1}=d \sum_{p=0}^{\infty}\left(C^{p} x, C^{p} y\right)$.

Proof. The sufficiency of the condition follows from Lemma 1. To argue necessity, let e be a number such that for x in $H_{1}\|x\|^{2} \leqq$ $e\left(\|x\|_{1}\right)^{2}$ and $(\cdot, \cdot)^{\prime}$ be $e(\cdot, \cdot)_{1}$ on H_{1}. Then the complete inner product space $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ is continuously situated in $\{H,(\cdot, \cdot)\}$ and the operator-norm for the identity function from $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ to $\{H,(\cdot, \cdot)\}$ does not exceed 1. Hence, with B as in Note 1, the operator-norm for B in $\{H,(\cdot, \cdot)\}$ does not exceed 1. Suppose that C is $(1-B)^{1 / 2}$ on H, so that $B=1-C^{2}$. Since $B C=C B$, by Note $1 C\left(H_{1}\right)$ lies in H_{1}, the restriction of C to H_{1} is nonnegative in $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$, and the operator-norm for this restriction in $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$, does not exceed 1. By Theorem 3, $\sum_{p=0}^{\infty}\left\|C^{p} x\right\|^{2}$ converges on H_{1}. (Note that $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ in Theorem 3 is replaced by $\left\{H_{1},(\cdot, \cdot)^{\prime}\right\}$ here and that $T=C, 1-$ $\left.T^{*} T=B,\left(\left(1-C^{2}\right) x, y\right)^{\prime}=(B x, y)^{\prime}=(x, y).\right)$ Suppose that $\left\{H^{\prime \prime},(\cdot, \cdot)^{\prime \prime}\right\}$ is the complete inner product space of all x in H for which $\sum_{p=0}^{\infty}\left\|C^{p} x\right\|^{2}$ converges with $(x, y)^{\prime \prime}=\sum_{p=0}^{\infty}\left(C^{p} x, C^{p} y\right)$. Note that, since H_{1} lies in $H^{\prime \prime}, H^{\prime \prime}$ is dense in H and $\left(1-C^{2}\right)(H)$ lies in $H^{\prime \prime}$. Also, by Lemma $1, C\left(H^{\prime \prime}\right)$ lies in $H^{\prime \prime}$ and the restriction of C to $H^{\prime \prime}$ is self-adjoint in $H^{\prime \prime}$. By Note $1,1-C^{2}$ is continuous from $\{H,(\cdot, \cdot)\}$ to $\left\{H^{\prime \prime},(\cdot, \cdot)^{\prime \prime}\right\}$. Suppose each of x and y is in $H^{\prime \prime}$. Then, by Theorem 2, $(x, y)=\left(x,\left(1-C^{2}\right) y\right)^{\prime \prime}$. (The $\left\{H^{\prime},(\cdot, \cdot)^{\prime}\right\}$ of Theorem 2 is $\left\{H^{\prime \prime},(\cdot, \cdot)^{\prime \prime}\right\}$ now, $\beta=1$ and $T=C$; the H_{1} of Theorem 2 is $H^{\prime \prime}$ now.)

Suppose z is in H, x is in $H^{\prime \prime}$, and y is a sequence in $H^{\prime \prime}$ with limit z in H. Then

$$
(x, z)=\lim (x, y)=\lim \left(x,\left(1-C^{2}\right) y\right)^{\prime \prime}=\left(x,\left(1-C^{2}\right) z\right)^{\prime \prime},
$$

so that $1-C^{2}$ is the adjoint of the identity function from $\left\{H^{\prime \prime},(\cdot, \cdot)^{\prime \prime}\right\}$ to $\{H,(\cdot, \cdot)\}$. Hence, $H^{\prime \prime}=\left(1-C^{2}\right)^{1 / 2}(H)=H_{1}$ and for x and y in H_{1}, by Note 1,

$$
\begin{aligned}
(x, y)_{1} & =(1 / e)(x, y)^{\prime} \\
& =(1 / e)\left(\left(1-C^{2}\right)^{-1 / 2} x,\left(1-C^{2}\right)^{-1 / 2} y\right) \\
& =(1 / e)(x, y)^{\prime \prime} \\
& =(1 / e) \sum_{p=0}^{\infty}\left(C^{p} x, C^{p} y\right) .
\end{aligned}
$$

The theorem is established, taking d as $1 / e$.
It may be noted that an argument for Theorem 4 could be based on a theorem, Theorem 2 of [5], of the author and Note 1. The argument given above is more closely related to the other theorems of this paper.

Theorem 5. Suppose that H_{1} is a dense subspace of H and T is a linear transformation from H_{1} to H_{1}. Then in order that there be an inner product $(\cdot, \cdot)_{1}$ for H_{1} such that $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ is complete and continuously situated in $\{H,(\cdot, \cdot)\}$ and T is continuous in $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ it is necessary and sufficient that for some pair, β and γ, of positive numbers and some operator C on $\{H,(\cdot, \cdot)\} H_{1}$ is the set of all x in H for which $\sum_{p=0}^{\infty}\left\|C^{p} x\right\|^{2}$ converges and for x in $H_{1} \sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2} \leqq \gamma \sum_{p=0}^{\infty}\left\|C^{p} x\right\|^{2}$.

Proof. To argue necessity, suppose b is the operator-norm for T in $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ and $\beta=2 b$. By Theorem 4, there is an operator C in $\{H,(\cdot, \cdot)\}$ and a positive number d such that H_{1} is the set of all x in H for which $\sum_{p=0}^{\infty}\left\|C^{p} x\right\|^{2}$ converges, with limit $(1 / d)\left(\|x\|_{1}\right)^{2}$. Now, with $e=(1 / d)^{1 / 2},\|x\| \leqq e\|x\|_{1}$ and

$$
\begin{aligned}
& \sum_{p=0}^{\infty}\left\|(T / \beta)^{p} x\right\|^{2} \leqq e^{2} \sum_{p=0}^{\infty}\left(\left\|(T / \beta)^{p} x\right\|_{1}\right)^{2} \\
& \quad \leqq e^{2}(4 / 3)\left(\|x\|_{1}\right)^{2}=(4 / 3) \sum_{p=0}^{\infty}\left\|C^{p} x\right\|^{2}
\end{aligned}
$$

on H_{1}, so that the condition follows with $\gamma=4 / 3$.
To argue the sufficiency of the condition, suppose $(x, y)_{1}=$ $\sum_{p=0}^{\infty}\left(C^{p} x, C^{p} y\right)$ on H_{1}, so that $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ is complete and continuously situated in $\{H,(\cdot, \cdot)\}$, and set $(x, y)_{2}=\sum_{p=0}^{\infty}\left((T / \beta)^{p} x,(T / \beta)^{p} y\right)$ on
H_{1}. Now T on H_{1} is continuous in $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ and $\|x\|_{2} \leqq \gamma^{1 / 2}\|x\|_{1}$ on H_{1}. Suppose T is not continuous in $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$. Then, by the Closed Graph theorem, there is an H_{1}-sequence x with limit 0 in $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ such that $T x$ has limit $y \neq 0$ in $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$. Since $\|z\|_{2} \leqq$ $\gamma^{1 / 2}\|z\|_{1}$ on H_{1}, x has limit 0 , and $T x$ limit y, in $\left\{H_{1},(\cdot, \cdot)_{2}\right\}$. But $T x$ has limit 0 in $\left\{H_{1},(\cdot, \cdot)_{2}\right\}$. Thus, $y=0$. This is a contradiction.

Example. There is a dense subspace H_{1} of H and a linear transformation T on H_{1} such that $T\left(H_{1}\right)$ lies in H_{1}, the formula $(x, y)_{1}=\sum_{p=0}^{\infty}\left(T^{p} x, T^{p} y\right)$ defines on H_{1} an inner product such that $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ is complete, and yet T is not a closed operator in $\{H,(\cdot, \cdot)\}$.

Suppose C is an operator on H such that the set H_{2} of all x in H for which $\sum_{p=0}^{\infty}\left\|C^{p} x\right\|^{2}$ converges is a dense proper subspace of H. Suppose y is not in H_{2}, H_{1} is the linear span of $\{y\}$ and H_{2}, and ϕ is the algebraic projection of H_{1} onto H_{2} with kernel the linear span Y of $\{y\}$. Suppose T is $C \phi+1 / 2(1-\phi)$ on H_{1}. Since $C\left(H_{2}\right)$ lies in H_{2}, T^{p} is C^{p} on H_{2}. Since the set of all x for which $\sum_{p=0}^{\infty}\left\|T^{p} x\right\|^{2}$ converges is a linear space including both Y and H_{2}, this set is H_{1}. Define $(x, y)_{1}$ to be $\sum_{p=0}^{\infty}\left(T^{p} x, T^{p} y\right)$ on H_{1}. Then H_{2} is a complete subspace of $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$. Since Y is one-dimensional, $\left\{H_{1},(\cdot, \cdot)_{1}\right\}$ is complete. Now, since y is not in $H_{2}, C y \neq(1 / 2) y$ so that T does not lie in C. Yet the closure of T in $H \times H$ includes C. Hence, the closure of T in $H \times H$ is not a function.

References

1. R. Adams, N. Aronszajn, and M. S. Hanna, Theory of Bessel potentials, III, Ann. Inst. Fourier (Grenoble), 19 (1969), fasc. 2 (1970), 279-338.
2. P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math., 7 (1971), 254-281.
3. K. O. Friedrichs, Spektraltheorve halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann., 109 (1934), 465-487, 685-713. Errata: Ibid., 110 (1935), 777-779.
4. George O. Golightly, Graph-dense linear transformations, Pacific J. Math., 82, No. 2 (1979), 371-377.
5. , A characterization of the range of a bounded linear transformation in Hilbert space, Proc. Amer. Math. Soc., 79, no. 4 (1980), 591-592.
6. J. S. Mac Nerney, Continuous embeddings of Hilbert spaces, Rend. Circ. Mat. Palermo,
(2) 19 (1970), 109-112.
7. -, Dense embeddings of Hilbert spaces, Proc. Amer. Math. Soc., 24, No. 1 (1970), 92-94.
8. J. D. Maitland-Wright, All operators on a Hilbert space are bounded, Bull. Amer. Math. Soc., 79 (1973), 1247-1250.

Auburn University
AL 36849

