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ON THE LEAST NUMBER OF FIXED POINTS
FOR INFINITE COMPLEXES

SHI GEN-HUA

Let K be a connected infinite and locally finite simplicial
complex. The main theorem of this paper is the following:
let L be a two-dimensionally connected infinite subcomplex
of K, whose boundary L in K consists of vertices only, and
/: |JBΓ|->|ZΊ be a map. Then there exists a map F: \K\-+\K\,
that has the following properties: (1) F~frel \K~L\; and,
(2) F has no fixed point on \L\-\L\.

The main theorem implies that if an infinite and locally
finite complex K is two dimensionally connected, then the
least number of fixed points of any mapping class from \K\
to itself is null. At the same time, the main theorem also
enables us to compute the least number m(K) of the fixed
points of the identity mapping class of \K\ by means of
the following result: m(K) is equal to the least number
n{K) of the fixed points of the good displacements of the
welding set M{K) of K, where M(K) is the set of the
boundary vertices of all these maximal two-dimensionally
connected and finite subcomplexes of K.

In this paper, an infinite complex means a complex whose
simplices are countable infinite. On the other hand, a locally finite
complex means a complex K satisfying the following two conditions:
For each simplex σ of K, Stκ (σ) consists of number of finite simplices
and |Stπ(σ)| is an open subset of \K\. The second condition means
the topology of \K\ is the weak topology. If x is a point of \K\, then
it belongs to just one simplex of K which is called the carrier of
x and is denoted by Tr^ (x). A complex K is called two-dimensionally
connected if for any two maximal simplices σ and τ of K, there are
simplices of K

σ = σOf σlf •• , σn_u σn = τ

such that Gi_x and σif i = 1, , n, have a common face of dimen-
sion greater than zero.

Suppose that M is a subset of \K\ and that f:M—>\K\ is a
map such that Tr# (x) Π Tr^ [f(x)] Φ <j> for any xeM, then we say
that / satisfies S(K) on M. The following Lemma 1 is the gener-
alization of Lemma 2.3 and Lemma 1.3 of [6].

LEMMA 1. Let K be a locally finite complex and τ the common
face of its maximal simplices σι and σ2, where the dimension of τ
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is greater than zero. Suppose we are given points A e σlf Beτ and
a map f:\K\—>\K\ such that A is an isolated fixed point of f and
it is the only fixed point of f on [A, B], Then we can find a map
F:\K\->\K\ and δ > 0 such that:

F = fτe\[\K\- U([A,B],δ)]

and F on U([A, B], δ) has only one fixed point C belonging to σ2.
If f satisfies S(K) on [A, B] then F satisfies S(K) on U([A, B], δ).

LEMMA 2. Let K be a locally finite complex and f: \K\ —> \K|
be a map. Then there is a map F, F = /: \K\ —> |K\ such that each
fixed point of F is isolated and lies in a maximal simplex of K.

Proof We can find a simplicial approximation q: R-> K to /,
where R is a barycentric subdivision of a subdivision H of the
complex K. We first prove that q has a maximum of one fixed
point on the closure of each simplex of R as follows. If σn is a
simplex of R and xlt x2 are two fixed points of q such that the open
segment (xlf x2) c σn belongs to σn, then the straight line y = txx +
(1 — t)x2 intersects σn at two points y1 and y2, which are fixed points
of q. Because xi is a fixed point of the simplicial map q, then
Trβ(α0|c|TrH(ί*0|, so the dimension of TτH(xt)ian. The dimension

of the carrier of (xlt x2) in H is n. Similarly, we have | Tr^ (yt) \ c
ITr^d/OI, so the dimension of ΎrH(yi) is equal to the dimension of
TΐB (yi) and less than n, for i = 1, 2. Since R is the barycentric
subdivision of H, σn has a face σn~~1

f such that all the points of σn

which have the carrier in H of dimension less than n belong to
dn~x. This fact implies that ylf y2 e dn~x, which is a contradiction,
because then we would have (xl9 x2) c σn~\

Next we denote all the fixed points of q as xl9 x2, , so:

I StΛ [Tr,, (Xi)] I Π I StΛ [Tr^ (xd)] \ = φ, f or i Φ j .

We choose δt > 0, i = 1, 2, , such that:

then:

ϋ ( x i f δ<)n ϋ ( x j y δ j ) = ψ9 i Φ i .

From [1] (Kapitel 14) we can find the maps gt: U(xί9 δt) —> \ K\ with
εt = sup{p[q(x), 9t(x)]\xeϋ(xif δt)}f where p is the metric of \K\,
with Si sufficiently small so that the following three conditions are
satisfied:

( 1 ) T r r [gt(χ)] n Ύτκ [q(x)] Φ φ, for all x e U(xi9 δt);
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(2) each fixed point of gt is isolated and lies in a maximal
simplex of R as well as in U(xt, δt/2); and,

( 3 ) a[q(x), glx), (2 - 2ρ(x, xt)fit)t] Φ x, for all 0 ̂  t ^ 1 when
8t/2 ^ p(x, xt) ̂  δt.

Using the short homotopy a of Lemma 1.1 of [6] we define

•q{x), xz\K\-\JU(xt,δi),
i

a[q{x), gt(x), (2 - 2p(x9 xt)/δt)t], dJ2 £ p(χ, χt) ^

*]ι 0 ̂  p(&, χt) ^

/«(*) =

so ft is a homotopy between q and /x. Finally, let F — fίf then
each fixed point of F is isolated and lies in a maximal simplex of K.

LEMMA 3. Assume that K is a locally finite complex, M is a
subcomplex consisting of vertices only, and that g = M—> \K\ is a
map satisfying S(K) on M. Then there is a map F±: \K\ —> \K\
that has the following properties:

(1) JP\ satisfies S(K) on \K\;
(2 ) Fx(x) = g(x), for all xeM; and,
(3) each fixed point of F± on \K\ — M is isolated and lies in

a maximal simplex of K.

Proof. In the proof of Lemma 2, let / = 1; thus we can choose
Si to be sufficiently small to ensure that F(x) satisfies S(K) on |JBL|.

Since M consists of vertices of K, then

Tr z (x) n Tr* [g(x)] Π

for all x e M. Writing M - {yl9 y2,
have the following properties:

•}, we can find ηt > 0, that

U(yi9 r]i) ΓΊ U(yi9 ηά) = φ, iΦj\

U(yi9 τjt) c Stκ (Vi), F[U(yif %)] c St^ (Vi)

F[U(Vi, Vί)] n U(yif Vd = Φ, i - 1, 2, .

We choose a path P, = [F(yt), Ai9 yif Bi9 g(yt)] in St^ (yj, para-
metrized by length, such that points A and B belong to the maxi-
mal simplices of K. Defining the map Fx\ \K\ —> \K\ as:

vF{x), xe\K\-\JU(Vt,Vi)l

Fix) =

*(l ~

^ ρ(x9 y<) ̂  %

0 ^ p(x9 yt) ^
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Fx satisfies the conditions of this lemma.

THEOREM 1. Assume that K is an infinite and locally finite
complex and that L is a two-dimensionally connected infinite sub-
complex which has the boundary L consisting of some vertices of K.
Assume that f: \K\ —* \K\ is a map and that each fixed point of f
on ILI — ILI is isolated and lies in a maximal simplex of L. Then
there exists a map F\\K\-*\K\ which has the following two pro-
perties:

(a) F ^ / rel | K - L |; and,
(b) F has no fixed points on \L\ — \L\.

If f satisfies S(K) on \K\ then F also satisfies S{K) on \K\.

Proof. The basic method of constructing F from / is to push
a fixed point of / further away on L. First we choose the route
of pushing the fixed point of /. We construct a one-dimensional
complex R such that there exists a one-to-one correspondence g from
all the maximal simplices of L to all the vertices of R, where two
vertices g(σ^ and g(σ2) constitute a one-dimensional simplex in R
if, and only if, σx and σ2 have a common face of dimension greater
than zero. Then R is a connected, infinite and locally finite com-
plex. We choose a tree S in R which is a simply connected sub-
complex of R and contains all the vertices of R.

We now construct a function N on the simplices of S by
inductive definition. In complex S, if a vertex τ° is a face of a
single one-dimensional simplex τ1 only, then we define N(τ°) = 1 and
jVXr1) = 1. Evidently, S — N~\l) is a subcomplex of S. In complex
S — \Jiz\ N~\r), if a vertex r° is a face of a single one-dimensional
simplex τ1 only, then we define N(τ°) = i and Nζτ1) = i. Evidently,
S - {Jr=iN-\r) is a subcomplex of S. Let T = S - \Jr^ι N'\r). If
T is nonempty, then T is a subcomplex of S and we define N(τ) =
0 for all re T. As a result, function N has the following properties
(1) and (2):

(1) S — Uϊ=i N~\r) is simply connected, for i = 1, 2,
(2) if τ° is a vertex of S — Γ, then there exists another vertex

σ° of S such that we have either N(σ°) > N(τ°) or N(σ°) = 0, where
τ° and σ0 constitute a one-dimensional simplex of S.

(3) If T is nonempty, from (1) we know that T is a simply
connected and infinite subcomplex of S. (See Fig. 1). In this case,
we pick a vertex A in T and construct a function V on all the
vertices of T as follows: For a vertex τ°, V(τ°) is defined to be
the least number of edges from A to τ° in T. In this case the
property (4) is similar to property (2):

(4) if τ° is a vertex of T, then there exists another vertex
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FIGURE 1

σ° of T such that V(σ°) > V(τ°), where r° and σ° constitute a one-
dimensional simplex of T.

Based on the Lemma 1 and property (2), we can move the fixed
points of / from g^N'^l) to {g~λN-\r)lr = 0 or r > 1}, and sub-
sequently move the fixed points of / from g^N'Xϊ) to {^~W~1(r)/r=
0 or r > i}, and so on, thereby moving all the fixed points of / to
{g^N^iO}}. Further, based on the Lemma 1 and property (4), we
can move the fixed points of / from g^V^l) to {g^V'^/r > 1},
and subsequently move the fixed points of / from g^V^ii) to
{g~ι V~\τ)lr > i} and so on. Finally, we get a map F such that
F = /rel \K — L\ and F has no fixed points on \L\ — \L\.

From the Theorem 1 we deduce:

THEOREM 2. Suppose K is an infinite and locally finite two-
dimensionally connected complex, then the least number of the fixed
points of any mapping class from \K\ to itself is zero.

DEFINITION 1. Let K be a locally finite complex and Mif i = 1,
2, , be all its maximal two-dimensionally connected finite subcom-
plexes, thus the boundary Mt consists of some vertices of K. Denote
M(K) = Ui Mίf M(K) is called the welding set of K. A good dis-
placement is a map#: M(K) -» \K\ such that:

(1) g{a) e | St* (a) |, for all a e M(K); and,
(2) if g has no fixed points in Mif then the number of points

in Mt whose images under g are outside \Mt\ is exactly

THEOREM 3. Let K be a locally finite complex, then the least
number m(K) of fixed points of the identity mapping class is equal
to the least number of fixed points n(K) of all the good displace-

FIGURE 2
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ments.
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In Lemma 4 we shall prove m(K) ^ n(K) and in Lemma 5 we
shall prove m(K) Ξ> n(K).

EXAMPLE 1. In Fig. 2, the welding set M(K) of K is {α0, alf

α2, } and the arrows represent a good displacement which has
the least fixed points. From Theorem 3 we have m(K) = 1. Replac-
ing each 1-dimensional closed simplex τ, = a$ak of K by a 2-dimen-
sionally connected complex Mif such that Mt = {aj9 ak}, we get a
complex JBLΊ with M(Kλ) — M(K). If each Mt is an ^-dimensional
closed simplex, then m(K^) = 1 results from Theorem 3; if for each
Mi9 either Z(Af<) > 2 or X(Mt) < 0, then m(Kύ = co from Theorem 3.

EXAMPLE 2. In Fig. 3, the welding set M(K2)lpί K2 is {alf α2,
α3, αj, and the arrows represent a good displacement which has least
fixed points. From Theorem 3 we have m(K2) — 2.

LEMMA 4. If g is a good displacement of K, there will be a
map G: \K\—>\K\ such that:

(1) G(x) = 0(a), for all x e M(iί);
(2) G satisfies S(K) on \K\; and,
(3) G has no fixed points on \K\ — M(K).

Proof Applying Lemma 3, we get a map Ft: \K\-*\K\ that
has the following three properties:

(1) Ft satisfies S(K) on |JBΓ|;
(2) Fλ(x) = g(x), for all xeM(K); and,
(3) each fixed point of Fx on \K\ — il/OBΓ) is isolated and lies

in a maximal simplex of K.
From Theorem 1, there exists a map F, such that, F satisfies

S(K) on \K\, F=kF1\\K\-»\K\ rel U i ^ o and F in |ΛΓ — U*Λf*I
has no fixed points.
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Since g is a good displacement, if g has no fixed points on Mi9

the fixed point index of F in M< is zero, (see Appendix). From
Lemma 1, we may move all the fixed points of F on \Mt — Mil to
any single point and then cancel this fixed point (see page 123 of
[2]). If the map g in M, has a fixed point A, then applying Lemma
1 as many times as necessary we may move all the fixed points of
F on \Mi\ — \Mi\ to A and finally get the map G.

In order to prove n(K) ^ m(K), we introduce the concept of
fixed point classes on an open subset.

DEFINITION 2. Assume that U is an open subset of the poly-
hedron \K\ of a locally finite complex K where U is compact.
Assume that a map /: J7—>|JSΓ| has no fixed point on U. Fixed
points a and b of / in U are said to belong to the same fixed point
class if there is a path P(ί) on U such that P(0) = α, P(l) = δ, and
/[P(ί)]^P(ί) rel{α,δ} on \K\.

We may define the index of fixed point classes. The fixed
point class with a nonzero index is called an essential fixed point
class. The number of essential fixed point classes of / on U is
finite.

DEFINITION 3. Suppose that a homotopy ft:U-+\K\, 0 ^ t ^ 1,
has no fixed points on ZJ, fo(a) = a, f(b) — b and that P(ί) is a
path on U connecting a and b such that

ft[P(t)] = P(t)τel{a,b} on \K\ .

Thus we say there is a homotopy correspondence between the fixed
point class of fQ on U which contains a and the fixed point class
of fx on U which contains δ. This homotopy correspondence is a
one-to-one correspondence between all the essential fixed point classes
of /0 and all the essential fixed point classes of /1# The correspond-
ing classes have the same index.

LEMMA 5. Suppose that K is a locally finite complex and that
1 = /: |JBΓ| —> \K\. Then there exists a good displacement g such that
the number of fixed points of g is not greater than the number of
fixed points of f

Proof.
(1) If / has fixed points on | Ms \ — Ms for some Ms of K, we

arbitrarily assign a point in Ms. The set of the assigned points
and the fixed points of / on M(K) are denoted by {bl9 b2, •}, then
the number of points in {bu b2, } is not greater than the number
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of fixed points of /. We write

{cl9c2, *- }

Let ft:l =f:\K\->\K\, then ft(ct) is a path from ct to f(ct).
Based on /,((?,), we can construct a path Qt(t) = a{- at- αi /3ί that
has the following four properties:

(a) for j = 1, 2, , ft, there are points 6}, cj e St* (c,) and poly-
gonal arcs 0J from δ* to cj not containing et (see Fig. 4) such that

a) = K 6J] 0} [cj, c j , j = 1, 2, . . . , λ ;

1 is a polygonal are from δ£+1 to / ( c j not

(b) /3* = [c£, 6 i + ι ] 0i

where δi+1 e St z fe) and 0
containing c£;

(c) αj αί αί 5έ 1, r = 1, •••, Jt;

(d) ft (c4) - Q4(ί) rel {c,, /(c,)}, 1 = 1, 2,

FIGURE 4

From the homotopy extension theorem, there is another homo-
topy /,: 1 S /: \K\ -> |£: | with /t(c<) = Qt(ί), i = 1, 2, • .

(2) For each c0 we choose a sufficiently small δ( > 0 such that:
(a) ^ ^ c S t ^ f e ) ;
(b) ϋ(et, 8t) Π U(Oj, Sf) = φ, iΦ j;

(c) U(cu δt) C\ θΐ = φ, j = l, .- ,A + 1;

(d) 6J e |tf| - Uι ί%, ^ ) , j = 1, , h + 1,

byWe define a map JF7: \K\

ΓM^£il _ {L + Γ2 -
 2 ^

L δt J L δι

| ^ I ] , 0 £ pise, β<)

thus
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F s / r e l {el9 c2, •••} .

( 3 ) The fixed point set of F on \K\ is Nλ U iV2, where

(a) Λi=|iC|-U*^o**);
(b) iV2 = U * {di, dί, , di+u eίt el,---, el}, w h e r e d) e fe, δj), i =

1, 2, , h + 1, and βj e (cj, e*), j = 1, , Λ; moreover,
(c) δJ2 > p(ei9 di) > p(ci9 el) > p{ci9 dί\ > ρ(pif eϊ) p(ei9 di+i) > 0.
( 4 ) If M8c.{c1, c2, •••}, then F on M8 has no fixed points, and

we can discuss the fixed point classes of F on | M81 — M8.
(a) If dje |ikfβ|, then d[ and JWΊ Π |MJ belong to the same fixed

point class, the reason being b\eN1 Π |M"β|, and jP([&if d*]) [dβ, δj] =
[bl, c j [cu d{] [ώj 60 ̂  1. Excluding these (U* cβ) Π \M8\, each fixed
point of JV2 Π IM81 does not belong to the same fixed point class as
Nί Π |Λf,|. This fact will be proved in (b) and (c).

(b) Suppose b(t) is a path from Vr to d*r (r > 1) in \M8\ - M8,
then there exists a loop β based at b\ such that /3 c | Ms \ Π JVΊ and
6(ί) = /3 [δί, dί] rel {6J, dί}. Hence,

F(b(t)) δ(ί)"1 s F(/9 [δί, «]) [dί, δί] /S-1

= /s ί τ([δί,dί]).[dί,δί]./9- 1

= β' [δί, c j αί αί aU K dί] [dίf δί] /3"1

= β [δί, c j at α^ a*.* [c,, δί] /S"1 sέ 1

on \K\; because we required that at at αί~i ^ 1.
(c) Similarly, suppose δ(t) is a path from c\ to e\{χ ̂  1) in

|ΛfJ — M8, then there exists a loop β of cί such that βa \Ms\f] Nt

and bit) = /3 [cj, el] rel {c£, dί}. Hence,

on \K\.

(d) Since / i n |Λfβ| has no fixed points, the index of each fixed
point class of F on \M8\ — M8 is zero, in particular the index of
the fixed point class containing \M8\ Π Nλ is zero.

( 5 ) We define a map g: M(K) —> \K\ as follows:

g(ct) = δ{, ΐ = 1,2, •••;

and,

0(δi) = δy, i = 1, 2, • .

Consider the fixed point class of F on | M8 \ — ikfβ. Since the index
of the fixed point class containing | M8 \ Π Nx is zero, then there are
exactly X(MB) points in M8, whose images under g are outside \M,\
(see Appendix), so g is a good displacement.

APPENDIX. The proof of Lemma 2 of [7] (it was published
previously in Chinese).



386 SHI GEN-HUA

LEMMA. Assume that K is a locally finite complex and M is
a maximal two-dimensionally connected finite subcomplex. Assume
that g: M-*\K\ is a map such that

( 1 ) g{β) e I St* (α) I, for all aeM;
( 2 ) g{a) Φ α, for all aeM, and g maps Xg points of Moutside

of \M\; and
( 3 ) [a, g(a)] n [&, g(b)] = 0 , for any a,beM.

If a map F: \M\ —> \K\ has the following two properties:
( i ) F(a) = g(a), for all aeM; and
(ii) F satisfies S(K) on \M\,

then J(F, \M\ — M) the index of fixed points of F on \M\ — M,
equals X(M) — Xg.

Proof. We denote the points of M by aif j = 1, , r. Assume
that g(aj)ί\M\ for j = 1, 2, •••,%, and g{aό)e\M\ for j = Xg + 1,
Xg + 2, , r. First choose δ̂  , j = 1, - -,Xg, so that ^(α^) G (aj9 b3),
[ah bά[<z.Stκ (α, ) c |iΓ| and that any two segments of {[a,-, ftj | j =
1, '- ,Xg} are disjoint (from property 3). Let K' denote the com-
plex composed of M and [aj9 bd]9 j — 1, , Xg. Let gf be the map g
considered as a map from M to |iT'|. Applying Lemma 3 to #' and
K', we know there exists a map G^ | ίΓ ' | —> |K'\ such that Gx{aό) —
g'(a3) = flr(α, )f i = 1, , r, Gλ satisfies S(K') on \K'\. Define a map
G2: \K'\->\K'\ as follows:

J
(flrίαy), x 6 [α, , 6y], i = 1, 2,

Since G2 is homotopic to the identity map,

J(G2, Kr) - X{K') =
by "Axiom 4" on page 52 of [2]. Since (?2 on [aj9 bj\, j — 1,
only has one fixed point g(a3) of index + 1, we obtain

i.e.,

J(Gi

J(G2,

Now, denote the inclusion map of |J5L'| into |JBL| by J, and letG 3 =
IG2:\M\-±\K\. We have J(G3, \M\ - M) = X(M)-Xg. Finally,
recall the map F: \M\—>\K\ assumed in this lemma. Since it has
the two properties listed, the map a(x, F(x), t) ([2], pages 124-126),
for xe \M\f 0 <; ί <; 1, is a homotopy equivalence between the iden-
tify mapping I and F. Since Gt satisfies S(K') on \K'\9 it also satisfies
S(K) on \K'\. Moreover, G3 satisfies S(K) on \M\. So a(x, G3(x), <)»
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xe\M\, 0 <; t <* 1, is a homotopy equivalence from I to G3. Fur-
thermore a(x, F{x), t) = a(x, G3(x), t) when xeM, 0 ^ t <; 1. Con-
sequently, employing the homotopy extension theorem on \M\, F =
G3rel M. Thus we get the conclusion of this lemma: J(F9 \M\ — M) =
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