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ON THE LEAST NUMBER OF FIXED POINTS
FOR INFINITE COMPLEXES

SHI GEN-HUA

Let K be a connected infinite and locally finite simplicial
complex. The main theorem of this paper is the following:
let L be a two-dimensionally connected infinite subcomplex
of K, whose boundary L in K consists of vertices only, and
fiIK|->|K| be a map. Then there exists a map F: |K|—|K|,
that has the following properties: (1) F=frel |[K—L|; and,
(2) F has no fixed point on |L|—|L|.

The main theorem implies that if an infinite and locally
finite complex K is two dimensionally connected, then the
least number of fixed points of any mapping class from | K|
to itself is null. At the same time, the main theorem also
enables us to compute the least number m(K) of the fixed
points of the identity mapping class of |K| by means of
the following result: m(K) is equal to the least number
n(K) of the fixed points of the good displacements of the
welding set M(K) of K, where M(K) is the set of the
boundary vertices of all these maximal two-dimensionally
connected and finite subcomplexes of K.

In this paper, an infinite complex means a complex whose
simplices are countable infinite. On the other hand, a locally finite
complex means a complex K satisfying the following two conditions:
For each simplex ¢ of K, St; (0) consists of number of finite simplices
and |Stg (¢)| is an open subset of |K|. The second condition means
the topology of | K| is the weak topology. If z is a point of | K|, then
it belongs to just one simplex of K which is called the carrier of
2 and is denoted by Try (x). A complex K is called two-dimensionally
connected if for any two maximal simplices ¢ and 7 of K, there are
simplices of K

g =040, ***,0,4,0, =T

such that ¢,_, and 0,7 =1, ---, n, have a common face of dimen-
sion greater than zero.

Suppose that M is a subset of |K| and that /1 M — |K]| is a
map such that Trg (z) N Trg[f(x)] # ¢ for any xe M, then we say
that f satisfies S(K) on M. The following Lemma 1 is the gener-
alization of Lemma 2.8 and Lemma 1.8 of [6].

LEMMA 1. Let K be a locally finite complex and T the common
face of its maximal simplices o, and o,, where the dimension of T
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is greater than zero. Suppose we are given points Ac o, Bet and
a map f:|K|— |K| such that A is an isolated fixed point of f and
it is the only fived point of f on [A, Bl. Then we can find a map
F:|K|—|K| and 6 > 0 such that:

F = frel[|[K| — U(lA, B], 0]

and F on U(A, B), ) has only one fixed voint C belgfnging to 0,
If f satisfies S(K) on [A, B] then F satisfies S(K) on U([A, B], 0).

LEMMA 2. Let K be a locally finite complex and f:|K|— | K|
be a map. Then there is a map F, F = f: |K|— | K| such that each
fixed point of F is isolated and lies in a maximal simplex of K.

Proof. We can find a simplicial approximation ¢: R — K to f,
where R is a barycentric subdivision of a subdivision H of the
complex K. We first prove that ¢ has a maximum of one fixed
point on the closure of each simplex of R as follows. If o™ is a
simplex of R and z,, 2, are two fixed points of ¢ such that the open
segment (z,, x,) C 6™ belongs to o, then the straight line y = tx, +
(1 — t)x, intersects ¢ at two points y, and y,, which are fixed points
of q. Because 2, is a fixed point of the simplicial map ¢, then
|Try(x,) || Try ()|, so the dimension of Try (x;)is ». The dimension
of the carrier of (x, x,) in H is n. Similarly, we have |Tr;(y,)|C
[Try (y,)|, so the dimension of Try (y,) is equal to the dimension of
Trz (y,) and less than =, for ¢ =1,2. Since R is the barycentric
subdivision of H, o™ has a face ", such that all the points of &~
which have the carrier in H of dimension less than # belong to
6" ', This faet implies that y, y,€6"", which is a contradiction,
because then we would have (x,, x,) C 6"

Next we denote all the fixed points of ¢ as z, x,, ---, so:

[Stz [Trz (@)1l N [Ste [Trz (v)]| = ¢, for ¢ = 7.
We choose 6, >0, i =1, 2, -+, such that:
Ulx,, 8;) < St [Trp (@), 1 =1,2, -+,
then:
U,y 0,) N Ul 8;) = ¢y 17§«

From [1] (Kapitel 14) we can find the maps g, U, d,) — | K| with
e, = sup {0[g(x), g@)]|xe Ulw, 8,)}, where p is the metric of |K|,
with ¢, sufficiently small so that the following three conditions are
satisfied:

(1) Trglg:)] N Trg[g(@)] # ¢, for all xe Uz, 8,);
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(2) each fixed point of g, is isolated and lies in a maximal
simplex of R as well as in U(x,, 6,/2); and,

(3) alg(x), 9.x), (2 — 20(x, x,)/6,)t] == x, for all 0 < ¢ <1 when
0:/2 = p(x, ;) = 0.

Using the short homotopy a of Lemma 1.1 of [6] we define

o), we| K| — U Ulw, ),

fl®) = | alq(), g.), @ — 20(x, ©)/5,)t], 8./2 < p(x, ©) < 6, ,
alg), g9,=), t], 0 < p(x, x;) < 8,/2,

so f, is a homotopy between ¢ and f,. Finally, let F = f,, then
each fixed point of F is isolated and lies in a maximal simplex of K.

LeMMA 3. Assume that K is a locally finite complex, M 1is a
subcomplex comsisting of vertices only, and that g = M — |K]| is a
map satisfying S(K) on M. Then there is a map F.:|K|— |K]|
that has the following properties:

(1) F, satisfies S(K) on |K|;

(2) Fyx) = g(x), for all xe M; and,

(38) each fixed point of F, on |K| — M is isolated and lies in
a maximal simplex of K.

Proof. In the proof of Lemma 2, let f = 1; thus we can choose
g, to be sufficiently small to ensure that Fi(z) satisfies S(K) on |K]|.
Since M consists of vertices of K, then

Try () N Trg [o(@)] N Trg [F(2)] # 6,

for all xe M. Writing M = {y, ¥,, ---}, we can find 7, > 0, that
have the following properties:
ﬁ(?/i; 70N ﬁ(?/j, N)=¢, 1F#J;
Uy, ) € St (y:), FLU(y;, 1)) < Stk (v ;
FlUy:, 21N Uy, n)=¢, 1 =12, ---.
We choose a path P, = [F(y.), A, ¥, B;, 9(y,)] in Ste (y,), para-

metrized by length, such that points 4 and B belong to the maxi-
mal simplices of K. Defining the map F,: |K|— |K]| as:

~F(x), ze|K| — U Uy, 7:) 5

FRZP(??; Yi) _ 1>x n (2 _ 20(z, 9) )yi] ,

1

Fx(m) =
771/2 = o, y) = /I

_ 20z, y,)
P12, 02 @ w0 S 702,

1
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F, satisfies the conditions of this lemma.

THEOREM 1. Assume that K is an infinite and locally finite
complex and that L is a two-dimensionally conmected infinite sub-
complex which has the boundary L consisting of some wertices of K.
Assume that f: | K| — |K| is ¢ map and that each fixed point of f
on |L| — |L| is isolated and lies in o maximal simplex of L. Then
there exists a map F:|K|— |K| which has the following two pro-
perties:

(@) F = frel|K — L|; and,

(b) F has no fized points on |L| — |L|.

If f satisfies S(K) on |K| then F also satisfies S(K) on |K]|.

Proof. The basic method of constructing F' from f is to push
a fixed point of f further away on L. First we choose the route
of pushing the fixed point of f. We construct a one-dimensional
complex R such that there exists a one-to-one correspondence g from
all the maximal simplices of L to all the vertices of R, where two
vertices ¢(o,) and ¢(o,) constitute a one-dimensional simplex in R
if, and only if, o, and o, have a common face of dimension greater
than zero. Then R is a connected, infinite and locally finite com-
plex. We choose a tree S in R which is a simply connected sub-
complex of R and contains all the vertices of R.

We now construct a function N on the simplices of S by
inductive definition. In complex S, if a vertex z° is a face of a
single one-dimensional simplex 7! only, then we define N(z°) = 1 and
N(z') = 1. Evidently, S — N-'(1) is a subcomplex of S. In complex
S — Uizt N7'(r), if a vertex ¢° is a face of a single one-dimensional
simplex 7! only, then we define N(z°) = ¢ and N(z') = 7. Evidently,
S — Ui, N7Xr) is a subcomplex of S. Let T'=S — U=, N(r). If
T is nonempty, then T is a subcomplex of S and we define N(z) =
0forallzeT. Asa result, function N has the following properties
(1) and (2):

(1) S — Ui, N)(») is simply connected, for 1 =1,2, ---.

(2) if z° is a vertex of S — T, then there exists another vertex
¢° of S such that we have either N(¢°) > N(z° or N(¢°) = 0, where
7° and ¢° constitute a one-dimensional simplex of S.

(8) If T is nonempty, from (1) we know that T is a simply
connected and infinite subcomplex of S. (See Fig. 1). In this case,
we pick a vertex A in T and construct a function V on all the
vertices of T' as follows: For a vertex 7% V(z° is defined to be
the least number of edges from A to z° in 7. In this case the
property (4) is similar to property (2):

(4) if 7" is a vertex of T, then there exists another vertex
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FIGURE 1

¢° of T such that V(¢®) > V(z°), where z° and ¢° constitute a one-
dimensional simplex of T.

Based on the Lemma 1 and property (2), we can move the fixed
points of f from ¢ 'N~'(1) to {g*N*(»)/r =0 or r > 1}, and sub-
sequently move the fixed points of f from ¢g~*N~'(3) to {g"*N~'(»)/r=
0 or » > i}, and so on, thereby moving all the fixed points of f to
{g7*N~(0)}. Further, based on the Lemma 1 and property (4), we
can move the fixed points of f from ¢g*V~'(1) to {¢7*V~'(»)/r > 1},
and subsequently move the fixed points of f from ¢g*V~'(4) to
{g7*V(#)/r > i} and so on. Finally, we get a map F such that
F = frel[K — L] and F has no fixed points on |L| — |L].

From the Theorem 1 we deduce:

THEOREM 2. Suppose K is an infinite and locally finite two-
dimensionally connected complex, then the least number of the fixed
points of any mapping class from |K| to itself is zero.

DEFINITION 1. Let K be a locally finite complex and M;, i =1,
2, -+, be all its maximal two-dimensionally connected finite subcom-
plexes, thus the boundary M, consists of some vertices of K. Denote
MK) =U. M, M(K) is called the welding set of K. A good dis-
placement is a map g: M(K) — | K| such that:

(1) g(a)e|Stg (a)], for all ae M(K); and,

(2) if g has no fixed points in ), then the number of points
in M, whose images under g are outside |M,| is exactly X(M,).

THEOREM 3. Let K be a locally finite complex, then the least
number m(K) of fixed points of the identity mapping class is equal
to the least mumber of fixed points n(K) of all the good displace-
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ments.

In Lemma 4 we shall prove m(K) < n(K) and in Lemma 5 we
shall prove m(K) = n(K).

ExaMpLE 1. In Fig. 2, the welding set M(K) of K is {a, a,,
oy, +--} and the arrows represent a good displacement which has
the least fixed points. From Theorem 3 we have m(KX) = 1. Replac-
ing each 1-dimensional closed simplex ¢, = a;a, of K by a 2-dimen-
sionally connected complex M,, such that M, = {a;, a;}, we get a
complex K, with M(K) = M(K). If each M, is an n-dimensional
closed simplex, then m(K,) = 1 results from Theorem 3; if for each
M, either X(M,;) > 2 or X(M,) < 0, then m(K,) = - from Theorem 3.

o

a9

Ficure 3

ExampLE 2. In Fig. 8, the welding set M(K,)lof K, is {a,, a,,
a;, a}, and the arrows represent a good displacement which has least
fixed points. From Theorem 8 we have m(K,) = 2.

LEmmMA 4. If g is a good displacement of K, there will be a
map G: |K|— | K| such that:

(1) G@) = g(x), for all xe M(K);

(2) G satisfies S(K) on |K|; and, )

(3) G has no fixed points on | K| — M(K).

Proof. Applying Lemma 3, we get a map F,: |K|— |K]| that
has the following three properties:

(1) F, satisfies S(K) on |K]|;

(2) Fyx) = g(x), for all xe M(K); and,

(8) each fixed point of F, on |K| — M(K) is isolated and lies
in a maximal simplex of K.

From Theorem 1, there exists a map F, such that, F satisfies
S(K) on |K|, F=F::|K|—|K| rel U;M,;, and F in |K — U, M,]|
has no fixed points.
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Since ¢ is a good displacement, if ¢ has no fixed points on M,
the fixed point index of F in M, is zero, (see Appendix). From
Lemma 1, we may move all the fixed points of F on |M, — M;| to
any single point and then cancel this fixed point (see page 123 of
[2]). If the map ¢ in M, has a fixed point A, then applying Lemma
1 as many times as necessary we may move all the fixed points of
F on |M,| — |M,| to A and finally get the map G.

In order to prove n(K) < m(K), we introduce the concept of
fixed point classes on an open subset.

DEFINITION 2. Assume that U is an open subset of the poly-
hedron |K| of a locally finite complex K where U is compact.
Assume that a map f: U— |K| has no fixed point on U. Fixed
points @ and b of f in U are said to belong to the same fixed point
class if there is a path P(¢) on U such that P(0) = a, P(1) = b, and
fIP®)] = P(t) rel{a, b} on |K]|.

We may define the index of fixed point classes. The fixed
point class with a nonzero index is called an essential fixed point
class. The number of essential fixed point classes of f on U is
finite.

DEFINITION 3. Suppose that a homotopy f: U—-|K|, 05t<1,
has no fixed points on U, fy(a) =a, fi(b) =0b and that P(¥) is a
path on U connecting a¢ and b such that

FIP®] = P(¢) rel {a, b} on | K] .

Thus we say there is a homotopy correspondence between the fixed
point class of f, on U which contains o and the fixed point class
of f, on U which contains 5. This homotopy correspondence is a
one-to-one correspondence between all the essential fixed point classes
of £, and all the essential fixed point classes of f;. The correspond-
ing classes have the same index.

LEMMA 5. Suppose that K is a locally finite complex and that
1= f|K|—|K|. Then there exists a good displacement g such that
the number of fixed points of g is mot greater tham the nmumber of

fixed points of f.

Proof.

(1) If f has fixed points on |M,| — M, for some M, of K, we
arbitrarily assign a point in M,. The set of the assigned points
and the fixed points of f on M(K) are denoted by {b, b, ---}, then
the number of points in {b,, b,, ---} is not greater than the number
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of fixed points of f. We write
{01, Cyy * '} = M(K) - {bu bz, i '} .

Let f:1= f:|K|— |K|, then f,(¢,) is a path from ¢, to f(c).
Based on fi(c;), we can construct a path Q,(t) = a!-ai---aj- B that
has the following four properties

(@) for j=1,2, ---, h, there are points b, c}e Stx (¢;) and poly-
gonal ares §; from b: to ¢: not containing ¢; (see Fig. 4) such that

aJ=[cbb.ii]'aé"[c;’ci]’j:1)2, ""h;

(b) B = [ey biil - Oisss
where b;,,€Stg (¢,) and 6., is a polygonal are from b:,, to f(c,) not
containing ¢;;

(C) al az ar-?él ’I——l h

@ fi (e) = Qut) rel {c,, (e )}, 1 =1,2,

FIGURE 4

From the homotopy extension theorem, there is another homo-
topy fi:1 = f: | K| — | K| with fi(c) = Q(), i =1,2, ---

(2) For each ¢;, we choose a sufficiently small §, > 0 such that:

(a) q(ciy 0, C S_!;K ((AH

(b) g(ci, 0,) N Ule;, 05) = ¢, T+ 35

() Ule,0)Nbi=¢,5=1,---,h+1;

(@ bvielK|—U:Ue,0d), §=1,---,h+1,

0§'€ IKI - Ut U(ci; Bi)r .7 = 1, Tt h.

We define a map F: |K|— |K| by

re, «€ |K| '—1U U(ci, 04) »

T e e AL
52 < p(, ¢) < 3,

LQ¢[1 _ _2_p%:,_c_i):|, 0 < p(z, ¢;) < 8,/2,

thus
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F = frelie, ¢, - -} .

(8) The fixed point set of F on |K| is N, U N,, where

@) N,=|K|—U. U, d);

(b) Nz = Ui {d:y ;, ) d§b+19 ei, 6;, Tty 6;;}, where d;e (ci! b})’ j =
1,2, ---,h+1, and eie(c, ¢), s =1, ---, h; moreover,

() 842> o(c;, di) > ple., €1) > (e, di) > p(cy, €) - - p(cyy diir) > 0.

(4) If M,c{e, ¢, --+}, then F on M, has no fixed points, and
we can discuss the fixed point classes of F on |M,| — M,.

(a) If die|M,|, then di and N, N |M,| belong to the same fixed
point class, the reason being bie N, N |M,|, and F([bi, di]) - [di, bi] =
[8%, ¢l - [e;, di]- [di-bi] = 1. Excluding these (. d!) N [M,|, each fixed
point of N, N |M,| does not belong to the same fixed point class as
N, N |M,|. This fact will be proved in (b) and (c).

(b) Suppose b(t) is a path from & to di (»r > 1) in |M,| — M,,
then there exists a loop B based at b: such that g |M,| N N, and
b(t) = B-[bi, di] rel {b:, di}. Hence,

FO®)-b®)™ = F(B-[b;, di]) - [d7, b7]- 87
= g F([b;, di]) - [d, 7] - B~
=g, el ai-ai--- ai-[e, di]-[di, bi]- 87
=g-[bhel-ai-ai---ai -[e,b]]- g7 &1
on | K|; because we required that af-af---af_, & 1.

(e) Similarly, suppose b(t) is a path from ¢ to ei(r = 1) in
|M,| — M,, then there exists a loop g of ¢ such that g8 c|M,| N N,
and b(t) = B-[ci, ei] rel {ci, di}. Hence,

b(t) £ F(b() on |K]|.

(d) Since f in |M,| has no fixed points, the index of each fixed
point class of F on |M,| — M, is zero, in particular the index of
the fixed point class containing |M,| N N, is zero.

(5) We define a map g: M(K)— |K| as follows:

g(ci) = bi’ 7/: 1’2y "';
and,
gb) =b; 5=1,2,---.

Consider the fixed point class of F' on |M,| — M,. Since the index
of the fixed point class containing |M,| N N, is zero, then there are
exactly X(M,) points in M,, whose images under g are outside | M,|
(see Appendix), so g is a good displacement.

APPENDIX. The proof of Lemma 2 of [7] (it was published
previously in Chinese).



386 SHI GEN-HUA

LeMMA. Assume that K is a locally finite complex and M is
a maximal two-dimensionally connected finite subcomplex. Assume
that g: M — | K| is @ map such that

(1) g(a)e |Stg (a)|, for all ac M;

(2) g(a) # a, for all ae M, and g maps X, points of M outside
of | M|; and

(3) [a, 9@]N[b, 9®)] = @, for any a,be M.
If @ map F: |M|— |K| has the following two properties:

(i) F(a) = g(a), for all ac M; and

(ii) F satisfies S(K) on | M|,
then J(F,|M|— M) the index of fixed points of F on |M|— M,
equals X(M) — X,.

Proof. We denote the points of M by a; 5=1,--,r. Assume
that g(e;) ¢ |M| for j=1,2,---,X, and g(a;) e |M| for j=X, + 1,
X, +2,---,r. First choose b;,,j =1, --,X, so that g(a;) < (a; b,),
[a;, b, c Stg(a;) | K| and that any two segments of {[a;, b;]|j =
1, ---, %} are disjoint (from property 3). Let K’ denote the com-
plex composed of M and [a;,b;],i =1, ---,%,. Let g’ be the map ¢
considered as a map from M to |K’|. Applying Lemma 3 to ¢’ and
K’, we know there exists a map G,: |K'| - |K'| such that G,(a;) =
9 (a;) = g9(a;), =1, ---,r, G, satisfies S(K’) on |K’|. Define a map
G,: |K'|— |K'| as follows:

Gi(x), we|M|;

Gy(x) = ,
(@) 9(a;), zela; b1, =1,2,---,%,.

Since G, is homotopic to the identity map,
J(G,, K') = X(K') = X(M)

by “Axiom 4” on page 52 of [2]. Since G, on [a;,b;],5 =1, ---, %,
only has one fixed point g(a;) of index + 1, we obtain

J(G, | M| — M) + X, = X(M)
i.e.,
J(G, | M| — M) = XM) — Xa .

Now, denote the inclusion map of |K’| into |K| by I, and let G, =
IG,: |M|—|K|. We have J(G, |M|— M)=XM)~—X, Finally,
recall the map F: |M|— |K| assumed in this lemma. Since it has
the two properties listed, the map a(x, F(x), t) ([2], pages 124-126),
for xe|M|, 0 <t <1, is a homotopy equivalence between the iden-
tify mapping I and F. Since G, satisfies S(K’) on | K’|, it also satisfies
S(K) on |K'|. Moreover, G, satisfies S(K) on |M|. So a(z, Gi(x), t),
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xe|M|, 0t <1, is a homotopy equivalence from I to G,. Fur-
thermore a(x, F(x), t) = a(x, Gs(x),t) when x¢ M, 0<¢t<1. Con-
sequently, employing the homotopy extension theorem on |M|, F =
G, rel M. Thus we get the conclusion of this lemma: J(F, | M| — M) =
TGy | M| — M) = (M) — X,
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