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CARLESON MEASURES FOR FUNCTIONS ORTHOGONAL
TO INVARIANT SUBSPACES

BILL COHN

Let D={z: |2|<1} be the unit disk. Suppose ψ is an inner
function with singular support K and let ML=H2QφH2

where H2 is the usual class of functions holomorphic on 2λ
If μ is a positive measure on D, the closed disk, which
assigns zero mass to K, then call μ a Carleson measure for
M1 if for a c>0,

for all feM1. (Here and elsewhere, ||/||2 denotes the H2

norm of an H2 function.) In this paper the Carleson
measures for M1 are characterized for all inner functions
φ such that for some s, 0 < ε < l , the set {z: \φ(z)\<ε} is con-
nected.

If μ is a positive measure on D, then recall that μ is a Carleson
measure if there is a positive constant c such that

where / is an arc on the unit circle with center eίθ° and length \I\,
and JB(I) is the "curvilinear rectangle" {reίθ: 1 — \I\/2π ^ r < 1 and

In [2], Carleson proved that there is a constant c > 0 such that

for all fe H2, if and only if μ is a Carleson measure.
Clearly, any Carleson measure is a Carleson measure for ML.

Functions in I 1 , however, can be better behaved than typical H2

functions. Thus one is lead to suspect that there are more Carleson
measures for M1 than just the Carleson measures alone. This in
fact turns out to be the case.

For the sake of simplicity, we state an abridged version of our
main result.

THEOREM. Suppose φ is inner and {z:\φ(z)\ < e} is connected
for some ε, 0 < ε < 1. Let μ be a measure which assigns zero mass
off T\K, where T is the unit circle. Then μ is a Carleson measure
for ML if and only if, for some constant c > 0,
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/or αK ξeD.

Now, it is easy to see that a measure μ on the unit circle T
has the property that

\\f\2dμ^ c\\f\\t

for all / e i ϊ 2 if and only if dμ = bdθ where & is a bounded function.
In this case,

\ ^ I g l 2 dμ<c
\l-ξeiθ\2

for all ξeD. Thus one can see how the situation changes when
dealing with ML instead of H2.

This paper is divided into four sections. The assumption that
{z: ] φ(z) I < ε} is connected implies that φ is a covering map onto
the annulus {w: ε < \w\ < 1/ε}. This is proven in § 1. In §2 the
covering map hypothesis is used to characterize those Carleson
measures restricted to certain subsets of {z: ε < \φ(z)\ < 1}. A
corollary of this characterization is that for ε < δ < 1, arc length
on {z: \φ(z)\ = δ} is a Carleson measure. In § 3 we prove a theorem
about ML functions which is the key to our main results. Essen-
tially, we show that M1 functions belong to a Hardy space of
functions defined on a larger domain than the disk. Section 4 con-
tains some examples and applications.

The measures we consider are always positive measures, even
if we do not specifically say so. The constant "c" which appears
in various theorems changes each time it is used in a different
context. If F and E are sets, F\E denotes their set theoretic
difference. The symbol F denotes the closure of F, and dF denotes
the topological boundary of F.

This paper has benefited greatly from correspondence and con-
versation with P. R. Ahern and C. Belna. It is a pleasure to thank
them both.

!• Recall that any inner function φ has the form

ψ{z) = cB(z) exp ( -

where \c\ = 1, B is a Blaschke product, and σ is a positive measure
on T which is singular with respect to arc length measure. Let



CARLESON MEASURES 349

K be the closure of the union of the zero set of φ and the support
of σ; K is called the singular support of φ.

For any complex number z, z Φ 0, define z* = 1/z. Let 0* be
the point at oo on S2, the Riemann sphere. Then z* is the reflection
of z through the unit circle. If EQ S2, let E* = {z*:zeE} be the
reflected set. The equation

defines an extension of φ which is holomorphic on S2\K*. Thus,
for t > 0, the sets

Dt = {z: φ is holomorphic at z and \φ{z)\ < t)

form a collection of open sets such that

Dt Q D8 ίoΐ t ^ s

and

U A = <S2\i£* .

If 0 < ε < 1, let Aβfl/β be the annulus

AεΛ/ε = {w:ε < |w | < 1/e} .

Define

Rε = {2: φ is holomorphic at 2 and ε < \φ(z)\ < 1/ε} .

Then Rε = \Jn=i@n> where the Ωn are the distinct connected com-
ponents of Rε. (The union may be finite.) We will be interested
in the situation that Dt is connected for some ε, 0 < ε < 1.

THEOREM 1.1. Suppose for some ε, 0 < ε < 1, Dε is connected.
If TΓ\KΦ 0 then Rt = (J~=i #» w&ere:

( i ) each Ωn is a simply connected set which is symmetric
with respect to T;

(ii) the map φ: Ωn —» A£tl/e is a covering map.

Proof Fix n. Let z0 e dΩn: we may suppose z0 $ T. Consider
the case where \zΰ\ < 1.

Let Γε be the set {z: \z\ < 1, \<p(z)\ = ε}. Thus zoeΓε. Observe
that φf never vanishes on Γεf since Dε is connected. Let 7 be the
component of Γε which contains s0. Since Dε is connected and T Π
i? =5̂  0 , 7 is not contained in D. Thus 7 is a simple arc whose
closure intersects T f] K. It is well known that either 7 Π T consists
of one point or two points.

In the first case, 7 is a Jordan curve, and Dε must consist
entirely of the region which 7 bounds. Thus Rε — Ωn, dΩn = 7LJ7*,
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and (i) holds.

If 7 contains two points, then 7 divides D into two components,
one of which must contain Dε. The other component is entirely-
contained in Ωn. It follows 7 U 7* is a Jordan curve, and Ωn is the
simply connected region which 7 U 7* bounds. Thus (i) is true.

If the original point zQ lies outside of D, then | φ(zQ) \ = 1/ε. By
considering z*, for which \φ(z*)\ = e, and repeating the arguments
above, we complete the proof of property (i).

To prove (ii), let ψ:D-*Ωn be a conformal map of the unit
disk onto Ωn. Since dΩn is a Jordan curve, ψ extends to a homeo-
morphism of T. By symmetry we may assume that

(a) ψ({w: \w\ =1, Im w > 0}) = dΩn Π D
(b) ψ({w: I w I = 1, Im w < 0}) = dΩn Π D*.

Let g(w) = φ(ψ(w)). Then e < \g\ < 1/ε, and therefore g is an outer
function. Furthermore,

for ξ 6 T Π {Im ς > 0}, and

for ξ e T Π {Im ξ < 0}. This proves that g: D-* AεΛ/ε is a universal
cover. Since ψ is conformal, the theorem is proved.

As a corollary of the proof of Theorem 1.1, we make the fol-
lowing observation.

COROLLARY 1.1. If Dε is connected, then D1/ε is simply con-
nected.

Proof. We first show that D1/ε is connected. Clearly, D £ D1/ε.
Let zeD1/ε. Then zeRε, and hence, zeΩn, for some n. By the
proof of Theorem 1.1, Ωn Π D Φ 0 . Thus D1/ε is connected.

To show that D1/ε is simply connected, it suffices to show that
S2\D1/ε is connected. But the map z —• z* defines a homeomorphism
of S2\D1/ε and Dε. Since Dε is connected, so is Dε. This finishes
the proof.

It may occur that K £ D. In this case, φ is a finite Blaschke
product and we have the following result.

THEOREM 1.2. Suppose φ is a Blaschke product with n zeros,
counted according to multiplicity. If Dε is connected then the map
φ: Rε —> Aε>1/ε is an n: 1 covering map. Furthermore, D1/ε is simply
connected.

Proof. Since φ is a finite Blaschke product, we need only show
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Rε contains no point where φf vanishes. But if φ\z) = 0 for some
z such that ε ̂  | φ(z) | <̂  1/ε, it follows that De has at least two
components. This is a contradiction. The rest of the proof is
elementary and is omitted.

We finish this section with an observation which will prove
useful later.

COROLLARY 1.2. // Dε is connected and ε < δ < 1, then Dδ is
connected.

Proof. By Theorem VIII. 31 in [8] any component of Dδ is
simply connected and if ψ is a conformal mapping of the unit disk
onto one such component, then s = 1/δ φ(ψ) is an inner function.
Since | s | takes values less than ε, Dε intersects every component of
Dδ. Thus Dδ is connected.

We immediately get the next result.

COROLLARY 1.3. // Dε is connected and ε < δ < 1, then D1/δ is
simply connected.

2* Suppose seH°°, and |] s ||oo ̂  1. Let 0 < ε < 1 and set Aβ>1=
{w: ε < \w\ < 1}. Suppose further that s: s~\Aε>1) —> A£tl is a cover-
ing map. The main result of this section is a characterization of
Carlson measures which take all their mass on certain subsets of
s-\AεΛ).

Let I z I = (1 + ε)/2 and set B(z, (1 — ε)/2) equal to the open disk
centered at z with radius (1 — ε)/2. Since δ is a covering map, we
have

J i L i ) )= u C -
where the Cn>z are pairwise disjoint and s: Cn>z —• B(zf (1 — ε)/2) is a
homeomorphism. Let & be the collection of all such Cn>z, where z
ranges over the circle of radius (1 + ε)/2.

We prove the following theorem.

THEOREM 2.1. Let F be a compact subset of AεΛ and let μ be
a measure on D which assigns zero mass off s^iF). Then the
following conditions are equivalent:

( i ) μ is a Carleson measure.

(ii) There is a constant c > 0 such that \ \ s'(z) \dμ(z) <: c for
Jcn,z

all Cn,ze<Zf.
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Proof. Since F is compact, it is contained in the finite union
of noneuclidean disks of the form

We may also assume that for each N(z0, r), there is an t, r < t < 1,
and a z, \ z | = (1 + ε)/2, such that

„ r) S N(«o, t) £

Thus we may assume that μ assigns zero mass off the set
>, r)).

Write s~\N(zQ9 r)) - U Gn9 and β " 1 ^ ^ , *)) = U Rn, where Gn £
i2n and s: J?n —> i\Γ(̂ 0, ί) is a homeomorphism. Let αn be the point
in Gn for which s(an) — zQ. We make the following observation.

LEMMA 2.1. The sequence {an} is uniformly separated.

Proof. Let h(z) = (z0 — s(s))/(l — «oβ(«)) Then {αn} is the zero
set of h, and |Λ| = r on 3Gre. Let Un be the Blaschke product with
factors ak/\ak\ (ak — «)/(l — άkz), kφ n. Then | Bn\ never vanishes
on Gn. Furthermore, for zedGn,

It follows from the minimum principle that

and the lemma is proved.
Define the measure dz to be point mass at z. We have the

immediate corollary; see [2].

COROLLARY 2.1. The measure v = Σ δ α % (l — |αj2) is α Carle-
son measure.

Let I be an arc on the unit circle with center eίθ and length
|J | . For m > 0, define ml to be the arc with center eiθ and length
m\I\. The next lemma enables us to compare μ to v.

LEMMA 2.2. Suppose condition (ii) of Theorem 2.1 is true.
Then there are constants c1 > 0 and m > 0 ŝ efc ί/̂ αί

(1) M G n ) ^ C i ( l - | α J 2 ) / o r α« n.
(2) if I is an arc on T and R(I) 0 Gn Φ 0 , then Gn £ R(ml).
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Accepting Lemma 2.2, for the moment, we show that condition
(ii) implies condition (i). For I an arc on T we have

Gn n mi) Φ 0 .

Since Lemma 2.2 is in force, Gn Ω R(I) Φ 0 implies aneR(mI).
Thus

£ Σ

^ Σ ^-(l-lαj
I

where Ύ(ι>) is the Carleson constant for v. Thus μ is a Carleson
measure.

We now prove Lemma 2.2. Fix w. Since ft is a 1:1 map of
Rn onto the disk {w: \w\ < t] we may choose a branch of h"1 such
that

0(s) = h-\z/t)

maps the unit disk onto Rn. By the Schwarz-Pick theorem, if z19

(*)
- h(z2)/t

If zι and z2 are restricted to Gn we see that

(**)
-*- ^ 1

where c depends only on r and t. It is not difficult to see that for
an m depending only on c, if z1eR{I) then N(zlf c) £ R(ml). This
establishes (2) of Lemma 2.2.

Next, equation (**) yields a β > 0, independent of n, for which

inf 1 -

In particular, if z e Gn, then



354 BILL COHN

Now let zx —> z2 — z in equation (*) and use the last inequality
to conclude that

tβ(i -

- \a.

for all ze(ϊ,. Since

h\z) =

we see that for some constant c2 > 0,

s'(z)\^
- \a.

for all 2 6 Gn.
Finally, by this last inequality and condition (ii) of Theorem 2.1,

μ(Gn)

This proves (1) of Lemma 2.2, and the theorem in one direction.
To show that condition (i) implies condition (ii), observe that

μ(Ck>z) <i μ(Gn) for some n. By the proof of Lemma 2.2, if z e Gn>
then for a constant c3 > 0,

- \an

Furthermore, Gn Q N(an9 c). If μ is a Carleson measure then for a
constant c4, depending on c3,

where 7(μ) is the Carleson constant of μ. Thus

\s'(z)\dμ ^ I \s'(z)\dμ<Z \ ~~~ * 8 ^ ' dμ(Z)

-μ(N(an, c)) ^

This proves the theorem.
As an application, suppose φ is an inner function and D£ is

connected. Let ε < δ < 1 and set Γ — {z: \φ(z)\ — d}. Let μ be
arclength measure on Γ. By Theorems 1.1 and 1.2 we may apply
Theorem 2.1, with φ in place of s, to μ. Since for any CnyZe^,



CARLESON MEASURES 355

\ψ\z)\dμ(z) =

we have the following result.

COROLLARY 2.1. Let φ he inner and Dε connected. Then if
ε < δ < 1, arclength on {z: \φ(z)\ = δ} is a Carleson measure.

In §1 we showed that under the hypotheses of Corollary 2.1
D1/δ was simply connected. In fact, more is true.

THEOREM 2.2. Let φ he inner and Dε connected. Then if ε <
δ < 1 and \φ(0)\ < δ, dD1/δ is a rectifiable Jordan curve.

Proof. We first prove that dD1/δ is a Jordan curve.

Let Rδ be defined as in Theorem 1.1, and write Rδ = U~=iΆ>
where the Ωn are the components of Rδ. Let 7n = dΩn\D. Then if
Jn = Ωnf]T and F = T\ U Jn, we see that

dD1/δ = ί 7 u ΰ ? n .
71 = 1

Let αn: J n -> τ π be a homeomorphism which fixes the endpoints
of /„. Define the mapping of T onto 3Ω1/δ by the formula

m (O, if eίθeJn

We must show that a is continuous. It suffices to do this for eiθ e
F. This amounts to showing that if a sequence of arcs Jn approach
eiθ, then the associated arcs Ύn must approach eiθ. If this fails to
be the case then there is a cluster point of the arcs 7n, z0, such
that z0 Φ eiθ. If |zo | < 1 then it follows that |9>(so)l = δ, and zoe
Γ — {z:\z\ <1, \φ(z)\ = δ}. As in § 1, 9/ never vanishes on Γ.
Thus there is a ball centered around zQ which Γ divides into two
regions; on one of those regions \φ\ > δ, and on the other \φ\ < δ.
This contradicts the assertion that zQ is a cluster point of the arcs Ίn.

If there is no z0 with \zo\ < 1, and #0 ^ e<tf, then it is easy to
see that

\\m\φ(reix)\ ^ δ
r->l

for all eίx on an arc connecting z0 to eίθ. Since 9> is inner, this is
impossible. Thus a is continuous at eiθ, and dΩ1/δ is a Jordan curve.

Turning to the rectifiability, it isn't hard to see that a has
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total variation

\\da\\ =±\7n\ +

where |7 n | denotes the length of the arc Ύn and \F\ denotes the
measure of F. Since oogdD1/δ, by Corollary 2.1, \\da\\ < <*>. This
proves Theorem 2.2.

REMARK. It follows from the rectifiability of dD1/δ and Theo-
rems VIII 30 and 31 in [8], that \F\ = 0 . Thus arclength measure
on dΩ1/δ is equivalent to arc length measure on 3Ω1/δ\T.

3* In this section we characterize Carleson measures for (φH2)1

in the case that Dε is connected.
For ξ eDf define the function

Then KξeML and

See [1], page 194 for the proofs. Let μ be a measure on D which
assigns zero mass to K. Let μδ be the restriction of μ to Dδ.
Then if 0 < δ < 1,

Suppose ]« is a Carleson measure for Λfx. Then the last ine-
quality yields

f l - l g
) 11 - ξ z

where c is independent of ξ. It follows that μδ is a Carleson
measure for D. Conversely, if μδ is a Carleson measure for D,
then μ5 is a Carleson measure for M1. We have proven the follow-
ing lemma.

LEMMA 3.1. The following properties are equivalent:
( i ) μ is a Carleson measure for M1.
(ii) (a) μδ is a Carleson measure for D and

(b) μ — μδ is a Carleson measure for M1.

We turn, therefore, to the problem of characterizing Carleson
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measures for M1 which assign zero mass to K U Dδ.
Assume that 0 < ε < d < 1. Then D1/δ is simply connected and

we may choose a conformal map σ:D-+ D1/δ. Let ψ = σ~\
Suppose μ is a measure on D which assigns zero mass to K\J

Dδ and set μ1 = \ψ'\μ. Then if E Q D, the equation

v(E) = μ

defines a measure on D. We prove the following theorem.

THEOREM 3.1. The following properties are equivalent:
( i ) The measure v is a Carleson measure.
(ii) The measure μ is a Carleson measure for ML.
(iii) There is a constant c > 0 such that

\ \ψ\z)\dμ(z) £ c

for all sets Cn>z e ^ , where & is the collection defined in Theorem
2.1 with s = dφ(σ) and ε d in place of ε.

Proof We show first that (i) implies (ii). If feML, then it
is well known that / has a holomorphic extension to D1/δ. See [4].
We need an explicit expression for f(z) when \z\ > 1. Since feML,

for all b e H°°. Thus

φf=e~iθh a.e. [dθ]

w h e r e h e H\ F o r all z,\z\^l define

( 1 ) F(z) = φ(z)±h(l/z) .
z

Then F(eiθ) = /(β") for β" ί K and it follows that F{z) = f(z) for
all zgKuK*. Equation (1) will imply that / is well behaved on

A/a-
To make this precise, let Tn be the circle of radius 1 — 1/n

centered at 0, and set Cn = σ(Tn). Then E\D1/δ) is the class of
analytic functions defined on D1/δ which satisfy the condition

limf
n-+oo JC

The space E2 is closely related to JEFCD). In fact feE\D1/δ) if and
only if
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f(σ(w))σ\w)1/2 = g{w)

for some geH\D). For a full discussion, see [5], pages 168-169.
Since dD1/δ is a rectifiable Jordan curve, σΫ e JEPCD), and the

measure on T given by | σf(w) \ \ dw | is arclength measure for dD1/s.
Since g and σf both have radial limits a.e. [dθ], it follows that

lim^i f(σ(reίθ)) exists a.e. [dθ]. Thus we may write

=\ \f(σ(w)\*\σ'(w)\\dw\

= \
JdD1/δ

Thus E2 is a Hubert space with norm defined by the equation

\f(z)\2\dz\,

and g->f is an isometry of H2 onto E2. Recall that F = 3A/δ Π Γ
is a set of measure 0. Thus

ll/lli«= ,

These observations and equation (1) are the key to the next lemma.

LEMMA 3.1. If fe M1 then the extension of f to DUδ belongs to
E2(D1/δ). Furthermore,

\\f\\2

E^c\\f\\2

2,

where c is independent of f

Proof Suppose fe M1 Π H°°. If / and h are related by the
equation

f=φe-
ίθh a.e. [dθ] ,

then \\h\\oo = H/iU. Thus equation (1) shows that / is bounded on
A/« Since σ'eH1, feE2. We calculate ||/|||.2 using the fact that
/ is continuous off the singular support of φ, and the fact that
arclength on Γ = {z: \φ(z)\ = 3} is a Carleson measure. Thus

I/O*)I 1 l<fcI - t

^l/δ2\r\h(w)\2\dw\2^ ^

where 7 depends only on the Carleson constant of \dw\ on Γ. This
shows that the conclusion of the lemma is valid for M1 Π iΓ°°. Since
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linear combinations of the functions Kζ are dense in M1, M1 f]
H°° is dense in M1. A standard argument proves the lemma for
all of M\

We complete the proof that condition (i) of Theorem 3.1 implies
condition (ii). Since ge H2 if and only if g(w) = f{σ(w))σ\w)m for
feE\ it follows that

If v is a Carleson measure, t h e n from t h e last equation,

\\f(z)\2dμ <ί Ύ(v)\\g\\t = 7 ( p ) | | / | | i . ^ 7(v)β ll/llϊ -

Thus dμ is a Carleson measure for M1.
We next show that condition (iii) implies condition (i). Let

s(w) = δφ(σ(w)). Then by the results of § 1, s: s~\Aεδtl) —> A£δil is
a covering map. Observe that v assigns zero mass off {w: δ2 ^
\s(w)\ ^ δ}. By Theorem 2.1 y is a Carleson measure if and only
if for some c > 0,

for all Cn>2e^f. (Here, the "ε" of Theorem 2.1 is replaced by "ε<5".)
But

I I s'(w) I dv = \ δ I φ\z) I ώμ .

Thus (iii) implies (i).
All that remains is to prove (ii) implies (iii). We must find

some constant c such that

\
J<τ«7M,z

Recall that μ assigns zero mass to K U Dδ. Let Nn,z = σ(CntZ) Π
{ξ: δ <; \φ(ξ)\ ^ 1}. Thus Nn>z is a component of φ~\R)f where R is
the intersection of the closed annulus {w: δ ^ \w\ ^ 1} and the open
ball B(δ-% (1 - εδ)/2δ). It is enough to show that

We need the following lemma.

LEMMA 3.2. Let CTO,Zoeίf. Suppose ξeNn,ZQ, argφ(f) = argz0,
= δ. Then there is a constant clf independent of Cn,ZQ,
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such that

for all z e Nn>ZQ.

Proof. Let φjι denote the branch of φ'1 for which φj\φ{ξ)) =
ξ. Set Tε equal to the circle of radius ε centered at the origin
and let a be the radial projection of φ(ξ) onto Tε. Suppose Ω is
the simply connected region bounded by the unit circle and the
line tangent to Tε at a. Let g: Ω —> D be a conformal map of Ω
onto the disk such that g(φ(ζ)) — 0. Then / = φjι ° g~x maps the
disk into itself. By the Schwarz-Pick theorem,

for

and

). Thus

for zeφj\Ω). If z is restricted to Nn,ZQ then (l-\g(φ(z))\2)/(l-\φ(z)\2)
is bounded away from zero by a constant independent of z0. Since
\φ'(z)\ <̂  (1 — \φ(z)\2)/(l — M2)> the lemma is proved.

To complete the proof of Theorem 3.1 observe that (ii) implies
that for some constant c2,

for all ξeD. Choose Cn>ZQe^ and ξ as in Lemma 3.2. Then

L IΨ\*)Idμ(z) £\ Cl / - " ' ^ J K ξ ( z ) fdμ{z) <, Clc2 = e .

This completes the proof.
We complete tthis section by characterizing Carleson measures

for M1 in terms of the growth of the function

THEOREM 3.2. Let φ be an inner function and suppose Dε is
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connected. If μ is a measure on D which assigns zero mass to K,
then the following properties are equivalent:

( i ) μ is a Carleson measure for M1.
(ii) There is a constant c such that

h(ξ) ̂  —

for all ξeD.
(iii) (a) μδ is a Carleson measure for D, where ε < δ < 1, and

(b) There is a constant c such that

)Nn
φr(z) \dμ ^ c

for all NntZQ.

Proof. We have already shown that (i) and (iii) are equivalent.
That (i) implies (ii) follows easily from the inequality

We turn to the proof that (ii) implies (iii) (a).
Let I be an arc on T of length \I\. We must find c such that

F o r ξeD, ξ Φ 0, define Iξ to be t h e arc on T w i th center ξ/\ξ\
and length 2(1 — | £ | ) . There is a constant 7 such t h a t

( 2 ) 1 l | 1 '
11 — ςZ\

for all zeR(Iξ)t and all ξeD.
Let S, = R(I) Π Dδ and set a, = max f e S ι (1 - \ξ\). Choose ξ,e S,

such that 1 — | £ j ^ 7/8 aλ. Proceeding inductively, suppose Slf

S2, - - , Sn and ξl9 ξ2, --,ξn have been chosen. Let Sn+1 = Sn\R(Iξn)
and set α κ + 1 = m a x f e ^ + 1 (1 — \ξ\). Choose £ n + 1 such t h a t

In this fashion we obtain a sequence {ξn} such that

and
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where ct is a constant independent of /.
Condition (ii) and inequality (2) yield

Thus μδ is a Carleson measure.
To show that (ii) implies (iii) (b), observe that with ξ and Nn,gQ

related as in Lemma 3.2,

JLJlL< c\φ\z)\
\l-ξz\

for all z e Nn,ZQ. Thus (iii) (b) is an easy consequence of property
(ii). This completes the proof.

4. Perhaps the most representative example occurs when <p(z) —
exp ( — (1 + z)l(l — z)). In this case, Dε is a disk tangent to T at
the point 1, and Theorems 3.1 and 3.2 are in force.

One calculates that

\l-z\2

Suppose μ is a measure on T which assigns zero mass to {1}. It
follows from Theorem 3.2 that μ is a Carleson measure for M1 if
and only if

I φ'\ dμ <Ξ c

for all arcs In of the form

In = (e

iκln + 1, β<ff/̂ ) ,

where n = ± 1 , ±2,

Simple estimates show that this is the case if and only if

~ n2

This leads to the following result. For feM1,

This may be regarded as a generalization of a theorem of Clark;
see [3], pages 176-177.
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More generally, let E be a closed compact subset of D with
zero capacity. Let φ: D —> D\E be an analytic universal covering
map. Then φ is an inner function; see [6]. If E £ {z: \z\ < ε},
then it is not hard to show that Dt is connected. Thus Theorems
3.1 and 3.2 apply to this class of inner functions.

Now suppose that ψ{z) — zn. Then ML is the span of the func-
tions 1, z, z2, , 2n-\ Let ueL\T), u ^ 0, and suppose u has the
Fourier expansion Σ - - cne

inθ. If f(z) = J^odnz
n

f then feM1 and

\f(z)Mz)\dz\ =
n—l

k,m

The expression on the right is a finite section Toeplitz operator.
If we take the supremum over all {a0, al9 , αn_J such that ΣI%I 2 =
1, then we obtain the largest eigenvalue of the form. On the
other hand,

is the "Carleson constant" for the Carleson measure for M1, udθ.
Observe that for any ε, 0 < ε < 1, {z: \z\n < ε} is connected. If we
choose ε = 1/4 and d = 1/2, then applying Theorem 3.1 we see that
if ^ is the collection of arcs J,

I = (e

iθ\ e

iθπ+iπ/n)

then for a constant c, independent of n,

\ f \ 2 u d θ ^c-Ύn
JT

where 7n = supIe/% \ u ndθ and / ranges over all (znH2Y functions

with norm less than 1.
Thus we obtain order of magnitude estimates for the largest

eigenvalue of finite section Toeplitz operators. These results can
be compared with the asymptotic estimates, in the case where u
satisfies more restricted hypotheses, found on page 72 of Grenander
and Szego, [7].
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