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ON LOCAL ISOMETRIES OF FINITELY
COMPACT METRIC SPACES

ALEKSANDER CALKA

By local isometries we mean mappings which locally
preserve distances. Local isometries which do not increase
distances are called nonexpansive local isometries. A few
of the main results are:

1. Let / be a local isometry (nonexpansive local isometry)
of a finitely compact metric space (M, p) into itself. If for
each (some) zeM the sequence {fn(z)} is bounded, then there
exists a unique decomposition of M into disjoint open sets,
M = Ml U Ml U , such that (i) / maps Ml injectively into
itself, and (ii) f(M{+1) c M{ for each i = 0,1, . Moreover,
/ maps Ml homeomorphically (isometrically) onto itself.

2. Let / be a nonexpansive local isometry (local isometry)
of a connected (convex) finitely compact metric space (ikf, p)
into itself. If for some z e M the sequence {fn(z)} is bounded,
then / is an isometry onto.

1* Introduction* Let / be a mapping of a metric space (M, p)
into a metric space (N,σ). We will call / a local isometry if for
each z e M there is a neighborhood U, of z such that σ(f(x), f{y)) =
p(x, y) for all x, y e Uz. If / is a local isometry and also a non-
expansive mapping (i.e., (τ(f(x),f(y))^p(x,y) for all x,yeM), we
will say that / is a nonexpansive local isometry.

A metric space (ikf, p) is said to be finitely compact [2] if each
bounded and closed subset of M is compact.

The purpose of this paper is to extend the results of the author's
paper [4] to those local isometries / of a finitely compact metric space
(M, p) into itself which have the property that for each zeM the
sequence {fn(z)} is bounded. In § 2 we give some more notation and
preliminary lemmas. Section 3 contains the main results. Roughly
speaking, the main theorem is: Let / be a local isometry (non-
expansive local isometry) of a finitely compact metric space (M, p)
into itself. If for each (for some) zeM the sequence {fn{z)} is
bounded, then there exists a unique decomposition of M into disjoint
open sets, M = Ml U M{ U , such that (i) / maps Ml injectively
into itself, (ii) /(M"{) c ikf/Lj. for each % ^ 1. Moreover, / maps Ml
homeomorphically (isometrically) onto itself.

It should be noted that open surjective local isometries were
studied by Busemann [2], [3], Kirk [5], [6], [7] and Szenthe [8], [9],
[10], in the special case where (Λf, p) is a G-space (Busemann [2]
called them "locally isometric mappings"). In [5] Kirk proved that
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if an open local isometry / of a G-space (Λf, p) onto itself has a fixed
point, then / is an isometry (from which it follows that if the iso-
metries of (Λf, p) onto itself form a transitive group, then each open
surjective local isometry is an isometry). Later Kirk [6] proved that
if an open local isometry / of a G-space (Λf, p) onto itself has the
property that for some zeM the sequence {fn(z)} is bounded, then
/ is an isometry.

In § 4 and § 5 of the present paper, by using the results of § 3,
we extend the above results of Kirk to the case of general local
isometries of finitely compact metric spaces.

2* Preliminaries*

(2.1) DEFINITION. Let ρi9 i = 0,1, be metrics on a set Λf. We
shall say that p1 is locally identical with p0 if the identity mapping,
id^, of Λf is a local isometry of (Λf, p0) into (Λf, pt). We shall say
that p1 and ρ0 are locally identical if pt is locally identical with pj9

for all i, j = 0, 1.

(2.2) DEFINITION. Let / be a mapping of a metric space (Λf, p)
into itself. Then the function pf defined by

pf(x, y) = supp(fn(x), fn(y)) for all x,yeM,

(where f° = idM, fn+1 — f°fn) is called the induced metric on Λf.

(2.3) REMARKS. ( i ) Let pi9 i = 0, 1, be metrics on a set Λf such
that px and p0 are locally identical. Then px and p0 are topologically
equivalent. If (Λf, p0) is finitely compact and px ^ pOf then (Λf, pj
is also finitely compact. If / is a local isometry of (Λf, p0) into itself,
then / is also a local isometry of (Λf, pλ) into itself.

(ii) Let / be a mapping of a metric space (Λf, p) into itself such
that for each zeM the sequence {fn{z)} is bounded. Then for each
x, yeM, ρf(x, y) < °°, and hence the induced metric, pf, is a metric
on the set M such that

(1) P/^Pf

(2) / is a nonexpansive mapping of the metric space (Λf, pf)
into itself , and

(3) pf = p if and only if / is a nonexpansive mapping of
(Λf, p) into itself .

In [4] we proved the following theorem ((4.3) of [4]).

(2.4) THEOREM. Let f be a local isometry of a compact metric
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space (Λf, p) into itself. Then there exists a unique decomposition
of M into disjoint open sets,

M=Mί\J --UMί (0 ̂  n) ,

such that (i) f(Mζ) = Mξ, (ii) f(M{) c M{-± and M{ Φ 0 for each i,
1 <^ i <^ n. Moreover, the induced metric pf is a metric on M such
that pf and p are locally identical and f is a nonexpansive local
isometry of (Λf, p/) into itself which maps Mζ isometrically onto
itself.

From this theorem we have

(2.5) COROLLARY. Let f be a one-to-one local isometry of a com-
pact metric space (Λf, p) into itself. Then f{M) = Λf.

Proof. If / is one-to-one, then by (2.4), M — Ml and hence
f(M) = M.

REMARK. If / is a local isometry of a compact metric space
(Λf, p) into itself and if N is a compact subset of M such that
f(N) c N, then the restriction of / to N, f/N, is also a local iso-
metry. For convenience, N = Nί U U N£{N) will denote the decom-
position of N defined by (2.4) for f/N.

(2.6) PROPOSITION. Let f be a local isometry of a compact metric
space (Λf, p) into itself. If N is a compact subset of M such that
f(N)czN, then

Nί = Nf]M{ for each i = 0, - , n(N) ,

where n(N) = max {i ^ 0: N f] M{ φ 0}.

Proof. By (2.4), it is sufficient only to show that f(Nf]M{) =
Nf]M{. However, it follows from (2.4) that / maps NΓ\M{ iso-
metrically into itself. Hence, by (2.5),/(JVfΊ Λf<0 = NΓ\ Mζ as desired.

We will need the following.

(2.7) LEMMA. Let f be a local isometry of a metric space (N, p)
into itself. If N is a compact subset of M, then there exists a num-
ber d > 0 such that for each zeN,

(4) p{f{x), f{y)) = p{x, y) ,

for all x,ye SP(z, δ) = {p e M: ρ(z, p)<δ}.
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The straightforward verification of (2.7) is omitted.

The convexity in this paper is to be understood in the sense of
Menger (cf. [1, p. 40]). A subset N of a metric space (M, p) is,
accordingly, convex if for each two distinct points x, y eN, there
exists a point z e N, z Φ x, y, such that p(x, y) = p(xf z) + p(z9 y).

Also, we will use

(2.8) LEMMA. If f is a local isometry of a convex and complete
metric space (Λf, p) into itself then f is a nonexpansive local isometry.

Proof. Let x and y be given points of M such that x Φ y.
Since M is convex and complete, by a theorem of Menger (cf. [1,
p. 41]) there exists a metric segment LaM whose extremities are
x and y; that is, a subset isometric to an interval of length p(χ9 y).
Since L is compact, it follows that there exists a finite sequence
to, Zi, " ', zk of points of L such that zQ = x, zk — y and

each i = 0, — , A? — 1

and
fc-l

Thus,

p(f(χ), f(y)) ̂  Σ P ( / 0 O , /(«i+i)) = Σ
i0 i0

Σ
i=0

This proves that / is a nonexpansive mapping, and hence a non-
expansive local isometry.

3* Local isometries and decomposition theorems* We shall
now prove the following extension of (2.4).

(3.1) T H E O R E M . Let f be a local isometry of a finitely compact

metric space (Λf, p) into itself. If for each zeM the sequence {fn(z)}

is bounded, then there exists a unique decomposition of M into dis-

joint open sets,

( 5 ) M = Ml U M{ U ,

such that

(6 ) / maps M{ injectively into itself,

( 7 ) f(M{) c MU for each i = 1, 2, .
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Moreover, the induced metric, pf, is a metric on M such that
pf and p are locally identical, (M, ρf) is a finitely compact metric
space and f is a nonexpansive local isometry of (ikf, pf) into itself
which maps Mξ isometrically onto itself.

Proof. In the proof, for each AczM and δ > 0, SP(A, δ) is the
δ-ball in M about A and clA (Int A) is the closure (interior) of A.
For each z e M we denote: c{z) = cl {fn(z)ι n ^ 0}.

We first define a sequence An, n = 0,1, , of compact subsets
of M such that

(8) f(An) c An for each n = 0,1, - ,

(9 ) An c Int An+1 for each n = 0,1, ,

(10) Q A » = *Γ

For each zeM, let δz > 0 be a number defined by (2.7) for the
compact set c(z) and let Vz = SP(c(z), δβ). Thus, for each # e l , V, is
an open and bounded subset of M and using (4) and the fact that
f(c(z))dc(z), we have f{Vz)aVz. Since (Af, p) has a countable base
of neighborhoods, there exists a sequence zn, n = 0,1, , of points
of M such that U"=o V,n = M. Define the sets An, w = 0,1, ,
inductively, as follows: Ao = cl FZo and An+1 = U S cl VZi, where k(n)
is an integer such that k(n) > n and An c U*^ V"fi. Clearly, the sets
An, n = 0,1, , satisfy conditions (8), (9) and (10), and are compact.

It follows now from (2.4), that for each n ^ 0, there exists a
sequence (An){, i = 0, 1, , of disjoint subsets of An such that

(11) (An){ Π Int An is open , for each i — 0, 1, ,

(12) U (An){ = An ,
ι=0

(13) / maps (An){ injectively into itself ,

(14) /((AJO c (An)U , for each i = 1, 2, .

By (2.6), we have

(15) (AJί = An n (An+1)( , for all n, i = 0,1, .

Now, for each i = 0,1, , we define the set M{ as follows:

n=0

Then, by (15) and the fact that {An){, i ^ 0, are disjoint, the sets
M{, i ^ 0, are disjoint. By (9) and (15),
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(An){ c (Aπ+1){ Π Int An+1 c {An+1)ί ,

hence,

M{ = \J ((An+1){ Π Int An+1) , for each i = 0,1, ,

and therefore, by (11), the sets M{, ί ^ 0, are open. By (10) and (12),

and it follows from (13), (14) and (15) that the sets M{, i ^ 0, satisfy
conditions (6) and (7). This proves the existence of the desired
decomposition of M.

In order to prove the uniqueness, it is sufficient only to show
that for each decomposition of M into disjoint open sets, M = UΓ=o Mu

conditions (6) and (7) imply

(16) MQ = {zeM:f(c(z)) = c(z)}.

Let us assume, M = (Ji°=o -Mi is a decomposition of M into disjoint
open sets, satisfying conditions (6) and (7). If z eMQ, then (6) implies
that the restriction of / to c{z) is a one-to-one local isometry of c(z)
into itself. Since c(z) is compact, it follows from (2.5) that f(c(z)) =
c(z). Conversely, if z&M0, then zeMn for some n*zί. Using (7)
and the fact that Mif i ^ 0, are disjoint and open, we obtain

/ ( φ ) ) c c(/(z)) c ΛΓo U U AT,.! ,

hence zec(z)\c(f(z)), i.e., c(z) Φ c(f(z)). Therefore (16) follows as
desired.

Finally, by (ii) of (2.3), the induced metric, pf, is a metric on
M and it follows from (8), (9), (10) and (2.4) that pf and p are locally
identical (cf. also (1)). Hence, by (1) and (i) of (2.3), the metric space
(Λf, pf) is finitely compact and, by (2), / is a nonexpansive local iso-
metry of (M, pf) into itself. It follows from (2.4) and (15) and the
definition of Mζ that / maps Mζ isometrically onto itself with respect
to the metric pf. This completes the proof.

(3.2) REMARK. Let / be a nonexpansive mapping of a metric
space (M, p) into itself. If for some zeM the sequence {fn(z)} is
bounded, then for each xeM the sequence {fn(x)} is bounded.

Indeed, since / is nonexpansive, then for all x, z e M and each
i = 0, 1, , we have

hence, if {fn(z)} is bounded, then also {fn(x)} is bounded.
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The following theorem is an immediate consequence of (3.1), (3.2)
and (3).

(3.3) THEOREM. Let f be a nonexpansive local isometry of a
finitely compact metric space (M, p) into itself. If for some zeM
the sequence {fn{z)} is bounded, then there exists a unique decomposi-
tion of M into disjoint open sets,

M = Mζ U M{ U ,

such that (i) / maps Mζ injectively into itself, (ii) f(M{) c M{^ for
each i = 1, 2, . Moreover, f maps Mζ isometrically onto itself

We have the following corollaries

(3.4) COROLLARY. Let f be a local isometry of a finitely compact
metric space (Mf p) into itself. If for each zeM the sequence {fn(z)}
is bounded, then the following are equivalent:

( i ) f is one-to-one,
(i i) f is a homeomorphism of M onto itself,
(iii) / is an isometry with respect to the induced metric pf.

Proof. The proof follows from (3.1), since each of (i)-(iii) is
equivalent to Mζ — M.

(3.5) COROLLARY. Let f be a nonexpansive local isometry of a
finitely compact metric space (M, p) into itself. If for some zeM the
sequence {fn(z)} is bounded, then the following are equivalent:

( i ) f is one-to-one,
(i i) f is a homeomorphism of M onto itself,
(iii) / is an isometry onto.

Proof. This follows from (3.3) (or from (3.4) and (3)).

4* Some consequences* As an immediate consequence of (3.1),
we get

(4.1) THEOREM. Let f be a local isometry of a connected finitely
compact metric space (M, p) into itself. If for each zeM the sequence
{fn(z)} is bounded, then the induced metric, pf, is a metric on M
such that pf and p are locally identical, (Λf, pf) is a finitely compact
metric space and f is an isometry of (M, pf) onto itself. In par-
ticular, f is a homeomorphism of M onto itself.

As an immediate consequence of (3.3), we get
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(4.2) THEOREM. Let f be a nonexpansive local isometry of a con-
nected finitely compact metric space (M, p) into itself. If for some
zeM the sequence {fn{z)} is bounded, then f is an isometry onto.

The corresponding statement concerning local isometries of con-
vex finitely compact metric spaces is stated next.

(4.3) THEOREM. Let f be a local isometry of a convex finitely
compact metric space (M, p) into itself. If for some ze M the sequence
{fn(z)} is bounded, then f is an isometry onto.

Proof. Since {M, p) is convex and complete, by (2.8), / is a
nonexpansive local isometry. Hence, our assertion follows from (4.2).

Finally, we note the following special cases of (4.2) and (4.3).

(4.4) COROLLARY. Let f be a nonexpansive local isometry of a
connected finitely compact metric space {M, p) into itself. If f has
a fixed {periodic) point, then f is an isometry onto.

(4.5) COROLLARY. Let f be a local isometry of a convex finitely
compact metric space (M, p) into itself. If f has a fixed {periodic)
point, then f is an isometry onto.

REMARK. Theorems (4.2) and (4.3) extend the result of [6]; Corol-
laries (4.4) and (4.5) extend Theorem 1 of [5] to the case of general
local isometries of finitely compact metric spaces.

5* A condition on {M, p) under which local isometries are
isometries* In this section, by using (3.3), we extend Theorem 3 of
[5]. First, we shall prove

(5.1) PROPOSITION. Let f be a nonexpansive local isometry of a
finitely compact metric space {M, p) into itself. If (M, p) has a
transitive group of isometries, then there exists a sequence Nn, n =
0,1, , of open and closed subsets of M such that M = U~=o Nn

 and
for each n ^ 0, / maps Nn isometrically onto an open closed subset
of M.

Proof. Let zeM. Then, by assumption, there exists an isometry
gz of (M, p) onto itself such that gz{f{z)) = z. Since gz°f is a non-
expansive local isometry, it follows from (3.3) that there is an open
and closed set Nz such that z e Nz and gz°f maps Nz isometrically
onto itself. Hence g7\Nβ) is open and closed, and / maps Nz iso-
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metrically onto g71(Nz). Since (M, p) is separable, our assertion
follows.

The next two results follow immediately from (5.1) and (2.8)
(or, in a direct fashion, from (4.4) and (4.5)).

(5.2) THEOREM. If a connected finitely compact metric space
(M, p) has a transitive group of isometries, then each nonexpansive
local isometry of (ikf, p) into itself is an isometry onto.

(5.3) THEOREM. If a convex finitely compact metric space (M, p)
has a transitive group of isometries, then each local isometry of (M, p)
into itself is an isometry onto.
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