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KNOT GROUPS IN S4 WITH NONTRIVIAL HOMOLOGY1

A. M. BRUNNER, E. J. MAYLAND, JR., AND JONATHAN SIMON

In this paper we exhibit smooth 2-manifolds F2 in the
4-sphere S4 having the property that the second homology
of the group π1(Si—F2) is nontrivial. In particular, we
obtain tori for which H2{πx)=Z2 and, by forming connected
sums, surfaces of genus n for which i^fe) is the direct
sum of n copies of Z2. Corollaries include: (1) There are
knotted surfaces in S4 that cannot be constructed by form-
ing connected sums of unknotted surfaces and knotted
2-spheres. (2) The class of groups that occur as knot groups
of surfaces in S4 is not contained in the class of high
dimensional knot groups of Sn in Sn+2.

If F is a compact manifold (dF = φ) in the w-sphere Sn(n ^ 4)
then, using Alexander duality and the fact that H^πjβ71 — F)) is
a homomorphic image of H2(Sn — F), it is easy to show that
H^π^S" — F)) is no larger than Hn~\F). In the case where F is
a 2-sphere in S\ this is Kervaire's proof [6] that H^π^S* — F)) = 0.
Since the property of vanishing second homology is so important in
characterizing knot groups of spheres in spheres [6], it is interest-
ing to ask [7, Problem 4.29] [14, Conjecture 4.13] whether it is
shared by other manifolds F in SK The answer we obtain is
"sometimes".

For example, if F2 is a closed, orientable 2-manifold embedded
in S4 in a standard way (i.e., contained in the equatorial 3-sphere),
then τrx(S

4 — F2) ~ Z, which has trivial second homology. If we
form the connected sum (analogous to composing knots S1 c Sz) of
such a surface F2 with a knotted 2-sphere S2, then the group of
the knotted surface F2 # S2 in S4 is just π^S4 - S2); as noted above,
this has trivial homology.

On the other hand, in § 2, we shall exhibit smooth tori (of
genus 1) F2 in S4 such that H^S* - F2)) ~ Z2. Such a torus
cannot be expressed as the connected sum of an unknotted torus
and a knotted 2-sphere. Furthermore, π^S* — F2) cannot occur [6]
as the knot group of some Sn aSn+2. By spinning, we can generate
knotted embeddings of the w-torus S1 x x S1 in Sn+2 having the
same "unusual" knot groups.

In §3, we establish a connected-sum lemma, H^π^—F^Fi))^
•ff2(̂ i(S4 - F!)) 0 HifaίS* - F2

2)). By composing the tori found in
§ 2, we can therefore construct surfaces of any genus nt for which

1 A preliminary report on this paper appeared as [1].
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the second homology of the knot group is Z2 0 φ Z2 (n summands).
Thus, using the upperbound H\F) mentioned above, we conclude
that the groups that occur as knot groups of surfaces of genus n
in S4 are a proper subset of the groups that arise from surfaces
of genus 2n + 1.

It seems plausible that the number 2n + 1 (last sentence above)
can be pushed closer to n. For surfaces of genus 1, we have been
unable to find knot groups with second homology larger than Z2,
and we are left with the question: Are there tori in S4 whose knot
groups have second homology equal to (even close to) the theoretical
upperbound Z@ZV In this connection, it may be noted that the
example given in [12] of a homomorphic image, G, of a knot group
(S1 c S3) with H2(G) Φ 0 actually has H2(G) ^ Z2; the groups G one
obtains by killing the longitude of a knot with Property R [11]
have H2(G) = Z [4].

l Preliminaries* The spaces and subspaces we discuss are
smooth or polyhedral. All homology groups are taken with integer
coefficients. If G is a group and x, y e G, then [x, y] denotes x^y^xy;
if A, B Q G then [A, B] denotes the smallest normal subgroup of G
containing {[a, b]: aeA,beB}.

There are several (equivalent) definitions of the second homology
of a group.

DEFINITION 1.1. If X is a connected CTF-complex with π^X) =
G and πn(X) = 0 (n ^ 2) then for each p, HP(G) is defined to be
HP(X).

DEFINITION 1.2. If Y is connected CΐF-complex with π1(Y)~G9

and Σ2(5Γ) denotes the subgroup of JEΓ2(3Γ) generated by all singular
2-cycles representable by maps of a 2-sphere into Y, then H2(G) =

(Informally, H2(G) = H2(Y)/π2(Y).)

DEFINITION 1.3. If F is a free group, θ: F -> G an epimorphism,
and R = ker θ9 then H2(G) = 5 n [ f , F]I[F, R].

The equivalence of 1.1 and 1.2 is clear, once one shows that
1.1 is unambiguous, since a space X (as in 1.1) can be built from
Y (as in 1.2) by adjoining cells of dimension ^ 3. The equivalence
of 1.2 and 1.3 is shown in [5]. For computing H2(G), it may be
convenient to view G as a quotient of some group A that (is not
free but still) has trivial second homology. The following lemma
of J. Stallings [13] provides the necessary instructions.

2 See concluding Remark.
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LEMMA 1.4. If A is a group and N is a normal subgroup of
A then there is a (natural) exact sequence

H2(A) > H2(A/N) > N/[A, N] > H^A) > HUIN) > 0 .

LEMMA 1.4.1. If A is a group with H2(A) = 0, N is a normal
subgroup of A such that N £ [A, A], and G = A/N, then H2(G) ~
N/[A, N].

Proof This is just a special case of Lemma 1.4.

LEMMA 1.5. Suppose a group G has a presentation of the form
(a, b;b = w~xaw), where w is some word in a and δ. Then H2(G) = 0.

Proof. Let Y be a 2-complex formed by attaching one disk to
a wedge of two circles, such that πx{Y) = G. By counting cells, we
see the Euler characteristic of Y is 0. Since βQ(Y) = βt(Y) = 1, we
conclude β2(Y) = 0 and so, since Y is 2-dimensional, H2(Y) — 0.
According to Definition 1.2, H2(G) = 0.

LEMMA 1.6. Suppose a group G has a presentation of the form
(a9b;b — w~ιaw, [6, y] = 1>, for some words w9 y in a and b. Then
H2(G) is isomorphic to the cyclic subgroup generated by [6, y] in the
group C = <α, 6; b = w'aw, [a, [6, y]] = 1, [δ, [b, y]] = 1>.

Proof. Let A = <α, δ; b = w~ιaw) and let iV be the normal sub-
group of A generated by [δ, y]. By Lemma 1.5, H2(A) = 0. By
Lemma 1.4.1, we then have H2(G) = Nj[A, N]. The subgroup [A, N]
is the kernel of the obvious map of A onto C, so H2(G) is isomorphic
to the image of N under this map; this image is precisely the cyclic
subgroup of C generated by [δ, y].

2* Examples of tori in S*. Our first example is illustrated in
Figure 1, in the form of successive cross-sections (as in § 6 of [3]).
We originally obtained this torus T by the methods of [16], so T
is a symmetric ribbon surface. We can, at this point, either com-
pute π^S4 — T) from Figure 1 as in [3], or start with a suitable
presentation of the group and invoke [16]. In either case, we have
the following.

PROPOSITION 2.1. If T is the torus in Figure 1 then the group
G = TΓ^S4 — T) has a presentation

(a, δ; δ = a~Ψab~2a, b = [δα"1, a-ιb]-ιb[ba~\ α"ι6]> .
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J

α α
A torus with ()

FIGURE 1

THEOREM 2.2. // G is the group in 2.1 then H2(G) = Z2.

Proof. Let λ denote [6a"1, a^b], w denote b-'a'Ψab^a, A =
<α, 6; w = 1> and C = (a,b;w = [a, [b, λ]] = [δ, [b, λ]] = l>. By Lemma
1.6, H2(G) is isomorphic to the cyclic subgroup of C generated by
[δ, λ].

First note that in A, hence in C, 6~1λ6 = λ"1. (To see that
δ~1λδλ = 1 in A, first cyclically reduce b^XbX; then replace a sub-
word, a~Ψab~2af of this with "6"; then note that the word so
obtained is a cyclic permutation of w~K) Thus [6, λ] = λ2 and [6,
[6, λ]] = λ4 in A,
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In C, since [6, [δ, λ]] = 1, we have λ4 = 1, i.e., [δ, λ]2 = 1. We
thus have H2(G) = 0 or Z2\ to establish the latter, we need to show
λ2 (i.e., [δ, λ]) Φ 1 in C. Since λe[C, C], we can compute the order
of λ in C by computing its order in [C, C].

Claim 2.3. [C, C] has a presentation (Bo, B_λ; [BQ9 [Bo, B_J] =
[B_l9 [Bo, JBJ2] = [Bo, B_J* = 1>, where λ2 - [BOf B_x]\

Proof of 2.3. To establish 2.3, we can use the Reidemeister-
Schreier process [9, § 2.3], with coset representatives {an}nez and
rewriting function p(b) = p(a) = a, applied to the presentation C =
{a, b w = [α, λ2] = λ4 = 1>. The presentation initially obtained will
have infinitely many generators Bn( — an$a~v)a~n,n£Z)i but almost
all the generators and relations can be eliminated, leaving 2.3.
Alternatively, we can argue as follows.

Let D = (u, v; [u, [u, v]2] = [v, [u, v]2] = [u, v]* = 1>. The func-
tion θ(u) = v, θ(v) = vu sends [u, v] to [u, vY1 and therefore defines
an automorphism of D. Extend D to a group D = (D, δ; b~ιgb — θ(g),
all geD). We then have D = [5, 5], and 5 = <u, v, δ; δ~xuδ = v,
b~ιvb = vw, [̂ , v]4 = [w, [u, v]2] = [v, [u, v]2] = 1>. Use v — b^ub to
eliminate the generator v, introduce a new generator a = ^"1δ, and
use u = δα"1 to eliminate the generator n. Since, as noted earlier,
the relation w = 1 implies δ-1λδ = λ"1, it is easy to show that D is
exactly C. We know D — [JD, D], and if we identify u with BQ, v
with 5_x, we obtain 2.3.

We now map [C, C] onto the group ^ = <J50, B^; £0

2 = B2

X =
(BoJ?.,)8 = 1> by setting Bt = 5 ^ = 1 . Under this map, \2-^{BJB_tf-
Since the order of 2?0-B-i in ^ is exactly 8 [2, §§4.3, 4.4], we
conclude λ2 Φ 1 in C. This completes the proof of Theorem 2.2.

REMARK 2.4. It can be shown that the group A = <α, δ; δ =
a~1b2ab~2a)9 sometimes called the Fibonacci group, is a ^-extension
of the group K of the "figure-8" knot [8, § V.2]. By erasing the
lower band in Figure 1, we can see a symmetric ribbon 2-sphere
with knot group A. The elements δ2 and λ = [δα"1, a~ιh\ are, res-
pectively, the meridian and longitude for K. The fact that K
admits on outer automorphism a (conjugation by δ in A) with
certain properties (e.g., α(λ) = λ"1) can be used as the basis for an
alternate proof that H2(G) = Z2. This analysis is the motivation for
our next examples, and, in fact, the group Gx below is isomorphic
to the group G of Theorem 2.2.

We originally built the groups Hn (below) as ^-extensions of
the knot groups J%Γn of the knots Kin, n) shown in Figure 2. By
[10, p. 229-230], 5ίΓn = (a, δ, ί; r V δ ί = αn, r V ί = <Γιbn). The
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iwists

K(n, n)
FIGURE 2

function θ{t) = t, θ(b) = t'Vtb'71 defines an automorphism of 3ίΓn such
that θ\g) = rιgt (all ^ e X J . Let Hn = <J^, s; s2 - t, s^gs = 0(0)
(all # e ^ Q > , and λ = [ίΓVs, δn] (=the longitude of K(n,n)). We
can show, using arguments similar to [10, proof of Cor. 4.7] that
for n odd, centralizing [&, λ] in Hn does not kill [6, λ]. It follows
that for n odd, J9Γ2(Gn) = Z2, where Gn = HJ[b, λ]. The proof below
is somewhat removed from its knot theoretic origins, but the nota-
tion is consistent with the preceeding remarks.

THEOREM 2.5. There exists an infinite family {Gn} of groups
such that

( i ) For each n, there is a smooth torus Tn = S1 x S1 £ S4

such that π^S* - Tn) = Gn.
(ii) Gm^Gn (mΦn).
(iii) H2(Gn) = Z2 (noάά).

Proof (Remark: Our proof that H2(Gn) Φ 0 requires n to be
odd, though another argument might make the assumption unneces-
sary.) Let Gn=(b, s; s^b^^s-'bsb71, [s, λ] = l>, where λ = DrVs, &n].

Claim 2.6. GTO has a Wirtinger presentation

(x, s; x = (s-^s"-1)1^""1^-1)-11, s = λ" 1 ^)

where cc = 6res6~w (and λ now is expressed as a word in x and s).

Proof of 2.6. Rewrite the relation s~2bV = s-^sδ71 as 6 = s-^Vδ"^-1.
Introduce the new generator x and replace the first relation with
6 = 3~1x%8~1. Use the latter to eliminate the generator b.

Claim 2.7. For each n, Gn is the group of a smooth torus in S\
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Proof of 2.7. This follows from 2.6 and the methods of [16].
Figure 1 illustrates how to weave bands between two unknotted
curves, following the instructions of a Wirtinger presentation of a
group, to obtain a surface with that knot group.

Claim 2.8. For m Φ n, Gm £ Gn.

Proof of 2.8. These groups are distinguished by their Alexander
polynomials (J(t) = nt2 + t — n).

Claim 2.9. For each n, H2(Gn) = 0 or Z2,

Proof of 2.9. Let Hn = <δ, s; s ~ W = s~λbsbn) and let X = [s~ιbns,
bn] in Hn. Note that s^λs = [s~W, s'^s] = (substitute) [s-'bsb71,
8'ιbn8] = λ"1.

We observe that Gn is obtained from Hn by killing [s, λ] and
so, by Claim 2.6 and Lemma 1.6, H2(Gn) is isomorphic to the cyclic
subgroup of Cn = HJ[Hn, [s, λ]] generated by [s, λ]. Since [s, λ] —
λ2 in Hn, we have [s, [s, λ]] = λ4. Thus, in Cn, [s, λ]2 = λ4 = 1, so
[s, λ] has order 1 or 2 in CB.

Claim 2.10. H2(Gn) ^ Z2 for % odd.

Proof O/2.10. From the proof of 2.9, we have λ4 = 1 in Cn and
need to show λ2 Φ 1. We shall construct a homomorphic image Du

of Cn in which λ2 is central but nontrivial.
Let F denote the free nilpotent group of class 2 (u, v; [[X, Y],

Z]). By a theorem of Gruenberg [9, §6.5], F is residually a finite
2-group. Thus, since [u, v]2 Φ 1 in F, there is, for some integer m,
a group F in the variety of groups satisfying the laws [[X, Y], Z] =
1 and X2™ — 1 that is a homomorphic image of F, and in which
[u, v] has order 2r for some r ^ 2. Since .P is nilpotent of class 2,
the cyclic subgroup generated by [u, v] is central, hence normal,
and we can pass to a quotient F * in which [u, vf = 1 (but [w, v] 2^
1). Since J'* is nilpotent and generated by (the images of) u and
v, any commutator [g, h] equals some power of [u, v], so [g, KY = 1.
Thus we may choose F * to be the free group of rank 2 in the
variety defined by the laws X2m = [[X, Y]f Z] = [X, F] 4 = 1.

For any integer v, the free group (x, y) has an automorphism
τ given by τ(x) = y, τ(y) = yvx. Since JF7* is a reduced free group
(i.e., (free group)/(verbal subgroup)), τ induces an automorphism τ*
of F*. Let Ώv be the extension of F*9 Dv=(u, v, t; t~1ut = v, t^vt —
vvu, relations for F*(u, v)}. By eliminating vi — t^ut), we obtain
Dv = <w, ί; t~2ut2 = t^u^Uy relations for F*(^, t^ut)). Note that in
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D» [u> t~ιuϊ\ has order exactly 4. We now restrict ι> so that w = l
modulo (2m).

The group Cn = HJ[Hn, [s, λ]] has a presentation <&, s; s~26V =
s^bsb71, [6, λ2] = λ4 = 1>. Add the relation b2m = 1 to obtain a homo-
morph Cn of Cn. Introduce a new generator r — bn. By choice of
v, we then have r* = b; using this to eliminate δ, we obtain Cπ ~
<r, s; r2W = 1, s~W = s"Vvsr, [r, λ2] = λ4 = 1>, where λ = [s~Vs, r].
The mapping r ->u, s-^>t defines an epimorphism of Cn onto Dv.
Since λ2 is central and has order exactly 2 in Dv, this completes
the proof of 2.10.

3* Connected sums* As with classical knots, one can compose
knotted surfaces Γo, Tx in 4-space (assuming To, T1 are separated by
a flat 3-plane or 3-sphere) by connecting TQ and Tx with a straight
arc a and using a as a guide for an annulus from To to 2\. We
denote the surface so obtained by T0#2V The group π^S'-T^Tύ
is of the form G0^μQ^μiGu where Gi — πι(Si—Ti) and μt is a meridian
of Tt (in particular, ^ generates GJ[Gt, GJ). The following lemma
implies that second homology of groups is additive under this type
of composition.

LEMMA 3.1. Let G and H be groups, g eG, heH, and suppose
g has infinite order in G/[G, G] and h has infinite order in H.
Let 5? denote G *9=h H. Then HJ&) = H2(G) 0 Ht(H).

Proof. Let XG, XH be connected, aspherical CΫF-complexes with
fundamental groups G, H. Adjoin a cylinder S1 x [0, 1] to the
disjoint union of XG and XH using attaching maps of S1 x {0}—>XG,
S1 x {1} —> XH that trace out g, h. The space W so obtained has
πx(W) = &. Furthermore, since g and h are of infinite order, it
follows from [15, Theorem 5] that W is aspherical. According to
Definition 1.1, iϊ2(5f) = H2(W), H2(G) = H2(XG), and H2{H) = H2(XS).
Since, by hypothesis, (g) —> G/[G, G] is injective, the Mayer-Viet or is
sequence for (W, XG U S1 x [0, 1), XH{J S1 x (0, 1]) states that
H2(W)~H2(XG)®H2(XH).

THEOREM 3.2. If To, Tx are surfaces in S4 with knot groups
Go, G, respectively, then H2{^{S' - To # 2\)) ~ H2(G0) 0 H^GJ.

COROLLARY 3.3. The tori exhibited in §2 are not compositions
of unknotted tori with knotted 2-spheres.

COROLLARY 3.4. For each n^l, there exists a closed orientable
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surface of genus n, Fn, in S 4 such that iϊ^TΓ^S4 — Fn)) = 2Γ20 φ Z 2 .
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referee for several helpful suggestions.

REMARK. We have learned that T. Maeda ("On the groups with
Wirtinger presentations", Math. Seminar Notes, Kwansei Gakuin
Univ., Sept. 1977) also has obtained an example of a group with
nontrivial second homology (Z2) that occurs as π^S4 — F2) for some
surface F\ More recently, using methods similar to ours, C. Gordon
has obtained tori in S4 with H2(G) = Zn for any desired n^O. Finally,
R. Litherland has found tori realizing all the groups Zp@Zq (p, q^O).
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