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FREE PRODUCTS IN THE CLASS
OF ABELIAN I-GROUPS

WAYNE B. POWELL AND CONSTANTINE TSINAKIS

The main objective of this paper is to present several constructions
of free products in the class of abelian /-groups which are sufficiently
concrete to allow for an in depth examination of their structure. Some
applications of these constructions are discussed, and it is shown that
abelian /-group free products satisfy the subalgebra property. Further,
some questions on free /-groups over group free products are considered
for a variety of /-groups which is either abelian or contains the represen-
table /-groups. Finally, a general observation is made about countable
chains and countable disjoint sets in free algebras.

1. Introduction. Let A be a class of /-groups (lattice ordered groups)
and (G;|i € 9) a family of members of AU. The U-free product of this
family is an l-group G € 9L, denoted by %| |;c4 G,, together with a family
of I-monomorphisms (;: G, » G|i € $) such that

(i) U,c4a,(G,) generates G as an /l-group;

(i) for every H € Q and every family of /homomorphisms (B;:

G, > H|i €Y9), there exists a (necessarily) unique /-homomor-

phism B: G — H satisfying B, = Ba; for all i € 9.

Following the usual practice we shall speak of %||,csG; as the U-free
product of (G;|i € 9). To simplify our notation, we use the “internal”
definition of a U-free product, that is, we identify each free factor G, with
its image «,(G,) in ¥|),csG;, and thus we think of each G, as an
I-subgroup of %| ;s G,;. As a consequence of general existence theorems
(See Gritzer [13, p. 186] or Pierce [25, p. 107]), QU-free products always
exist in any class of /-groups closed under products and /-subgroups.

In this paper we concentrate on the class @ of abelian /-groups,
although many of our results also hold in the important class of vector
lattices. Our main goal is to develop a reasonable representation theory
for @free products. This is done in §2 where we give several methods of
constructing these products, among the most useful of which represents
| |,es G, (G, € @) as a subdirect product of totally ordered abelian
groups each determined by the primes of the individual G,’s. We also
show here how the @-free products relate to the free abelian /-groups over
partially ordered abelian groups.

The third and fourth sections of the paper are devoted to considering
several different properties for free products of /-groups. In particular
using the representation theory established in §2 we show that the
subalgebra property is satisfied for @-free products.

429



430 WAYNE B. POWELL AND CONSTANTINE TSINAKIS

In the fifth and final section further applications of the representation
as well as open questions are discussed. In addition an observation is
made about countable chains and countable disjoint sets in the free
algebras for classes of general ordered algebraic systems.

Free products in classes of lattice ordered groups have been consid-
ered by Franchello [10], Holland and Scrimger [16], and Martinez [22] and
[23]. However, apart from some special cases, no reasonable representa-
tion has previously been found, and thus very limited information is
known about these objects. In [31] and [32] Weinberg presented a nice
construction of the free abelian /-groups and consequently was able to
prove several important results. His work was generalized to the classes of
vector lattices (Topping [29]), all /-groups (Conrad [9]), torsion free
f-modules (Bigard [5]), and all f~modules (Powell [26]). As the free object
on n generators is the free product of n copies of the free object on one
generator, the above mentioned results give very specialized information
about free products. Our construction of @-free products is similar in
spirit to all the aforementioned constructions.

Background information on the theory of /-groups can be found in
Bigard et al. [6], Conrad [8], and Fuchs [11]. General references related to
free products are Gritzer [13] and Pierce [25].

Throughout this paper we use | |;4 G, to signify ¢| |, G,. The symbol
@ refers to the group theoretic direct sum while B denotes the cardinal
sum of /-groups; that is, their direct sum endowed with the component-
wise order. Finally, 4 @ B means that A4 is a finite non-empty subset of B.

2. Representations for free products of abelian /-groups. Let
(G;|]i €9) be a family of abelian /-groups, G =||,c4G,, and H =
@, G, In this section we give several representations for G. The first of
these describes G as a sublattice generated by H inside a particular /-group
(Theorem 2.4). It is then shown that this /-group containing G can be
modified so that it is easily determined by H (Theorems 2.6 and 2.7).
Finally, a representation is given for G as a sublattice of a product of
abelian /-groups which are free over certain partially ordered groups
(Theorem 2.8).

Before we state the simple proposition below, we introduce the
following terminology. A group homomorphism ¢ of H into an /-group H’
is said to be admissible if the restriction of ¢ on each individual G, is an
/-homomorphism.

PROPOSITION 2.1. Let L be an abelian I-group containing each G, as an
I-subgroup. If H = @, _, G, is a subgroup of L and generates L as a lattice,

l

then the following conditions are equivalent.
GHL=G
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(ii) For each abelian I-group L' and each admissible homomorphism
@: H - L', there exists a (necessarily) unique I-homomorphism ¢’: L — L’
extending .

Let us pause for a moment to recall the concept of a free /-group over
a po-group (partially ordered group). This is a specialization in the setting
of I-groups of what is called in universal algebra the free algebra (exten-
sion) over a partial algebra. Consider a class QU of /-groups. Let F € Q
and G be an o-subgroup of F; that is, G is a subgroup of F and the partial
order of G is the restriction to G of the order of F. Then F is the QU-free
I-group over G if:
(i) G generates F as an /-group;
(ii) If f is an o-homomorphism (an order preserving group homomor-
phism) of G into an l-group H € AL, then there exists a (neces-
sarily) unique /-homomorphism g: F — H extending f.
We use Fy(G) to denote F, and we simply write F(G) instead of Fy(G).
The uniqueness of F,(G) is clear; however its existence, like that of free
products, is not guaranteed. See Pierce [25] for general existence theorems
and Weinberg [31] and Conrad [8] or [9] for corresponding theorems in
classes of /-groups.
Proposition 2.1 implies the following result (See Martinez [22] and
Holland and Scrimger [16]).

PROPOSITION 2.2. | |;esG;, = F( B ,.4G;) if and only if each G, is
totally ordered.

We shall make use of the following elementary lemma (See Bigard et
al. [6, p. 298)).

LEMMA 2.3. Let L and L’ be I-groups and let M be a subgroup of L
which generates L as a lattice. Let o: M — L’ be a group homomorphism
such that for each (x;, |j € §, k € X) @ M,

VA x, =0implies V N @(x,)=0.
JEY keX j€Y keX

Then @ can be extended to an I-homomorphism ¢’: L — L'.

Note that ¢’ is defined in an obvious fashion. If

x=V Ax((x.i €% kEXK) eM)
j€$ keX



432 WAYNE B. POWELL AND CONSTANTINE TSINAKIS

is in L, then

P(x) =V A plx).
JjE€Y keX

Now, let

A= {(H/K, T)| K is a subgroup of H, T is the
positive cone of a total order on H/K, and the map

g > (g +K):H->(H/K,T)is admissible}.

i€y i€y
Note that if (H/K,T) € A, then K is a convex o-subgroup of H and T
extends the positive cone of the inherited quotient order on H /K.

A subset A of A is said to separate points (for H) if:

(1) N{K|(H/K,T) € A} = {0}.

(2) For every totally ordered abelian group L, for every admissible

group homomorphism ¢: H » L, and for every (h;|j €E$) @
H such that /\ ;o @(h;) >0 in L, there exists (H/K T)EA
such that /\,E,(h + k) >0in (H/K,T).

Now let A be a non-void subset of A and consider the group
homomorphism A+ (h)= (..., h +K,...) of H into I[I,(H/K, T). De-
note by H(A) the sublattice of [, (H/K, T) generated by {(h)|h € H}.
That is,

HB)={V A (h)l(huli€d, ke %) cH]

j€Y keX

Using this notation we have the following representation theorem for G.

THEOREM 2.4. For a family of abelian I-groups (G, |i € 9) consider the
unique l-homomorphism ¥: G =| |,c4 G, = H(A) extending the maps g;
(8): G;— H(A). G is isomorphic to H(A) under ¥ if and only if A
separates points.

Proof. Suppose first that A separates points. Let G; = {(g;)| 8; € G;}
and H' = {(h)| h € H}, so that H(A) is the sublattice of [I,(H /K, T)
generated by H'. As N{K|(H/K,T) € A} = {0}, each /-group G, is
isomorphic to G}, and also H and H’ are isomorphic as groups. To show
that H(A) = G we use Proposition 2.1. To this end let L’ be an abelian
l-group, and ¢: H' —» L’ an admissible group homomorphism. Without
loss of generality we may assume that L’ is totally ordered. Set K’ = Ker ¢
and let T be the positive cone of the total order on H' /K’ inherited from
L’. As the restriction of ¢ on each G/ is an /-homomorphism, each map
(g)—>{(g)+ K" G/ -»(H'/K',T") is an [-homomorphism, and thus
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(H'/K'’, T") is isomorphic to a member of A. Now suppose
Voeg N e @Ry )) #0in LIV ;o N e @((hji)) > 0, then there
exists j € § such that A\ ,eq ¢((h;)) > 0. Hence for this j,
N kex((h; )+ K’) > 0. As A separates points, we can find (H/K, T) € A
such that A, cq(hj, + K)>0. Thus, V ;e N\ jeq(hj)# 0 in H(A).
The case V' ;g /\ yex @((h;)) <0 is treated similarly. By Lemma 2.3, ¢
can be extended to an /-homomorphism ¢’: H(A) - L’. In view of
Proposition 2.1, H(A) = G.

Conversely, suppose that H(A) = G under ¥. To begin with, it is
clear that N{K|(H/K,T) € A} = {0}. Next, let L be a totally ordered
abelian group, ¢: H — L an admissible group homomorphism, and
(h;l€ 4) @ H such that /\jeg @(h;) > 0. By Proposition 2.1 there
exists an -homomorphism ¢’: H(A) — L such that ¢’({#)) = @(h) for all
h € H. Hence, /\ jeg @'((h;)) >0 and so A jeg(h;) 7 0. But this simply
means that there is (H/K,T) € A such that N\ ;c¢(h; + K)>0 in
(H/ K, T). The proof of the theorem is now complete. O

The natural question to ask now is: What subsets A of A separate
points? It should be clear that A itself separates points so that for any
collection of abelian /-groups a representation of their free product can be
found in Theorem 2.4.

Let us consider the case where each /-group G, is totally ordered. Let

A’ = {(H, T)| Tis the positive cone of a total order on H extending
the cardinal order}.

Then H(A') = F( B ;c4G;) (See Weinberg [31].) Hence Proposition 2.2
and Theorem 2.4 yield.

PROPOSITION 2.5. If (G;|i € $) is a family of totally ordered abelian
groups, then the set A’ separates points.

We will now show that for an arbitrary family (G, |i € §) of abelian
l-groups, there is a nice subset of A which separates points. More
specifically, we consider the set

Aoz{(

&b G/pP), T ) | P, is a prime subgroup of G, for each i,
i€y

and T is the positive cone of a total order on €D (G,/P,)

S
extending the cardinal order} .
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Recall that a subgroup P of an abelian /-group L is prime if it is a convex
I-subgroup of L and if L /P is totally ordered. See Bigard, et al. [6, p. 44]
for several characterizations of prime subgroups. Let (®,.,(G,/P,), T) €
A,.

As there is a natural group isomorphism between H/(€,_,P;) and
®,.4(G,/P;), T induces a total order on H/(D,_,P;). Under this total
order, H/(,.4P,) is clearly a member of A. Thus we may and we will
consider A as a subset of A. We will now show that A, separates points
for H. To this end suppose L is a totally ordered abelian group, ¢: H — L
an admissible group homomorphism, and (4,|j €$) €H such that
AN jeg ®(h;) > 0. Since for each i € 9, 9(G,) is totally ordered, there exist
prime subgroups Q; C G; with G,/Q; = ¢(G,;). Consider now
F(B ,c4(Gi/2) =lies Gi/ Qi =| lies 9(G;). From Proposition 2.5 we
see that

-

P (G, /0., T) | T is the positive cone of a total order
i€y
on €D (G,/Q,) extending the cardinal order]

ied

separates points for @,_,(G,/Q,). Thus, considering (4, + ©,.,0;|j €
9) as a family of elements of @,_,(G,/Q,), we get that the infimum of
these elements is positive on some member of A,. But A, C A, and thus
A, must separate points for H. This establishes the following representa-
tion theorem.

THEOREM 2.6 The free product of a family (G;|i €9%) of abelian
I-groups is the l-subgroup H(A,) of 1, (®,4(G;/P), T).

There are, of course, other subsets of A that separate points for H.
However, the representation given in Theorem 2.6 appears to be the most
useful. A variation of the representation is the following. Let

A, = {( &P (G,/P), T) € A, | P;is a minimal prime subgroup
ied
of G;, for each i}.

We ask the reader to verify the following theorem.

THEOREM 2.7. The free prodvct of a family (G;|i €9) of abelian
I-groups in the l-subgroup H(A}) of 11, (®,.4(G,/P,), T).
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It is worth mentioning at this point that a slight variation of Wein-
berg’s representation for free abelian /-groups (see [31]) is a direct conse-
quence of Theorem 2.7 and of the fact that the free abelian /-group on a
set X # & is the abelian /-group free product of | X | -copies of Z H Z.

We close this section by exhibiting a further relationship between
[ |;es G; and certain abelian /-groups which are free over partially ordered
groups. First of all, set

. = {G,/P,| P,is a prime subgroup of some G,}.

Let T = U,_,T; and let D consist of all subsets A of I" such that A N T} is

a singleton for each i € 9. For A € D consider F( B ,(G,/P;)), and let §,:

B ,(G,/P;) - F( 8 ,(G,/P,)) be the natural o-monomorphism. For each
i € $define the map ¥: G, - [, F( B8 ,(G,/P))) by

Vi(g)=(...%(g+P),...).

It is easy to see that each ¥, is an /-homomorphism. Indeed, if x Ay =0
in G; and if P, is a prime subgroup of G, then either x € P, or y € P..
Hence, §,(x + P,) N §y(y + P,) = 0.

Now, let H= ®,_,G; and define ¥: H - [I,., F( B ,(G,/P;)) by
V(2,58 = 2ies Yi(g;). Using this notation we have the following repre-
sentation theorem for | |;c4 G;.

THEOREM 2.8. The free product | |icsG; of a family (G;|i € 9) of
abelian I-groups is the sublattice G’ of ll\op F( B ,(G,/P,)) generated by
Y(H).

Proof. To begin with note that ¥ is an injective group homomor-
phism. Suppose ¢: H — L is admissible and let ¢, = ¢ | for eachi € 4. If
V ies N kex @(hy) # 0 for some (h,|j €%, k€ H) @H, then by
Proposition 2:1 and Lemma 2.3 we need only show that
V eg N ex Y(h &) 7 0in G’. We assume that L is totally ordered and
consider the case where V ;cq /\cq () >0. The case where
V eg N res o(h «) <0 is handled similarly. Hence, there exists j € §
such that A cq @(h,) >0. Let Ay = {G,/P,|p, is the kernel of g,}.
Then A, € D. Let : ®, (G,/P;) — L be defined by (Z,cs(8; + P)) =
2es(9,(8,)), and writeeach h, € Hash;, = 3,.48,,, whereeach g, €
G,. Now,

Ao 3 (gu+B)) = A (Solgu)) = A (o(h) >0
keX ‘ies keX ‘iey keX

But by Proposition 2.5 the set {(GBAO(Gi/}’i), T)| T is the positive cone
of a total order on @, (G,/P,) extending the cardinal order} separates
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points for @, (G;/P,). Since ¢ is admissible, N o (Z;cs8u; + P) >
0 on some element of this set. Hence, N\ ,cy(8(Z;cs8; + P))>0
which implies that V ;¢q A eq ¥(h,,) # 0. O

It is of significance to note that all of the representation theory that
has been developed in this section can be easily adapted to yield analo-
gous representations for free products in the important class of vector
lattices.

3. The subalgebra property. Let A be a variety of /-groups. Free
products in QL are said to have the subalgebra property if for any family
(G;|i € %) in U with l-subgroups H; C G,, *| |;cs H, is simply the l-sub-
group of ¥| |;c4 G, generated by U,_( H,.

As a consequence of a general result due to Jonsson [19], any variety
of /-groups having the amalgamation property, satisfies the subalgebra
property for free products. Since the amalgamation property holds in the
variety @ of abelian /-groups (Pierce [24]), @-free products have the
subalgebra property. As the considerations leading to the proof of the
amalgamation property for & are somewhat involved, we present a short
proof of the subalgebra property based on the results of §2.

We begin with the following simple preliminary lemma.

LeMMA 3.1. Let H be an Il-subgroup of an l-group G. If P is a prime
subgroup of H, then there is a prime subgroup Q of G such that P = Q N H.

Proof. Let C(G) denote the collection of convex /-subgroups of G. An
easy application of Zorn’s Lemma to the set ¥ = {K € C(G)|HN K =
P} yields the required prime Q in G. O

THEOREM 3.2. @free products satisfy the subalgebra property.

Proof. Consider a family (G, |i € ) C @, and let H, be an /-subgroup
of G,, for eachi € §. Write G =| |;c4 G and H =| |;c4 H. It is to be shown
that H is isomorphic to the /-subgroup H* of G generated by U,_,H,.
Consider the unique -homomorphism ¢: H — G extending the inclusion
maps H;, — G,. It is clear that o(H) = H*. We proceed to show that ¢ is
injective. Consider a non-zero element 4 in H. There is (x,,|j €$, k €
X,1€) @ U,4H, x;,, € H, such that h = vjeﬁﬂkemz,engk,.
Note that @(h) = V ;e /N pe5 2 ep X4, Where now the operations take
place in G. In view of Theorem 2.6, for each i € 9, there is a prime
subgroup P, of H;, and a total order on ®,_4(H,/P;) with positive cone T,
so that

\ARAYD> (xjk1+PI) = 2 (xj,k.1+P1) #0

j€Y keX I1er =
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in (®,.,(H,/P,), T), for some j, € § and k, € K. By virtue of Lemma
3.1, for each i € §, there is a prime subgroup Q; of G, such that
Q. NG =P. Let p: ®,.4(H/P) - ®,.(G/Q,) be defined by
p(Z,cs(h; + P)) = Z,c(h; + Q). It is clear that p is an injective homo-
morphism. Let T* be the positive cone of a total order on ®,_,(G,/Q,)
extending the total order on (®,,(H,/P;)) induced by T (See Fuchs [9,
p- 39)). Then,

VoA Y (xjk1+ Ql) =2 (xj,k.1+ Q1) #0

JE} keX 1€L el
in @©,.,(G,/Q,), T*) € A,. By Theorem 2.6, ¢(/) # 0. This shows that ¢
is injective, and the proof of the theorem is complete. O

It is worth mentioning at this point that the subalgebra property (and
hence the amalgamation property) fails in many varieties of /-groups. For
example, let n be an integer greater than one and consider the variety £, of
all l-groups satisfying the law nx + ny = ny + nx. It is not hard to show
that £ -free products do not have the subalgebra property. Indeed, since
£, properly contains @ (see Martinez [22]), the £ -free l-group on two
generators, or what amounts to the same, the £ -free product of two
copies of Z B Z is not abelian. Let F be the £ -free /-group on the two
element set {x,, x,}, and consider the /-subgroups G, = (x,), G, = (Xx,),
H, = (nx,), H, = {(nx,), and H = {nx,, nx,). Evidently, G, = G, = H,
=H,=7 M Z, H, is an l-subgroup of G, (i = 1,2), F = G| | G,, and
H € @. 1t follows that H| | H, = H, and hence £, -free products do not
satisfy the subalgebra property.

Martinez [23, Theorem 4.1} showed that if C is an /-ideal of 4 € @
and if B € @, then C| | B is an /-subgroup of 4 | | B. He asks whether this
remains true if C is an arbitrary /-subgroup of 4. in view of Theorem 3.2,
the answer is clearly affirmative.

4. Free l-groups over group free products. If (G;|i € 9) is a family
of totally ordered groups in &, then | |, G, is the @-free l-group over the
abelian group free product H endowed with the partial order induced by
?| ies G, (i.e., H= M ,c4G;; see Proposition 2.2). We will see below that
if H is (group) isomorphically embedded in ¢| |, G; in some other way,
then it becomes a partially ordered abelian group over which the @-free
I-group need not be ¢| |;c4 G;. A similar result arises for other varieties U
containing the variety of representable /-groups.

Example 4.1. Let G be the @-free product of three copies of the
integers, and identify these inside G as Z,, Z,, Z,. Hence, Z, ® Z, ® Z, is
a subgroup of G, and in fact it generates G as a lattice. Consider the
elements w, = (1,1,1), w, = (1,1,0), and w; = (0,1,1) of Z, & 7,97,
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Let W, be the subgroup G generated by w, for each i = 1,2, 3. Then each
W; is an l-subgroup of G and the abelian group free product H = W, @
W, © W, is a subgroup of G. If H is given the partial order inherited from
G, then Fy(H) = G. Indeed, the order on H is the cardinal order on
Z, ®Z, ® Z, so any o-homomorphism H - L € @ preserves the order on
Z, 8 Z, 8 Z,. However, Fy( H) cannot be | |>_, W, since the maps ¢;:
W, —» Z defined by @,(w,) = 1, ¢,(w,) =2, and ¢,(w;) = 0 cannot be
extended to an /~homomorphism on G.

Interestingly enough the preceding example can be adapted to yield
the corresponding result for many other /-group varieties. Specifically, we
consider any variety containing the class & of representable /-groups. @R is
well-known to be precisely the variety of all /-groups that are subdirect
products of totally ordered groups. We first need a result which exhibits a
relationship between group free products and /~-group free products.

PROPOSITION 4.2. Let QL be an I-group variety containing the variety R,
of representable I-groups. Consider a family (G,|i € ) of totally ordered
groups, and let G be the U-~free product of this family. Then the group free
product of (G,|i € 9) is (isomorphic to) the subgroup of G generated by
Uieg Gi'

Proof. Write H for the group free product (G, |i € §) and H* for the
subgroup of G generated by U,_(G,. It needs to be shown that H* is
isomorphic to H. By a result due to Vinogradov [30] (see also Johnson
[18]), there is a total order on H extending the total orders of the free
factors G;. Let T be the positive cone of such an order. Evidently
(H,T) € R C AU. Hence, by the universal property for Q-free products,
there is an /~homomorphism ¢: G —» (H, T') such that ¢(g) = g for each
g € G,and each i € 9. Let ¢: H* > H be the restriction of ¢ on H*. It is
clear that ¢ is an onto group homomorphism. Again, by the universal
property of the group free product, there is a group homomorphism
¥: H —» H* such that ¥(g) = g for each g € G, and i € §. But then
¥ o @ is the identity map on H*, and so ¢ is injective. It follows that ¢ is
a group isomorphism between H* and H. O

The above proposition was established by Holland and Scrimger [16]
for the special case where QU is the variety of all /-groups.

The following proposition for varieties U D R of /-groups is the
analogue of Proposition 2.2 which deals with the class @. We note that to
establish the equality of %| |, G, and Fy(H) we do not need to assume
the existence of Fy(H). Rather we can use the fact that *| |;cs G, exists
and show it satisfies the universal property of F,(H). The details of the
proof are left to the reader.
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PROPOSITION 4.3 Let U D R be a variety of I-groups, (G;|i €9) a
family of totally ordered groups, and H the group free product of this family.
If H is endowed with the partial order inherited from | |;c4 G;, then

) G;= Fy(H).

i€y
We now are able to extend Example 4.1.

Example 4.4. Let G be the Q-free product of three copies of the
integers, say Z,, Z,, and Z,. We have seen (Proposition 4.2) that the
group free product H of Z,, Z,, and Z, is simply the subgroup of G
generated by Z, U Z, U Z,. Let z, be the unit of Z, for each i = 1, 2, 3.
Clearly, H is the free group of rank 3, and {z,, z,, z;} is a set of free
generators of H. Now, let

wy =2z + 2z, + z4,
w, =z, + z,, and
Wy =z, + z;.

Write W, for the subgroup of G generated by w;, and note that {w,, w,, ws}
is also a set of free generators for H. As in Example 4.1 we can readily
determine that F, (H) = G if H is given the partial order inherited from
G. However, also as before, it is easily seen that G cannot be the QU-free
product of W, W,, and W,.

5. Further applications and open problems. There are other possible
applications to the representation theory developed in §2. Let us begin by
first mentioning a result which is already complete. Let ), be the class of
distributive lattices with a distinguished element e. Every abelian /-group
can be viewed as a member of %), with 0 = e. Using Theorem 2.6 we show
in a forthcoming paper [27] that the %) -free product of a family (G, |i € $)
of abelian /-groups is the sublattice of the abelian /-group free product
generated by U,_,G,. The corresponding result for the class £ of all
l-groups has been established by Franchello in [10]. As every member of
%), can be embedded (with a % -monomorphism) in an abelian /-group,
this establishes an important link between the classes of abelian /-groups
and distributive lattices with distinguished element.

Let QL be a variety of algebraic systems 4 = (4,(f.|€ 9), N\, V),
where |9|<N,, each fundamental operation f; has finite arity, and
(4, N\, V) is a lattice. An algebra A € U is said to satisfy the countable
chain condition if each chain in 4 has cardinality <N,. If a € 4 € A,
call a non-empty subset S C A a-disjoint provided that x Ay = a,
whenever x and y are distinct elements of S.
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THEOREM 5.1 Let QU be as in the preceding paragraph, and let F be the
Q-free algebra on a non-empty set X. Then:

(i) F satisfies the countable chain condition.

(ii) For each a € F, any a-disjoint subset of F has cardinality < ¥,,.

Theorem 5.1 (i) was established by Galvin and Jonsson [12, Lemma 5]
for the class of lattices. However, their proof can be easily modified to
yield the aforementioned general theorem by concentrating only on those
automorphisms of F induced by permutations on X instead of using all
automorphisms of F. A slightly weaker statement than that of Theorem
5.1(ii) is implicit in an interesting but not well-known paper of Amemiya
[3]. Several special cases of the theorem above have appeared in the
literature. In addition to the Galvin-Jonsson paper [loc. cit.], see for
example Adams and Kelly [1] and [2], Balbes [4], Bleier [7], Horn [17],
Jonsson [20], Sanin [28], and Weinberg [32]. Balbes [loc. cit.] proved the
stronger result that in a free distributive lattice every a-disjoint set is
finite.

Specializing Theorem 5.1 in the context of /-groups, we see that free
objects in any /-group variety 9 satisfy conditions (i) and (ii). Now, each
such object is the QU-free product of copies of Z B Z, and, of course,
Z B Z satisfies the countable chain condition and contains only finite
disjoint subsets. This motivates the next problem.

Problem5.2. Let QL be a variety of /-groups and (G, |i € §) C AU.

(i) Does %| ;s G, satisfy the countable chain condition if each G,
satisfies this condition?

(ii) Does every disjoint subset of *||,cs G, have cardinality < N if
each disjoint subset of every factor G, is finite (or has cardinality < 8)?
In regards to the preceding problem see Adams and Kelly [1] and [2],
Gritzer and Lakser [14], and Lakser [21]. The representation theory
developed in this paper should prove useful in settling Problem 5.2 in the
case where A is the variety of abelian /-groups.

Problem 5.3. Are there any nontrivial /-group varieties that have the
refinement property for free products?

The representation given by Weinberg [31] for free abelian /-groups
has been generalized and adapted to other classes as was mentioned in the
introduction. This inspires the next problem.

Problem 5.4. Give a reasonable representation for free products in
each of the following classes: all /-groups, representable /-groups, archi-
medean /-groups, f~-modules.
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