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NON-ARCHIMEDEAN GELFAND THEORY

JESUS M. DOMINGUEZ

In this paper we show that if X is a Banach algebra and XQ is its
Gelfand subalgebra, then the set Xξ of the elements in Xo with compact
spectrum is a Gelf and algebra whose maximal ideal space is compact in
the Gelίand topology. We also give a representation theorem for Xξ9

which we use to derive the Van der Put characterization of C-algebras.

Introduction. Throughout all this paper we denote by F a complete
field with respect to a non-trivial rank one valuation. Also X will usually
denote an algebra over F. All algebras will be understood to be commuta-
tive with identity. We shall use the notation of [3], but we shall identify
the ground field F with a subset of the considered algebra. Also we shall
put C(T), instead of F(T), to denote the algebra of all F-valued continu-
ous functions on the topological space Γ.

A non-archimedean Banach algebra X is called a C-algebra if there
exists a compact Hausdorff space T such that X is isometrically isomor-
phic to C(T). In [4] N. Shilkret introduces the Gelf and subalgebra; the
concept of K*-algebra is defined in [3].

1. The subalgebras Xo and X*, and their maximal ideals. Let X be
an algebra over F and let Xo be its Gelfand subalgebra. Xo has the
following properties:

1. If x G Xo, then x is invertible in Xo if and only if it is so in X;
therefore σ(x) = ox^x).

2. If M is a maximal ideal of X, then M Π I o i s a Gelfand ideal of Xo.
3. If F is not algebraically closed, then each maximal ideal of Xo is of

the form M Π Xo, where M is a maximal ideal of X.
4. If X is a Banach algebra, then Xo is a closed subalgebra of X

The conditions 1, 2 and 4 are easy to check (cf. [3] or Shilkret [4]). To
prove condition 3 it is enough to show that if m is a maximal ideal of Xo

and Xj,... ,xn E m then there is a maximal ideal M of Xcontaining all the
x, . Let/(Z) = λ 0 + λjZ + +λnZ

n be an irreducible polynomial with
coefficients in i7, of degree greater than one, and consider a = λ0X2 +
λ^jX^ 1 + * +λnXχ. Then a belongs to the subalgebra F[xv x2] gen-
erated by xl9 x2 over F. Moreover the maximal ideals of X containing a
are just those containing both x,, x2. Arguing by induction on n, we find
an element c G F[xv... ,x J such that the maximal ideals of X containing
c are just those containing all the x/β Now, c G m hence, by condition 1,
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there is a maximal ideal M of X containing c and, therefore, all the xt

belong to M. (A more detailed proof can be found in Gommers [1].)

REMARK. The assumption of F being a valued field is necessary only
in condition 4.

DEFINITION. We define the algebra

Xξ = {x E XQ/σ(x) is precompact}.

We see that Xξ is a subalgebra of Xo containing the identity element.

THEOREM 1. Let X be a Banach algebra. The subalgebra Xξ has the
following properties:

1. If x E Xξ, then x is inυertible in Xξ if and only if it is so in X;
therefore σ(x) — ox*{x).

2. If M is a maximal ideal of X, then M Π Xξ is a Gelfand ideal of Xξ.
3. If F is not algebraically closed, then each maximal ideal of Xξ is of

the form M Π Xξ, where M is a maximal ideal of X.
4. Xξ is a closed subalgebra of X.

Proof. The conditions 1 and 2 are easily checked. To prove 3 we just
repeat the above argument replacing Xo by Xξ. The proof of 4 is just the
following: Since Xo is a closed subalgebra of X it is enough to show that
given a sequence (xn) in Xξ with xn -> x, then σ(x) is precompact. To see
this pick ε > 0. Since xn -> x there exists n0 such that ||JC — xΛ II < ε/2.
Now since σ(xno) is precompact there exist ' μλ,.. . ,μr E F such that
o(xno) C \J.B(μi9 ε/2). If λ E o(x) then there is a maximal ideal M of X
such°that λ = x(M). Hence | λ - xno(M) | < ||JC - jcπj| < ε/2 and there-
fore σ(x) C U ^ ί ^ , ε).

REMARK. If X is a Banach algebra and JFis locally compact, then σ(x)
is compact for all x E Xo, and thus Xξ — Xo.

EXAMPLES. Assume that the valuation of F is non-archimedean, and
that T is a 0-dimensional Hausdorff space.

EXAMPLE 1. C(T) is a commutative algebra with an identity element.
For all / E (C(Γ))0 one has that f(T) is compact, hence (C(Γ))£ =
(C(Γ))0.

EXAMPLE 2. Let BC(T) denote the algebra of all bounded continuous
functions from T into F, and let PC(T) denote the subalgebra of all
functions / E BC(T) for which f(T) is precompact. Then BC(T) is a
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commutative Banach algebra with an identity element under the sup-norm,
and (BC(T))0 = PC{T). Thus (BC(T))* = (BC(T))0.

EXAMPLE 3. Let F{Z) denote the algebra of all formal power series,
ΣanZ

n, in Z with coefficients in F for which an -» 0. Then F{Z] is a
commutative Banach algebra with an identity element under | |2 anZ

n || =
max \an\,

(a) If F i s algebraically closed, then (F{Z})0 = F{Z).
(b) If ̂ i s not algebraically closed, then (F{Z})0 = F.
For all F, (F{Z})% = F. (See [7,Th.(6.38) p. 233].)

In the sequel 2ft will denote the set of maximal ideals M of X, 2ft* the
set of maximal ideals m of X*, and (2ft*)' the set of Gelfand ideals m' of
X*. For any x G I J we consider the function x: (2ft*,)' -* F, m' h+ x(mf)
and we endow (aft*)' w ^ h the weakest topology for which each of the
functions x is continuous.

THEOREM 2. // X is a Banach algebra, then (2ft*)' ^ a compact
Hausdorff space. Furthermore, if the valuation of F is non-archimedean then

' is a ^-dimensionalspace.

Proof. To prove the first part we just consider the map (2ft*)' ~*
RXGX* σ(x), mf h± (x(m'))χξΞX* and we argue as in the case of complex
Banach algebras. The second part is trivial.

THEOREM 3. If X is a Banach algebra, then X* is a Gelfand algebra.

Proof. If F is locally compact the result follows from the Gelfand-
Mazur theorem if F is algebraically closed, and from condition 3 in
Theorem 1 if F is not algebraically closed. Now assume that F is not
locally compact, and let m be a maximal ideal of Xξ. If x G X$ let Z(x)
denote the set of points of (3ft%)' where x vanishes. To see that m is a
Gelfand ideal we must show that f \ € m Z(Jc) φ 0. Since (2ft£)' is
compact it is enough to prove that the family {Z(x)/x Em] has the
finite intersection property. We shall prove this in two steps:

(1) Let xl9 x2 Em and let Dx be the set of points in (Wl%)' where j£,
does not vanish. If Jc2/X\i Dλ -» F is not surjective, then there exists
x G m such that Z(xx) Π Z(x2) = Z(x).

Proof. Choose x = x2 — \xl9 where λ ^ Im g(x2/xx).

(2)lfxx,...,xn Em, then Γ\iZ(xi)¥=^ 0.
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Proof. By induction on n. The case n = 1 follows from the first two
conditions of Theorem 1. Assume the result true for n — 1. If x2/xx:
Dx -> F is not surjective then we have just seen in (1) that there exists
x G m such that Z(xx) Π Z(x2) = Z(x). The result follows from the
induction hypothesis. Now assume that x2/xx is suqective and fΊ.Z(jC )
= 0 . Then the set K = {m' G (2ft$)'/| x/m') | < | Jc^m') | for 2 <y < «}
is compact and it is contained in Dx. Since i 7 is not locally compact, to get
a contradiction it is enough to show that x2/xx{K) = {λ G i*y| λ | < 1}.
In fact take λ G F, | λ | < 1, and consider the (n — 1) elements JC2 — λxj
and Xj, — xv3 <y < w. By the induction assumption there exists m' G
Z(x2 - λx,) Π n yZ(Xj - xx). Since Π.Z(jc,.) = 0 , then mr must be-
long to Dx. So x2/xx{m') = λ and Jc^/nO = xx(m') for 3 <y < «. Thus
m' G K and Jc2/Jc1(m/) = λ. The converse is trivial.

COROLLARY. Let X be a Banach algebra. If the linear span of the
idempotent elements is dense in X, then X is a Gelfand algebra and Wl is a
compact Hausdorff space in the Gelfand topology.

2. Representation theorems. We assume through all this section
that the valuation of F is non-archimedean and that X is a non-archi-
medean Banach algebra.

THEOREM 4. If X is a V*-algebra, then X* is isometrically isomorphic to
C(Wl*) under the Gelfand transformation x H> X.

Proof. All we need to prove is that the Gelfand transformation is an
isometry (rσ(x) = | |JC| |). In this way, we further apply the Kaplansky-
Stone-Weierstrass theorem to get the desired result. Now, by condition 2
in Theorem 1, X$ is a F*-algebra, and by Theorems 2 and 3 above, we are
in the situation of Corollary 2, page 165 of [3]. The result now follows.

DEFINITION. A family (JC,.),.^ of elements in X will be called an
orthogonal family if xfXj = 0 for / φjm

Let E denote the idempotent elements of X having norm one.

LEMMA. If x belongs to the linear span of E, then rσ(x) =

Proof. (1) First suppose that there exists a finite orthogonal family
el9... ,en in E and scalars λ 1 ? . . . ,λΛ such that x — Σ λ,.̂ .. We may assume
I λj I = max I λf. I . If we show that λ, G σ( c), then the result will follow
from: m a x l λ y l ^ λ , |<r σ (jc) < | |JC|| < m a x | λ z | .

Since ex is a nonzero idempotent there exists a maximal ideal M of
X such that ex £ M. But ex(\ — ex) = 0 and exe} — 0 implies that
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(1 - ex) EM and ey E M for 2 <y < n. Hence x - λ, = -λ,(l - eλ) +
Σ^λjβj belongs to M, and λj G σ(x).

(2) Let JC = ΣiμjUj, where u} E £ and μy E F. Now it is enough to
show that there exists a finite orthogonal family ex,... ,en in E and scalars
λj,...,λΛ such that x = Σ λ ^ . The proof runs by induction on r. For
r — 1 the result is clear. Now assume the result true for r — 1. Then there
exists a finite orthogonal family vl9...,vp in E and scalars al9...,ap such
that Σr

2μjUj = Σf < w Thus * = μ ^ + 2fakvk. But t^ - vk(l - uλ) +
υkuλ and uλ — MjΠf(l — vk) + Σf w,^. Of course, υk{\ — i/j), t Ŵj and
ufulfil — vk) are idempotents for all 1 < k <p, those different from zero
belong to E, and x may be expressed as a linear combination of them.

THEOREM (Van der Put). A non-archimedean Banach algebra X is a
C-algebra if and only if the linear span of E is dense in X.

Proof. First suppose that the linear span of E is dense in X. Then X is
a Gelfand algebra and 29? is a compact Hausdorff space in the Gelfand
topology. If JC E X, applying the lemma, we choose (xn) in X such that
xn -> x and rσ(xn) — IUJI. The continuity of the Gelfand transformation
then implies xn -»x in C(uft), and so rσ(x) = limr σ(xΛ) = limlUJI =
| |JC||. Thus X is isometrically isomorphic to C(Tt) under the Gelfand
transformation. The converse is trivial.

(See Van der Put [6, Prop. (5.4), p. 417] or Van Rooij [7, Th. (6.12), p.
215], and see also [2] and [5].)
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