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NON-ARCHIMEDEAN GELFAND THEORY

JESUS M. DOMINGUEZ

In this paper we show that if X is a Banach algebra and Xj is its
Gelfand subalgebra, then the set X7 of the elements in X, with compact
spectrum is a Gelfand algebra whose maximal ideal space is compact in
the Gelfand topology. We also give a representation theorem for Xj,
which we use to derive the Van der Put characterization of C-algebras.

Introduction. Throughout all this paper we denote by F a complete
field with respect to a non-trivial rank one valuation. Also X will usually
denote an algebra over F. All algebras will be understood to be commuta-
tive with identity. We shall use the notation of [3], but we shall identify
the ground field F with a subset of the considered algebra. Also we shall
put C(T), instead of F(T'), to denote the algebra of all F-valued continu-
ous functions on the topological space 7.

A non-archimedean Banach algebra X is called a C-algebra if there
exists a compact Hausdorff space T such that X is isometrically isomor-
phic to C(T'). In [4] N. Shilkret introduces the Gelfand subalgebra; the
concept of V*-algebra is defined in [3].

1. The subalgebras X, and X, and their maximal ideals. Let X be
an algebra over F and let X, be its Gelfand subalgebra. X, has the
following properties:

1. If x € X,, then x is invertible in X, if and only if it is so in X;
therefore o(x) = oy (x).

2. If M is a maximal ideal of X, then M N X, is a Gelfand ideal of Xj,.

3. If F is not algebraically closed, then each maximal ideal of X is of
the form M N X, where M is a maximal ideal of X.

4. If X is a Banach algebra, then X, is a closed subalgebra of X.

The conditions 1, 2 and 4 are easy to check (cf. [3] or Shilkret [4]). To
prove condition 3 it is enough to show that if m is a maximal ideal of X,
and x,,...,x, € m then there is a maximal ideal M of X containing all the
x;. Let (Z) = Ay + AN, Z + --- +A,Z" be an irreducible polynomial with
coefficients in F, of degree greater than one, and consider a = Ajx% +
Ax; x5!+ -+« +X,x{". Then a belongs to the subalgebra F[x,, x,] gen-
erated by x,, x, over F. Moreover the maximal ideals of X containing a
are just those containing both x,, x,. Arguing by induction on », we find
an element ¢ € F[x,,...,x,] such that the maximal ideals of X containing
c are just those containing all the x,. Now, ¢ € m hence, by condition 1,
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there is a maximal ideal M of X containing ¢ and, therefore, all the x;
belong to M. (A more detailed proof can be found in Gommers [1}.)

REMARK. The assumption of F being a valued field is necessary only
in condition 4.

DEerFINITION. We define the algebra
Xt = {x € X,/0(x) is precompact}.

We see that X7 is a subalgebra of X|, containing the identity element.

THEOREM 1. Let X be a Banach algebra. The subalgebra X¢ has the
following properties:

1. If x € X, then x is invertible in X if and only if it is so in X;
therefore o(x) = 6y.(x).

2. If M is a maximal ideal of X, then M N X¢ is a Gelfand ideal of X§.

3. If F is not algebraically closed, then each maximal ideal of X} is of
the form M N X, where M is a maximal ideal of X.

4. X% is a closed subalgebra of X.

Proof. The conditions 1 and 2 are easily checked. To prove 3 we just
repeat the above argument replacing X, by X¢. The proof of 4 is just the
following: Since X is a closed subalgebra of X it is enough to show that
given a sequence (x,) in X§ with x, — x, then o(x) is precompact. To see
this pick ¢ > 0. Since x, — x there exists n, such that [|x — x, [| <e/2.
Now since o(x, ) is precompact there exist p,,...,u, € F such that
o(x,,) C U,B(p,;, ¢/2). If A € o(x) then there is a maximal ideal M of X
such that A = x(M). Hence |A — x, (M) |< llx — x, Il <e/2 and there-
fore o(x) C U,B(u,, €).

REMARK. If X is a Banach algebra and F is locally compact, then a(x)
is compact for all x € X;, and thus X§ = X,.

ExXAMPLES. Assume that the valuation of F is non-archimedean, and
that T is a 0-dimensional Hausdorff space.

ExaMPLE 1. C(T') is a commutative algebra with an identity element.
For all f € (C(T)), one has that f(T) is compact, hence (C(T))§ =

(C(T)),.

ExAMPLE 2. Let BC(T') denote the algebra of all bounded continuous
functions from 7 into F, and let PC(T) denote the subalgebra of all
functions f € BC(T) for which f(T') is precompact. Then BC(T) is a
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commutative Banach algebra with an identity element under the sup-norm,
and (BC(T)), = PC(T). Thus (BC(T))§ = (BC(T)),.

ExAMPLE 3. Let F{Z} denote the algebra of all formal power series,
2a,Z", in Z with coefficients in F for which a, - 0. Then F{Z} is a
commutative Banach algebra with an identity element under |2 a,Z"|| =
max|a,| .

(a) If Fis algebraically closed, then (F{Z}), = F(Z}.

(b) If Fis not algebraically closed, then (F{Z}), = F.

For all F, (F{Z})§ = F. (See [7, Th.(6.38) p. 233].)

In the sequel IR will denote the set of maximal ideals M of X, M} the
set of maximal ideals m of X7, and (I{)’ the set of Gelfand ideals m’ of
Xg. For any x € XZ we consider the function X: (IR}) — F, m’' > x(m’)
and we endow (M F)" with the weakest topology for which each of the
functions X is continuous.

THEOREM 2. If X is a Banach algebra, then (I{) is a compact
Hausdorff space. Furthermore, if the valuation of F is non-archimedean then
(M) is a O-dimensional space.

Proof. To prove the first part we just consider the map (IMF) —
I exs 0(x), m" > (x(m”)),cx; and we argue as in the case of complex
Banach algebras. The second part is trivial.

THEOREM 3. If X is a Banach algebra, then X is a Gelfand algebra.

Proof. 1f F is locally compact the result follows from the Gelfand-
Mazur theorem if F is algebraically closed, and from condition 3 in
Theorem 1 if F is not algebraically closed. Now assume that F is not
locally compact, and let m be a maximal ideal of X3. If x € X¥ let Z(%)
denote the set of points of (IF) where X vanishes. To see that m is a
Gelfand ideal we must show that M __ Z(X) % @. Since (ME) is
compact it is enough to prove that the family {Z(%)/x € m} has the
finite intersection property. We shall prove this in two steps:

(1) Let x,;, x, € m and let D, be the set of points in (Pt¥)" where %,
does not vanish. If X,/%,: D, - F is not surjective, then there exists
x € m such that Z(X,) N Z(x,) = Z(X).

Proof. Choose x = x, — Ax,, where A & Im g(%,/%,).

Q) If x,,...,x, € m, then N Z(%,) # 2.
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Proof. By induction on n. The case n = 1 follows from the first two
conditions of Theorem 1. Assume the result true for n — 1. If %,/%;:
D, — F is not surjective then we have just seen in (1) that there exists
x € m such that Z(X,) N Z(%,) = Z(X). The result follows from the
induction hypothesis. Now assume that £,/%, is surjective and M,Z(%;)
= &. Then the set K = {m’ € (MF)' /| X,(m") |<|X(m")| for 2 <j < n}
is compact and it is contained in D,. Since F is not locally compact, to get
a contradiction it is enough to show that X,/%,(K) = {A € F/|A|=1}.
In fact take A € F,|A|< 1, and consider the (n — 1) elements x, — Ax,
and x; — x;,3 <j < n. By the induction assumption there exists m’ €
Z(%, =A%) N N, Z(%; — %,). Since M,Z(%;) = @, then m’ must be-
long to D,. So %,/%(m’) = A and %,(m") = X(m’) for 3 <j <n. Thus
m’ € K and %,/%,(m’) = A. The converse is trivial.

COROLLARY. Let X be a Banach algebra. If the linear span of the
idempotent elements is dense in X, then X is a Gelfand algebra and M is a
compact Hausdorff space in the Gelfand topology.

2. Representation theorems. We assume through all this section
that the valuation of F is non-archimedean and that X is a non-archi-
medean Banach algebra.

THEOREM 4. If X is a V*-algebra, then X is isometrically isomorphic to
C(IE) under the Gelfand transformation x > X.

Proof. All we need to prove is that the Gelfand transformation is an
isometry (r,(x) = lIx|l). In this way, we further apply the Kaplansky-
Stone-Weierstrass theorem to get the desired result. Now, by condition 2
in Theorem 1, X§ is a V*-algebra, and by Theorems 2 and 3 above, we are
in the situation of Corollary 2, page 165 of [3]. The result now follows.

DEFINITION. A family (x;);,c; of elements in X will be called an
orthogonal family if x,x; = 0 for i # .

Let E denote the idempotent elements of X having norm one.
LEMMA. If x belongs to the linear span of E, then r(x) = || x|

Proof. (1) First suppose that there exists a finite orthogonal family

e...,e,in E and scalars A,,...,A, such that x = S A,e,. We may assume
|A,|=max|A,|. If we show that A, € o(x), then the result will follow
from: max |A;|=| A, |=r,(x) < |lx|| < max]|A,]|.

Since e, is a nonzero idempotent there exists a maximal ideal M of
X such that e, € M. But e((1 —¢) =0 and e;e; =0 implies that
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(I—e)eMande, e Mfor2=<j=<n.Hence x — A, =-A(l —¢) +
25\ e, belongs to M, and A, € o(x).

(2) Let x = 2{p;u;, where u; € E and p; € F. Now it is enough to
show that there exists a finite orthogonal family e,,...,e, in E and scalars
Ap,...,A, such that x = 2 A,e,. The proof runs by induction on r. For

= 1 the result is clear. Now assume the result true for » — 1. Then there
exists a finite orthogonal family v,,...,uv, in E and scalars a,,. . .,a, such
that 25 pu; = 3f ayv,. Thus x = pu; + Zf a0, But v, = 0 (1 —u)) +
vu, and u, = IIP(1 — v,) + Zfuv,. Of course, v, (1 — u,), v,u, and
u,[1#(1 — v,) are idempotents for all 1 < k < p, those different from zero
belong to E, and x may be expressed as a linear combination of them.

THEOREM (Van der Put). A non-archimedean Banach algebra X is a
C-algebra if and only if the linear span of E is dense in X.

Proof. First suppose that the linear span of E is dense in X. Then X is
a Gelfand algebra and M is a compact Hausdorff space in the Gelfand
topology. If x € X, applying the lemma, we choose (x,) in X such that
x, - x and r(x,) = |Ix,|l. The continuity of the Gelfand transformation
then implies £, - £ in C(IM), and so r(x) = limr,(x,) = lim|x, || =
lIx|l. Thus X is isometrically isomorphic to C(t) under the Gelfand
transformation. The converse is trivial.

(See Van der Put [6, Prop. (5.4), p. 417] or Van Rooij [7, Th. (6.12), p.
215], and see also [2] and [5].)
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