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PERMUTATIONS AND CUBIC GRAPHS

J. L. BRENNER AND R. C. LYNDON

In studying maximal nonparabolic subgroups of the modular group,
B. H. Neumann and later C. Tretkoff were led to study pairs of
permutations A and B of an infinite set Ω such that A2 = B3 = 1 and
that C = AB is transitive on Ω. Here we study such triples (Ω, A, B), but
without the requirement that Ω be infinite. Our method is to associate
with each such triple a graph G*(Ω, A, B). Such graphs have been used
before, especially by Stothers and by Cori.

Our central result here is that the graphs under consideration are
precisely those that can be obtained by attaching trees, in certain simple
specified ways, to finite or infinite graphs equipped with a reduced path
that traverses each edge exactly once in each direction.

The classification or enumeration of all such cubic graphs appears to
be a difficult question, to which we are able to contribute only a few
remarks and examples. We also give a catalog of all triples of the kind
described, for Ω of cardinality up to 12. In addition, we catalog all such
Eulerian paths on cubic graphs that have no more than six vertices. As the
cardinality of Ω increases, the complexity of the catalog increases rapidly.

In another paper [13] we show that several large classes of infinite
planar graphs have Eulerian paths; these include the 1-skeletons of almost
all regular tessellations of the plane (with Euclidean or hyperbolic metric).
The results of the present paper are used in [10] to extend results of
Neumann and Tretkoff. The central result here, which has been obtained
earlier and independently by Stothers [39], is as follows, where we write oo
for N o . We note that points (1) and (2) of this theorem had been observed
by Tretkoff in the examples she constructed.

THEOREM. It is well known that the modular group M = PSZ(2, Z) has
a free factorization M = Z2*Z3, and that if A is a generator for Z2 and B is
a generator for Z 3 , then the subgroup P generated by C — AB is a maximal
parabolic subgroup of M. Let N be a complement of P in M, and let Ω be the
family of right cosets of N in M. Then A and B act on N by right
multiplication in such a way that C — AB is transitive. Let G* =
(?*(Ω, Ay B). Then (i) N is the free product of r2 groups of order 2, r3 groups
of order 3, and r^ infinite cyclic groups; 0 < r2, r3, r^ < oo. (ii) r2 is the
number of fixed points ofA, r3 is the number of fixed points of B, and r^ is
the Betti number of G*.

(in) (1) r2 + r3 + r^ — oo.
(2) If r^ is finite, it is even.
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Conversely, if three numbers r2, r3, r^ with 0 < r2, r39 r^ < oo, satisfy
conditions (1) flnrf (2), ίΛew ίλey are realized by some complement N to P in
M.

In yet another paper [12] we have used the methods of the present
article to discuss various similar problems. For example, we find all those
permutations of a set that are the product of an involution and a transitive
permutation. In other work [14] we have again used this method to
reprove a theorem of G. A. Miller [31] that: given integers a, b, c
2<a,b<c, there exist permutations A, B of a set of cardinality at most
c + 2, such that A9 B, and C = AB have respective periods a, b, and c. A
variant of Miller's theorem is established in [12], while in [14] we sharpen
Miller's result to obtain in certain cases permutations of smallest degree

2 Graphs. We consider directed graphs in which each edge has an
inverse. Explicitly a graph G consists of a set V of vertices, a set E of
edges, a function a: E -> V assigning to each edge its initial point, and a
function η: E -* E assigning to each edge e its inverse edge e~ι. It is
required that e~ι φ e but (e~ι)~ι = e. One says that the edge e runs from
a(e) to <x(e~λ).

One may view each pair (e, e~1} of opposite edges as constituting an
'undirected edge' or line \ e | , between a(e) and a(e~~ι)9 with e and e~ι its
two directions or orientations. The set of vertices and lines then form a
1-complex \G\ . We shall not always distinguish between G and | G \ . For
example, if we say that G is a tree, we really mean that | G | is a tree.
Similarly, the degree of a vertex t> of G is really its degree in | G \ , that is,
the number of lines at t>.

A path in G is reduced if it contains no consecutive pair of inverse
edges. We call a tree simply infinite if, at any point, there is exactly one
(reduced) infinite path beginning at that point. We call a simply infinite
path, beginning at some point, a ray at that point.

A cubic graph is one in which each vertex has degree 3. We call a
graph cuboid if each vertex has degree at most 3. A Eulerian path in a
cuboid graph (hence also in a cubic graph) is one that contains each edge
exactly once, and which is reduced except at vertices of degree 1.

In speaking of triples (Ω, A, B) it is always understood that A and B
are permutations of Ω such that A2 = B3 = 1. We call the triple transitive
if C = AB is transitive on Ω.
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We associate a graph G = G(Ω, A, B) with each triple (Ω, A, B). The
vertex set is Ω, and there is an edge e from p to q if and only if p φ q and
q is one of pA, pB, pB~\ We call e an A -edge, 2?-edge, or ^"^edge
accordingly. The inverse edge e~ι is then an A -edge, B^-edge, or 5-edge.
(If, for example, p φ q, and both q—pA and # = />!?, we require both an
^4-edge and a 5-edge from/? to q. However, this cannot occur in the cases
we consider, where C = AB is transitive, since it would yield qC — qAB —
pB = qφp.)

Evidently an >4-edge e meets no ^4-edge except e and e~\ Similarly,
the jS-edges fall into triples, forming oriented triangles, and any two
distinct triangles of this type are disjoint. Conversely, it is easy to see that
if the edges of a graph G are divided into three categories: A -edges,
2?-edges, and B~ι-edges, the inverses of which are respectively A~hedges,
B~ hedges, and 5-edges; and if these disjointness conditions are met, then
there is a unique triple (Ω, X, B) such that G = G(Ω, A, B).

Let G* = G/B be the quotient graph of G by B. Explicitly, the
vertices of G* are the 5-orbits of Ω, and the edges of G* are in one-to-one
correspondence with the A -edges of G under the natural map from G onto
G*. (We identify each yί-edge e with its image e* in G*.) Clearly G* is a
cuboid graph.

Let W = ( . . . , />_i, />o> Pi*--) be a C-orbit in Ω, where (as usual) if
Whas finite length «, the subscripts are to be taken modulo n. Since pt A
lies in the image pf+λ of piΛ.λ — ptAB, the relation ptC — pi+{ determines
an edge e* from pf to p?+l9 except that,in case p{A —p^ we have
P? = A*+i Thus W determines a path 77 in G*, the successive edges of
which are these ef\ π is either a closed path or a doubly infinite path.
Since a given ρi occurs at most once in W, (the image of) a given v4-edge et

occurs at most once in π. If C is transitive on Ω, then every vertex occurs
in W, and hence every edge of G* occurs in π; in this case π is a Eulerian
path on G*.
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We now suppose, conversely, that a connected cuboid graph H is
given, together with a Eulerian path TΪ on H, and we seek to construct a
transitive triple (Ω, A9 B) such that H ^ G*, in which π is the path
described above. We begin by constructing an undirected graph H as
follows. We replace each vertex p of degree 2 or 3 in H, and some
arbitrarily chosen set of vertices of degree 1 in if, by an unoriented
triangle (pl9 p2, p3). Each line / of H, between vertices p and q, is
replaced by a line /between one of the/?, and one of the qs in such a way
that the various lines /are disjoint. We next orient the triangles in H, that
is, we choose one of the two cyclic orders (pu /?2, p3) and (/?3, /?2, pλ) to
be the orientations of the 2?-edges. Suppose first that p has degree 3 in H,
and suppose the lines ll9 /2, /3 at/? have covers ΐl9 /~2, ί3 in H that contain
PvPnPi- Let el9 e29 e3 be the (directed) edges of H that enter/? along ll9

/2, /3. If, Case 1, π contains all three of ete^x (subscripts mod 3), we
choose the orientation (pl9 p2, p3). It is easy to see that in the contrary
case, Case 2, m must contain all three of e{ej}X9 in which case we choose
the other orientation (/?3, /?2, pλ). We orient the remaining triangles
(which correspond to vertices of degrees 1 and 2 in H) arbitrarily.

The graph H, with the given orientations, now satisfies the conditions
for it to be H ^ G = G(Ω, A, B) for a certain triple (Ω, A, B), whence
H ^ G*. Moreover, we have chosen the orientations in such a way that π
is the image of a C-orbit W in Ω. Since π contains all the edges of H, W
must contain all the initial points of yl-edges in G. If C were not transitive,
an orbit Wo other than W would then contain only points fixed by A9

hence would be a 5-orbit, mapping into an isolated point of H. This
contradicts the assumption that H is connected. We conclude that C is
indeed transitive. We have proved the following.

(2.1) THEOREM. Each transitive triple (Ω, A, B) determines uniquely a
connected cuboid graph H together with a Eulerian path m on H. Conversely
each pair consisting of a connected cuboid graph H with Eulerian path π
arises thus from some transitive triple (Ω, A, B)\ however, this triple fails of
uniqueness in two respects:

a vertex of degree 1 in H may be the image of
' * ^ either a l-cycle (fixed point) or of a 3-cycle of B,

the orientation of any 3-cycle of B mapping to a
vertex of degree 2 in H (that is, containing exactly

^ ' ' one point fixed by A) may be chosen arbitrarily
(that is, the cycle may be replaced by its inverse).
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If Ω contains no fixed point of either A or 2?, then G* will be a cubic
graph. Conversely, if H is a cubic graph, and π a Eulerian path on H, then
the ambiguities of (2.11, 2.12) do not arise, and a transitive triple (Ω, A, B)
is determined uniquely; in this triple clearly neither A nor B has a fixed
point.

(2.13) COROLLARY. The transitive triples (Ω, A, B) in which neither A
nor B has a fixed point correspond one-to-one with the Eulerian paths of
cubic graphs.

3. Reduction. We shall see that every cuboid graph with Eulerian
path can be obtained in a straightforward way from a cubic graph with
Eulerian path.

(3.1) LEMMA. Let a cuboid graph H be obtained from the disjoint union
of graphs Hx and H2 by first subdividing the lines lx and l2 of Hx and H2 by
vertices vx and v2, to obtain graphs H[9 H

f

2 and then adding a line I between
vx and v2. Let e be the {directed) edge along I from vx to v2. Let π be a
Eulerian path on H. Then after possible interchange of Hx and H2, the
following holds.

FIGURE 3.10

(3.11)

7Γ = πxeπ2e
 ιπ{ where mx, m[ are in Hx and π2 in

H2, and (apart from subdivision of edges) πxπ{ is a
Eulerian path on Hx and π2 is an Eulerian path on

(3.12) H2 is finite.
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Conversely,

if πxπ[ is an Eulerian path for H[ where πγ ends at
vl9 and π2 is an Eulerian path on H2 beginning and

^ ' ' ending at t>2, then π, as given in (3.11), is an
Eulerian path on H.

These assertions are all clear from an inspection of the graphs, if one
notes that, since π2 is finite and contains all edges of H2, H2 must be
finite.

(3.2) COROLLARY. If an infinite tree H has an Eulerian path, then H
must be simply infinite.

The same argument shows that if H is an infinite graph with an
Eulerian path and if deletion of some finite set of edges separates H into
components Hx,...,Hk, then all but one of the Hi must be finite. In
particular, if H is a locally finite planar graph with an Eulerian path, then
the complement of H in the plane can have at most one infinite compo-
nent.

Now suppose that if, Hl9 H2, and / are as above, and that H2 is a tree.
Then T = H2 U / is a tree, and we say H is obtained from Hx by attaching
the tree T at the point vl9 or that Hx is obtained from H by deleting the
tree T. We call T a branch of H. It is convenient to incorporate here a
degenerate case: if H consist merely of Hx with the line lλ subdivided by
the vertex vl9 we regard H as obtained from Hλ by attaching the trivial
branch consisting of the point vx alone, and Hx as obtained from H by
deleting this trivial branch.

From the above it is clear that if H has an Eulerian path and Hλ is
obtained from H by deleting a finite branch, then Hx has an Eulerian
path. The same is true if Hx is obtained by deleting a possibly infinite
number of finite branches, attached at different points. We seek to delete
all finite branches.

It is easy to see that if H contains an infinite ascending chain of finite
trees, then H is in fact the union of this chain, and is an infinite tree. If H
has an Eulerian path, then H is a simply infinite tree. Putting aside this
case, every finite branch in H is contained in a maximal finite branch,
and, after deleting all maximal finite branches, we arrive at a graph Hx

that contains no finite branch. If H has finite branches not contained in
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any maximal finite branch, then H is a simply infinite tree, and, by
deletion of finite branches, H can be reduced to a ray H.

It may be that Hλ contains an infinite branch. By (3.12) we see that
Hx can contain at most one maximal infinite branch, which must then be
simply infinite, and that, if it does, Hx is obtained by attaching this
infinite branch to a finite subgraph Ho, which will have an Eulerian path.
In this latter case, we say that Ho is obtained from hx by deleting a simply
infinite branch.

In all cases, by deleting branches we can pass from H to a subgraph
Ho that contains no branches, and which possesses an Eulerian path. In
the corresponding triple (Ωo, Ao, Bo), there can be no fixed point for Bo,
else there would be a vertex of degree 1 in Ho. Suppose that Ho is not a
single point; then no i?0-orbit can contain three fixed points of Ao. Since
HQ contains no vertex of degree 1, no 2?0-orbit can contain two fixed
points of Ao. Finally, if some J90-orbit contained a single fixed point of Ao,
it would give a vertex of degree 2 in Ho; this vertex can be removed by
detaching a trivial branch. We conclude that either Ho is a single point, or
that Ao and Bo are without fixed points and Ho is a cubic graph. Finally, if
a single point Ho is left after detaching branches from a larger graph H,
then H must in fact be a tree.

We have proved the following.

(3.3) THEOREM. Every cuboid graph H with Eulerian path is either a
finite or simply infinite tree, or is obtained, from a cubic graph Ho with
Eulerian path, by attaching finite trees and, in case Ho is finite, possibly one
additional simply infinite tree.

4. Appendix A. Enumeration of the permutations A, B of a finite set
such that A1 — B3 = I and AB is transitive.

In this appendix we give some lemmas concerning the enumeration
problem in the title. We raise some questions that we cannot solve.
Especially, we cannot give a reasonable algorithm for the counting prob-
lem. In the last part of this Appendix (Section 5), we do enumerate all
solutions of the conditions

(4.01) A2=l, B3 = 1, C = AB transitive on Ω,

for Ω of cardinality c = | Ω | no greater than 12.

If {A, B) is a solution of (4.01) and P G SymΩ, then (A', B') =
(Ap, Bp), where Xp = P~XXP, is also a solution, conjugate to (A, B). If
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Co is any cycle transitive on Ω, for example, Co = (1,2,... ,c), then clearly
every solution for (4.01) is conjugate to a solution of

(4.011) A2=\, B3=l, and AB = C o .

Since SymΩ contains exactly (c — 1)! cycles C of length c, the
number of solutions of (4.01) is (c — 1)! times the number of solutions of
(4.011).

If (A, B) and (Ap, Bp) are conjugate solutions of (4.011) then C£ =
Co, that is, P commutes with Co. Moreover, (A, B) = (v4p, 5 P ) if and
only if P commutes with A and B as well. In this case P effects an
automorphism of the graph H, and every automorphism of H is of this
kind. Now P commutes with Co if and only if P is a power of Co, whence
the group Aut H of all automorphisms of H is a subgroup of the cyclic
group, of order c, generated by Co. If Aut H has order s, then s divides
c — rs, where Cζ generates Aut H, and r is the number of solutions of
(4.011) that are conjugate to {A, B).

We find that the values s = 1, 2, 3, 6 occur as the number of
symmetries of finite cubic graphs H with Eulerian paths. We conjectured
that no other values could occur, and this has been proved by Bianchi and
Cori [2], indeed with the orders 2 and 3 replaced by any pair of distinct
primes. Obvious examples (see below) exhibit the values s = 1, 2, 3. The
case s — 6 is illustrated in (4.05) below, with c = 6. The value s — 6
occurs for infinitely many graphs H\ the construction of such graphs is
illustrated by Figure 4.051, in which A and B are without fixed points, and

c = 2.3.13 = 78.

FIGURE 4.05
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FIGURE 4.051

Unshaded triangles are oriented + shaded —.

In this Appendix, the Cauchy-Jordan lemma is used repeatedly. This
lemma states that if P, Q are cycles, then the transposition of an element
from P with an element from Q will hnk them into a single cycle.

In the notation of the earlier sections, we are addressing the problem
of enumerating all pairs (A, B) of permutations of a finite set Ω such that
A2 = 1, B3 = 1, and such that C = AB is transitive on Ω. If Ω has cardinal
I Ω I = c, we may suppose that Ω = {1,2,... ,c} and that C = (1,2,... ,c).
To avoid trivialities, we assume that c > 3.

Two solutions (A9 B) and (A\ B') are conjugate, or lie in the same
conjugacy class, if A' = P~XAP and Br — P~ιBP for some permutation P
of Ω. Thus P must be a power of C, and all conjugates of a solution
(-4, B) are obtained by repeated conjugation by C. This implies the
following.

(4.03)
The number of solutions in any conjugacy class is a
diυisior of c.

We next examine the possible number r of solutions in a conjugacy
class.

(4.04)
A conjugacy class consists of a single solution only
in the case c = 6 and A = (14)(25)(36), B =
(135)(246).
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Proof. We have assumed that C = AB = (1,2,.. .,c). Suppose that
(A, B) is the sole member of its conjugacy class. Then conjugation by C
leaves (A, B) unchanged, that is, C commutes with A and B. Since
C = AB, this implies that A and 5 commute. Since c >: 3, the permutation
A φ\ must exchange two elements/? and/?' of Ω. Now B cannot fix both
p and/?'. Therefore some element/? belongs both to a non-trivial A -orbit
(/?, /?') and to a non-trivial 5-orbit (/?, q, r). Since 4̂ and B commute,
(pA, qA, rA) = (/?', #', /*') is also a 5-orbit, whence it follows that (q, q')
and (r, r') are distinct ^4-orbits. But now the set {/?, q, r, //, #', r'} is
invariant under both A and B, hence must be all of Ω. We find that
C = (/?, #', r, /?', #, r') which, up to notation, gives the conclusion. D

The associated graph G = G(A, B) is the 'prismatic' graph shown in
Figure 4.05.

ίA n , . If c is a prime, then every conjugacy class contains
^ ' ' exactly c solutions.

We next observe that r is determined by the order of the automor-
phism group of the graph G = G(A, B).

The automorphism group of G(A, B) is cyclic, of
order s, where c — sr, and is generated by S — Cr.

(4.07) Thus r — c if and only if G admits no non-trivial
automorphism. In particular, if c is a prime, then G
admits no nontrivial automorphism.

An automorphism P of H fixes a vertex, a link, or
(4.08) a triangle only if P - 1, P2 - 1, or P3 = 1,

respectively.

Proof. Since P is a power of C, a transitive cycle on the vertices, P can
fix an element only if P — 1. If P fixes a link, then P2 must fix the end
points of the link, whence P2 = 1. Similarly, if P fixes a triangle, then P 3

fixes the vertices of the triangle, whence P 3 = 1.

We call a graph G strongly planar if it can be embedded in the plane
in such a way that all non-trivial 5-orbits have counterclockwise orienta-
tion. Since C is transitive, G must then be simply connected, and the
graph H = G/B must be a tree. (For example, a necklace of triangles does
not correspond to a transitive permutation C, since C will have one orbit
on the outside of the necklace and another on the inside.) Conversely, if
H = G/B, as abstract graph, is a tree, then H can be embedded in the
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plane, and, by arranging the edges at each vertex of H in the proper cyclic
order, we derive a strong embedding of G in the plane. We have shown
that

(4.10)
G is strongly planar if and only if H — G/B is a
tree.

Every automorphism of a finite tree has either a fixed edge or a fixed
vertex. If T is a non-trivial automorphism of H = G/B, a tree, then either
T fixes an edge, interchanging its end points, or T fixes a vertex. By virtue
of (4.08), T has order 2 or 3. This establishes

(4.11)
If G is strongly planar', then s =• 1, 2, or 3; thus the
number of solutions conjugate to (A, B) is c, e/2,
or c/3.

It is easy to see that if s = 2, then G can be embedded in the plane in
such a way that the symmetry S is effected by a rotation through m about
the midpoint of an edge; if s = 3, (? can be embedded in such a way that
S is effected by a rotation through 2π/3 about the center of a triangle.

REMARK. The 'prismatic' graph of Figure 4.05 is planar, as Figure
4.12 shows, but it is not strongly planar.

FIGURE 4.12

This graph has s = 6, as we have seen, but it is exceptional in that it is the
only graph with s = c. We note that there exist planar cubic graphs with
arbitrarily large symmetry groups. For example, the graph of Figure 4.13,
where there are n radial lines, evidently admits (even as orientation
preserving maps, if we orient the triangles properly) the dihedral group of
order 2n as symmetry group. But this graph does not have any Eulerian
trail. We are left with the following question.
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FIGURE 4.13

(4.14) PROBLEM. With the exception of the 'prismatic graph' does there
exist any graph G = G(A, B) with symmetry group of order s > 3? Equiva-
lency, does there exist any pair consisting of a cubic graph H on more than 2
vertices and an Eulerian trail τ on H, such that the automorphism group of
the pair (H,τ) has order s > 3? (Solved in Fig. 4.051.)

(4.15) THEOREM. For every value of c, c > 12, if 2 divides c there is a
class of solutions for which s — 2, and if 3 divides c there is a class for which
s = 3. In these cases, r = c/s < c.

Proof. If c = 0 (mod 6), we obtain s — 2 with a chain of triangles as
shown in Figure 4.16.

V A V A Λ
V V

F I G U R E 4.16

If c = 2, 4 (mod 6), we modify these figures by attaching spurs. For s-3
we construct graphs with rotational symmetry of order 3, as shown in
Figure 4.17, again possibly attaching spurs.

F I G U R E 4.17
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We turn now to a catalog of all solutions G = G(A, B) of (5.01) for
small values of c. We exhibit a representative for each conjugacy class,
and also indicate the value of s, that is, the size r = c/s of that conjugacy
class. The classes are listed according to the number of nontrivial orbits in
B, and, for two classes that agree in this attribute, precedence is given to
the classes with the fewest nontrivial orbits in A. (For the graphs, this
means, first, according to the number of triangles, and second, according
to the number of spurs, that is, links attached to only a single triangle.)
For each value of c, we explain why the list is exhaustive.

We have carried our catalog only as far as c = 12. Already at c = 6
we encounter the prismatic graph, which is not strongly planar. However,
we encounter no graph that is not planar, in the usual sense, for the
reason that the first such graph occurs for c = 18. Such a graph G is
shown in Figure 5.131; note that the associated quotient graph H = G/B
is cubic.

5. Appendix A, continued. Catalog of classes f or 1 < c < 12. In this
section each class, 1 < c < 12 is represented by a graph. All these graphs
are planar. Nonplanar graphs first arise for c > 12, but for c = 6, 9, 10,
11, 12 some of the graphs are not strongly planar. The size s of the
automorphism group of the graph is always indicated (s = c/r is tabu-
lated). Thus the number of solutions ofA2=l,B3=l,AB = (l2...c)is
obtainable. For example when c = 12, the number of solutions is Σ ri —
Σ c/Sj = 232, and the number of solutions ofA2= 1, AB = some 12-cycle
is 232 (11!).

When the orientation of a triangle is not indicated, orientation is
counterclockwise; shaded triangles are oriented clockwise.

c = 1 One class; trivial. s = 1

c = 2 One class s = 2

c = 3 One class / \ s = 3

(5.041) c = 4 One class <̂ J s = 1.

If the triangle is oriented clockwise, turn it over.
Then rotate the entire figure to obtain 5.041.
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c = 5 One class
(5.051) 1"> s=\.

The argument is the same.

c = 6 Three classes. The first class has a single triangle.

(5.061)
The automorphisms result from plane rotations.
The second class has two triangles joined by a
single link. *

(5.062) IS ζ\ s = 2

If either triangle is oriented clockwise, twist it
and turn it. The automorphisms are plane rota-
tions.

(5.063)
The graph is not strongly planar. Transitivity
requires that one triangle be oriented clockwise,
and the other counterclockwise. After a plane
rotation, we may suppose that it is the left
triangle that is oriented clockwise.

In all the remaining examples, 7 < c < 12, all automorphisms are also
plane rotations.

c = 7 Two classes. B has two nontrivial orbits, A has
two nontrivial orbits. The graphs show that A
cannot have four nontrivial orbits.

(5.071) Γ> A s = 1.j>—<
(5.072) \ A s=\.

Any triangle oriented clockwise can be twisted. Then the entire figure
can be rotated in the plane so that the triangle to which the first spur is
attached is the left triangle.
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c = 8 Three classes. Two triangles, two spurs.

(5.081) {> < , S = L

(5.082) Jy ^ s = 2m

(5.083) K X s = i

Any other graph with two triangles can be
rotated or twisted to have one of these three
shapes.

c = 9 Four Classes.

(5.091) \ <[ s = 1.

(5.092) [> 0 s = h

Any graph with two triangles can be rotated and
twisted into one of 5.091, 5.092. But if the right
triangle is twisted, its orientation is reversed.

w

(5.093) fs Δ (1 or (> r-y A s= 1.
N V

These two pictures represent the same class, since
one can be rotated into the other.

Suppose now that there are four links (rather than two). By Lemma
3.09, if D = (aβ)(yδ)C is a 9-cycle, then so also is (aβ)(γδ)D = C. Thus
two of the four links (and the triangles) are disposed as in 5.093.

Suppose w to be the vertex to which none of the four links is attached.
Every vertex except w has degree 3. Thus every triangle is connected to
every other triangle, and the graph may be redrawn so that w is on the
left-hand triangle (with the two extra links not yet attached). It is now
clear that v, the vertex before x on the left-hand triangle, must be attached
as in 5.094; the other possible attachments result in an ineligibile (intran-
sitive) graph.



300 J. L. BRENNER AND R. C. LYNDON

(5.094) 5 = 1 .

We remark that 5.094 is planar (in the usual sense); the embedding is
obtained by twisting the right-hand triangle:

c=10 Seven classes. If there are only two
triangles, there must be four spurs end-
ing at four additional vertices:

(5.101) 5 = 1 .

In every other case, there are three triangles and one spur. This spur
has a unique end point, so that s = 1 for these cases. Deletion of the spur
contracts the graph to 5.093 or 5.094. From 5.093, five classes arise. They
are

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

Λ

1
A

5 = 1 .

5 = 1 .

5 = 1 .

5 = 1 .

5 = 1 .

From 5.094, only one class arises, since there is only one place to
attach the spur.

(5.107) 5 = 1 .

c = 11 Ten classes. There must be three nontrivial B-
orbits, hence three triangles, so that two spurs are
attached to 5.093.



PERMUTATIONS AND CUBIC GRAPHS 301

Since there are 5 (free) vertices of degree 2 in 5.093, there are C% — 10
classes, all strongly planar, and all with s—\,

c = 12 Twenty-two classes, of which fourteen are strongly
planar.

If there are three triangles, there must be three spurs. The number of
classes in this case is C\ — 10; in each case s = 1.

If there are four triangles, there are several classes with three links
each; they are shown. Their automorphisms result from plane rotations.

(5.1211) v/\̂  S = 3'

(5.1212) 0 Δ—Δ—<j s=\.

(5.1213)

(5.1214) 0 η Δ^J s = 2.

More classes arise if there are four triangles and five links. First
consider the number of ways of adding two links to the class (5.1211).
After the links are added, either: (i) each of three triangles has three
attached links (one class, not strongly planar); or (ϋ) two triangles have
three links, and the other two have two links (four classes, not strongly
planar).

(5.1215)

(5.1216-5.1219)

Next, consider the number of ways of attaching more links in Fig.
5.1212. One way to do this is to attach both links at the four vertices of
the end triangles.
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(5.1220)
This gives a new class (with s = 1). It is not
strongly planar. Any other way of adding two
links to 5.1212 either results in an intransitive
AB, or else gives a figure that is isomorphic to
one of the preceding.

The same remarks apply to Figures 5.1213, 5.1214.

(5.1221)

(5.1222) = 2.

The automoφhisms of all these classes can be exhibited as plane
rotations; the canonical form of each skeleton is obtained by flipping,
rotating, and twisting.

The number of classes for the cases c = 13, 14 is easily obtained from
the pictures for c = 12.

We now exhibit some graphs (with C transitive) for c = 18, 24.

FIGURE 5.131

A nonplanar graph

withc= 18, C = AB
transitive

FIGURE 5.132

A nonplanar graph
with c - 24, C - AB

transitive

FIGURE 5.133

A planar graph with c — 18, not strongly
planar, C = AB transitive.
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To see that 5.131 is nonplanar, note that it can be contracted to K3 3,
which is known to be nonplanar [5, pp. 135-156].

Note further that example 5.131 can be generalized as follows. Let k
be odd, and attach 2 k equally spaced triangles to a circumference, all
facing inward. Connect opposite triangles, and orient all triangles (with
one exception) clockwise. 5.131 is the case k = 3; 5.063 is the case k — 1.
The cubic graph so obtained has a Eulerian circuit. For k > 3, the graph is
nonplanar. We have proved:

5.14 THEOREM. There exists a cubic graph with 6k vertices that has a
Eulerian trail, if k is odd.

5.15. Ifk is even, there cannot be a Eulerian trail. For C would have to
be an odd permutation, that is, a cycle on 6k symbols. However, AB = C
is impossible, since both A and B are even permutations (A is the product
of 3k transpositions.)

5.16 THEOREM. If (and only if) k is odd, k > 1, there exists a cubic
graph with V = 2k vertices.

Proof of =» . To construct H, let T be a linear tree with 2 k vertices,
hence 2 k — 1 edges. Form Γ* by replacing (in one way or another) each
vertex of T by a triangle, positively oriented. Now CΓ* = AT*BT* is
transitive on the vertices of T*. A free vertex is a vertex (of a triangle) not
on a link. Let the 2k + 2 free vertices of Cτ* be labeled vλ,...,v2k+29 * n

the order in which they occur in Cτ*.

i v—*—« λ λ <0""N

;

FIGURE 5.161. The construction.

Since k is odd, 4 divides 2 k + 2. Thus the free vertices can be divided
into {(k + 1) blocks of four vertices each: t?4j.+ 1,...,t}4|.+4 (0 < / <
\{k + 1)). Form H by drawing links (t>4 i + 1, v4i+3), (v4i+2, v4i+4).

The final step is to contract this graph at every triangle (compare
Figure 5.133).

FIGURE 5.162.
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5.17 REMARK. The same idea works if Tis any tree (not necessarily a
linear tree) with 2 k vertices.

6. Appendix B. Cubic Graphs with an Eulerian path. In §5 we noted
that if a cubic graph H possesses an Eulerian path π, then H must have
v = 2k vertices, for some odd natural number k. We indicate how to
enumerate all such H and m for υ = 2 and for υ = 6. We do this partly to
indicate the abundance of such pairs (giving a method for finding them)
and partly to illustrate the apparent difficulty of obtaining any overall
view of the totality of cubic graphs with Eulerian paths. Note that 5.161 is
not the only possible cubic graph with 2 k vertices and with a Eulerian
path.

Our basic method is that of adding a line. A set Σ of (reduced) paths
on a finite cubic graph H will be called an Eulerian system if (i) no path
occurs in Σ if its inverse occurs in Σ, (ii) each directed edge of H occurs
exactly once in some path π of the set Σ. For our inductive construction, it
is technically convenient to count the circle Ho as a cubic graph with
v = 0 vertices, and with an Eulerian system consisting of two paths, which
describe the circle in its two senses. Now let H be any finite nonempty
cubic graph, not necessarily connected. We mark any two distinct points
px and/>2 interior to two (not necessarily distinct) lines lx and /2 of H, and
form a new graph H' by introducing a new line / joining pλ and/?2. Then
H' is a cubic graph with two more vertices than H. Moreover, every finite
nonempty cubic graph can be obtained from a disjoint union of replicas
of the circle graph Ho by iteration of this construction.

If 77Ί and π2 are paths (not necessarily distinct) in an Eulerian system
Σ for H, we obtain an Eulerian system Σ1 for Hr by modifying πx and π2

in the manner shown in Figure 6.01.

H: \\

H':

f ί
FIGURE 6.01
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(We do not spell out a formal description of this construction, since it will
be clear what is being done in all the special cases that arise below.) By
the familiar argument of Cauchy-Jordan in the theory of permutation
cycles, we see that if πλ and ττ2 are distinct, they are replaced by a single
path in Σ', while, if mx — π2, then this path is replaced by two paths in Σ'.
In any case, Σ' has cardinality ) Σ' | = | Σ | ± 1. This establishes the follow-
ing.

6.02 PROPOSITION. Let Σ be an Eulenan system on a cubic graph H
with υ = 2k vertices, where k>0. Then 1 < | Σ | < k + 2, and | Σ | = k
(modulo 2).

It is easy to see that every Eulerian system Σ on H' can be obtained
from a system Σ on H by the construction suggested by the figure.

We state another consequence of the method of adding a line.

6.03 PROPOSITION. Let K be any finite cubic graph. Then, by succes-
sively adding lines, K can be embedded in a finite cubic graph H that
possesses an Eulerian path. In particular if K has the property that deletion
of no pair of lines separates K into two or more components, then H can be
chosen with the same property.

Two Eulerian systems Σj and Σ 2 on the same cubic graph H will be
called equivalent if some automorphism (preserving incidences) of H
carries one into the other. We shall enumerate only equivalence classes [Σ]
of Eulerian systems. With each path TΓ in an Eulerian system we associate
the cyclically ordered sequence of the vertices on TΓ, in the cyclic order in
which they occur on TΓ. The set of cycles σ associated with the paths of a
(fully labeled) Eulerian system Σ on H evidently determines the graph H
uniquely, and determines the paths π of Σ uniquely except for the choice
of edges that connect a pair of vertices whenever there are two or three
such edges. In any case, the set of cycles σ determines the equivalence
class [Σ] uniquely.

Evidently two systems Σx and Σ 2 are equivalent if and only if there
exists a permutation of the vertices carrying the set of cycles associated
with Σj into the set associated with Σ 2 .
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If an Eulerian system Σ consists of a single path τr9 that is, if π is an
Eulerian path, we call Σ or π symmetric if TΓ is equivalent to its inverse

π
- 1

We now turn to the cubic graphs D with v — 2 vertices, and with no
component Ho. There are in fact only two such graphs,

o

ό
and D2:

By inspection we see that Dλ admits only a single class [Σ], with | Σ | = 3,
while D2 admits two classes [ΣJ, [Σ 2 ], with | S t | = 3 and | Σ 2 | = 1. In
particular, D2 is the only cubic graph with two vertices that admits a
(reduced) Eulerian path TΓ, and the class of this path is described by the
cycle σ = (a b a b a b).

The cubic graphs Q with four vertices and no component Ho are of
three sorts:

(i) a disjoint union of copies of Dt and DJ9 ij E {1,2}
(ii) those obtained by adding a line to the disjoint union of a copy of

^ and a copy of if0, i G {1,2};
(in) those obtained by adding a line to a copy of Di9 i E {1,2}.

Since our only interest in graphs with four vertices is to use these for
constructing graphs with six vertices that admit an Eulerian path, we
confine attention to those 4-vertex graphs Q that possess an Eulerian
system Σ with | Σ | = 2. Inspection shows that these are as follows:

C dt

ψ

The lettering of the vertices is for later reference. It is easy to see that each
o f Qv Qn a n d Q3 admits only a single class of Eulerian systems Σ, with
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I Σ f I = 2. These have cycles as follows:

Σx: (ababab),(cdcdcd);

Σ2: (cddcabacbab), (d);

Σ3: (acdcab), (bdcdba).

For Q4 there are exactly two classes of Eulerian systems, Σ 4 and Σ 4

with I Σ 4 I = I Σ 4 I = 2. To see this observe first that if Σ = {πx, π2], then
I σ i I+1 σ2 l~ 12. By symmetry, we may suppose that I σ J ^ ό . Now
j σt | = 0, 1, or 2 is clearly impossible. If | σλ \= 3, we may suppose that
σx = (a b c); this uniquely determines that σ2 — (acdb ad cb d). If
I σ i l~ 4, we may suppose that σx = (abcd); this uniquely determines
that o2 — (a db a cb dc). Next, | σx \ — 5 is impossible. To see this, we
may suppose that σx = (ab ex y). Since xφ a, b, c, we must have x — d
and σx = (a b c dy). But now y cannot be any one of a, b, c, d. Also,
I σ, I = 6 is impossible. To see this we may suppose that σx = (abexyz).
Now xφb,c, y φ a,c, and z ¥= a, b. Moreover, x, y, and z must be
distinct. This implies that at most one of x, y, z is d, and otherwise that
x = a, y = b, and z — c. But then σx must contain two segments ab, be, or
ca, impossible.

In summary, we have two classes [Σx] and [Σ4], as follows:

Σ 4 : (αbc), (αcdbαdcbd);

Σ4: (αb c d), (αdb αcb dc).

Now every cubic graph H with six vertices and an Eulerian path π
must be obtainable from one of Ql9 Q2, Q3, Q4 by adding a line. There is
a fairly large number of ways of adding a line to one of these Qt but, with
some effort, one can see that those of the resulting graphs that admit an
Eulerian path are of only five types, as follows:

H



308 J. L. BRENNER AND R. C. LYNDON

These five graphs are nonisomorphic. Hx is the only one that can be
disconnected by deleting a single edge. H5 is the only one that cannot be
embedded in the plane. Of the remaining three, H2 contains exactly one
pair of lines with the same end points, while H3 contains two such pairs
and H4 contains no such pair.

It is easy to see that Hx admits only one class of Eulerian paths π9

with cycle

σ = (cabacbabcdefedfefd).

This cycle is necessarily equivalent to its inverse: that is, the class [π] is
symmetric.

In H2 it is easy to see that if an Eulerian path contained a segment
cefd, it could not be completed to contain an additional segment ef and
two segments fe. We conclude that π must contain segments cefec and,
similarly, dfefd. Now deletion of the loops efe and fef from these segments
reduces π to π' with cycle σ' = (a d b c a b d a c b), or an equivalent cycle.
To regain π from π\ either occurrence of c may be replaced by cefec, and
either occurrence of d may be replaced by dfefd. These replacements may
be made either at occurrences of c and d that are separated in π' by a
single letter, or at occurrences that are separated by two letters. We thus
have, within equivalence, two cycles:

σx = (ad fe fdb c e fe cab d acb);

o2 — (adfefdbcabdacefecb),

where σx is not equivalent to σ2 or to σ2

ι. On the other hand, the
permutation (cd)(ef) carries σx to σf *, and the permutation (ab)(cd)(ef)
carries σ2 to σ2

ι. In summary, we have two symmetric classes on H2.

In H3, by the argument above, an Eulerian path π must contain
segments aefea, bfefb, acdca, and bdcdb. Now one of the displayed <z's
must be followed by one of the displayed 6's, whence we must have either
aefeabfefb, aefeabdcdb, or a segment equivalent under the permutation
(ce)(df). Each of these two segments admits a unique completion, as
follows:

σ{ = (ae fe abfe f b acdcab d c db);

o2 — (aefeabdcdbacdcabfefb).

In σ2 the occurrences of the parts cdc, dcd, are separated by those of efe
and fef, while in σλ they are not. Thus σx is not equivalent to σ2 or σ2

ι.
Here (ab)(cf){de) carries ox to σf1, and (ab)(cd)(ef) carries σ2 to σ2

ι. As
with i/2, we have two symmetric classes on H3.
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We now look for Eulerian paths π on H4. Observe that H4 can be
obtained from Q3 by adding a line / between vertices e and /.

We denote by Q3 the graph:

If π is an Eulerian path on H4 it must contain edges efaxidfe, hence have
the form (1) π = (αxefα2fe) = (eαxefα2f) where (αx) and (α2e) con-
stitute an Eulerian system on Q3. The corresponding paths (βx) and (β2)
will then constitute an Eulerian system B on Q3. Since \B\= 2, 2? is
equivalent to Σ 3 under some automoφhism of β 3 . This implies that under
some element of the fours group V = {1, (α&), (cJ), (αb)(cd)}, the cycles
TΓJ, τr2 associated with (βλ), (β2) go into the cycles α1 ?α2 of Σ 3, and,
evidently, with τx \-> σ1? τ2 h-> σ2. Since every automoφhism in F can be
lifted to H4, after replacing π by an equivalent path we may assume that
τx — σv τ2 = σ2, except that now, in (1), e and/may be exchanged.

We have then

(βx) = (αcdeαb), (β2) = (bdedbα).

The corresponding paths (/?{), (/82) in Q3 will be obtained by insertion of
an e and an/in each of (/?!), (β2), in such a way that (/?{), (β2) constitute
an Eulerian system on Q'3. There are four possibilities:

EE: (αcfdcαeb) (bdfcdbeα)

EL: (αcdfcαeb)(bdcfdbeα)

LE: (αcfdcαbe)(bdfcdbαe)

LL: (αcdfcαbe)(bdcfdbαe)
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The notation EE means, for example, that, in (/?{), e is introduced early
into the part aba, and/ i s introduced early into the part cdc. Replacing π
by π~ι interchanges EE with LL and EL with LE. Thus it suffices to
consider cases EE and EL (with the reservation that all inverses of
resulting π must be considered).

We consider the case EE. Here π must contain a segment ebacfdcae or
fdcaebaef; the complementary segment is then fully determined. We
obtain

πx = (ebacfdcae 'fcdbeabdfj

π2 = (fdcaebaef eabdfcdbej.

From EL we obtain similarly

τr3 = (ebacdfcae fdbeabdcfj

π4 = y fcaebacdf - eabdcfdbej .

The underlined blocks are the only parts of the form xyuvyx. In π{ and ττ2

the blocks are separated by two parts of length 3, while in π3 and ττ4 by
parts of lengths 2 and 4. Therefore {fly*1, W^ 1 } is disjoint from {πf11, ^4±1}

Evidently the permutation (ac)(bd)(ef) carries πλ to ττ2. Now TΓJ is not
equivalent to TΓJ"1. TO see this, note that any permutation carrying πλ to
7Γj~λ would have to carry the block acfdca of πx to one of the two blocks in
irf ι. In each case, this is incompatible with its action on the three letters e,
/, and c.

The permutation (ab)(cd) carries ττ3 to π4. Moreover, the permutation
(ad)(bd)(cf) carries m3 to iτfι.

In summary, on H4 there exist three classes of Eulerian paths:

We now look at the Eulerian paths on H5. The explanations are
analogous to those for H4, and we present only an outline of the
calculations.

Case I. π is obtained by linking some Σ automorphic in QA to
^4 — {Pi? Pi) by a line / between points e a n d / o n disjoint lines of Q. We
obtain equivalent *nr by taking Σ 4 in place of Σ, and /joining some other
points ef and/ ' on disjoint lines in Q. We may suppose e' is on an arc-line
in the figure, and/ ' on the opposite spoke. We now drop primes.
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We have Σ 4 = {ρu p2} where

Pi = (abc), p2 = (acdbadcbd)

311

Since Σ 4 has rotational symmetry, we may suppose that e is on ab and /
on cd9 yielding

Q'

Passing to Q\ ρt and ρ2 become

Pi = (aebc), p2 — (acdβeadfcbd).

Now m must contain a part ebcae, and there are 2 ways to complete it.
These are

πx = (ebcae fcbdacfdbeadf)

π2 — (ebcae fdbeadfcbdacf).

But the permutation (α&) carries ^ to wf *, while (abf){cd) carries TΓ, to
π2. Thus there is exactly one (symmetric) class.

Case II. IT is obtained by adding a line / between e and / from some
system Σ = {Pi, p2} on ζλ Then some automorphism of Q carries Σ to
Σ4, e and / to points e\ /', and TΓ to some π' equivalent to π. Changing
notation, and replacing π by an equivalent path, we may suppose that π is
obtained from Σ 4 by linking two points e and/on disjoint lines of Q. We

may suppose e is on an arc-line in the figure

the opposite spoke.

and / on
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Now Σ4 — [πv π2} where

Pj = (abed), p 2 = (abdacbdc).

It is not possible that e is on the bottom arc, since in this case neither e
nor/would be on pl9 and / would not link pλ and p 2 .

If e is on the second of the consecutive arcs of p 1 ? we replace π9 p,, ρ2

by π~\ pf1, P21. Now e is on the first arc of pj"1. Thus we may assume
that e is on the arc ab. Now H5 is as previously shown, with ρλ and ρ2 as
above.

H5:

, p1 and p 2 become

p\ = (aebcfd), ρ2 = (adbeacbdfc).

As in Case I, we obtain 2 possibilities:

iΓj = (ebefdae fcadbeacbdf)

π2 = (bdaebcf eacbdfcadbe).
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Here we use the fact that each of πx and m2 has exactly 3 blocks of the
form x***;c***;t, with successive blocks overlapping in a word of length 3.
This severely limits permutations θ carrying ττx to ττ2.

We find that the permutation (ac)(bd)(ef) carries πx to ir2- We find
similarly that (bf)(cd) carries πx to πf1.

Again we have a single symmetric class. But (ae)(bdfc) carries this
class into the class πx of Case I. Thus there is just one class of Eulerian
paths in H5. In all of Hl9... 9H5 we have a total of 9 classes, consisting of
7 symmetric classes and one pair of inverse classes.

We conclude with two observations. First, there are many finite cubic
graphs that admit no Eulerian path. For example any graph with a spur of
the form —o fails to have a (reduced) Eulerian path. Examples are

6 ό

(Chemists are familiar with these patterns.) Another example, with 6

vertices, is Q Q This graph is 2-arc-connected. A 3-arc-connected cubic

graph with no (reduced) Eulerian path can be constructed by adding, to
i/4, an extra line from the upper ellipse to the lower ellipse. Clearly, there
is no need to look for a 4-arc-connected cubic graph of any sort: it does
not exist.

Second, any classification of Eulerian paths π on a cubic graph H
with v vertices amounts to a classification of the (isomoφhism types of)
triples (Ω, A, B) where A2 = B3 — 1, A and B have no fixed points, AB is
transitive, and | Ω | = υ. For | Ω | = 6, there are nine isomoφhism classes
of such triples. For 7 of these classes, (Ω, A, B) =* (Ω, A, B~ι), while the
remaining 2 are nonisomoφhic, but of the form (Ω, Ax, Bx) and
(Ω, Al9 #Γ ι ) for certain Al9 Bx.
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