EXPLICIT PL SELF-KNOTTINGS AND THE STRUCTURE OF PL HOMOTOPY COMPLEX PROJECTIVE SPACES

Douglas Meadows

Abstract

We show that certain piecewise-linear homotopy complex projective spaces may be described as a union of smooth manifolds glued along their common boundaries. These boundaries are sphere bundles and the glueing homeomorphisms are piecewise-linear self-knottings on these bundles. Furthermore, we describe these self-knottings very explicitly and obtain information on the groups of concordance classes of such maps.

A piecewise linear homotopy complex projective space $\widetilde{C P^{n}}$ is a compact PL manifold $M^{2 n}$ homotopy equivalent to $C P^{n}$. In [22] Sullivan gave a complete enumeration of the set of PL isomorphism classes of these manifolds as a consequence of his Characteristic Variety theorem and his analysis of the homotopy type of G/PL. In [15] Madsen and Milgram have shown that these manifolds, the index 8 Milnor manifolds, and the differentiable generators of the oriented smooth bordism ring provide a complete generating set for the torsion-free part of the oriented PL bordism ring. Hence a study of the geometric structure of these exotic projective spaces $\widetilde{C P^{n}}$, especially with regard to their smooth singularities, may extend our understanding of the PL bordism ring. This paper begins such a study in which we obtain a geometric decomposition of $\widetilde{C P}{ }^{n}$, into (for many cases) a union of smooth manifolds glued together by PL self-knottings on certain sphere bundles. We also obtain information on groups of concordance classes of PL self-knottings from these decompositions and a number of fairly explicitly constructed examples of self-knottings. I would like to thank by thesis advisor R. J. Milgram for many helpful discussions.
I. Sullivan's classification of PL homotopy $\widetilde{C P}^{n}$ proceeds as follows: Given a homotopy equivalence $h: \widetilde{C P}^{n} \rightarrow C P^{n}$ make h transverse regular to $C P^{J} \subset \widetilde{C P^{n}}$, the standard inclusion. The restriction of h to the transverse inverse image $h^{-1}\left(C P^{j}\right)=N^{2 j} \subset \widetilde{C P^{n}}$ is a degree one normal map
with simply connected surgery obstruction

$$
\sigma_{j} \in P_{2 J}=\left\{\begin{array}{ll}
Z, & j \text { even } \\
Z / 2 Z, & j \text { odd }
\end{array}\right\}
$$

For $j=2, \ldots, n-1$ these obstruction invariants yield a complete enumeration - i.e. the set of PL isomorphism classes of $\widetilde{C P}^{n}$ is set-isomorphic to the product $Z \times Z_{2} \times Z \times \cdots \times P_{2(n-1)}$ with $n-2$ factors.

We will use the following notation to specify elements with this classification:

$$
\begin{equation*}
\widetilde{C P^{n}} \leftrightarrow\left(\sigma_{2}, \sigma_{3}, \ldots, \sigma_{n-1}\right) \tag{1}
\end{equation*}
$$

will denote the PL homotopy $\widetilde{C P}^{n}$ with invariants $\sigma_{j} \in P_{2 j}$ in Sullivan's enumeration.

We recall that a PL homeomorphism $f: M \rightarrow M$ is a "self-knotting" and M is said to be "self knotted" if f is homotopic but not PL isotopic to the identity. Also, PL homeomorphisms $f, g: M \rightarrow M$ are "PL concordant" (pseudo-isotopic) if we have a PL homeomorphism $F: M \times I \rightarrow M \times I$ with $F(m, 0)=(f(m), 0)$ and $F(m, 1)=(g(m), 1)$ for $m \in M$. We then define:
(2) $S K(M)=$ "the group (under composition of maps) of PL concordance classes of PL self-knottings of M."

Unless otherwise noted " $C P^{j} \subset C P^{n}$ " means the standard embedding of $C P^{j}$ onto the first $(j+1)$ homogeneous coordinates of $C P^{n}$ or a smooth ambient isotope of this embedding. In this context we define:
(3) $\nu_{N}\left(C P^{j}\right)=$ " the smooth tubular disc bundle neighborhood of the embedding $C P^{j} \subset C P^{N}$."

Our results are as follows:
Theorem A. For $n \geq 4$ and $\sigma_{2} \equiv 0$ (2) every $\widetilde{C P}{ }^{n} \leftrightarrow\left(\sigma_{2}, \sigma_{3}, \ldots, \sigma_{n-1}\right)$ is $P L$ homeomorphic to the identification space

$$
\left[\widehat{C P}^{n}-\nu_{n}\left(C P^{1}\right)\right] \cup_{\varphi_{o_{n-1}}}\left[\nu_{n}\left(C P^{1}\right)\right]
$$

where $\widehat{C P}^{n} \leftrightarrow\left(\sigma_{2}, \sigma_{3}, \ldots, \sigma_{n-2}, 0\right)$ and the identification is over a PL homeomorphism

$$
\varphi_{\sigma_{n-1}}: \partial \nu_{n}\left(C P^{1}\right) \rightarrow \partial \nu_{n}\left(C P^{1}\right)
$$

We prove Theorem A in Part II by a careful description of Sullivan's classification and an easy h-cobordism argument.

An immediate consequence of Theorem A is the decomposition of $\widetilde{C P^{n+1}} \leftrightarrow\left(0, \ldots, 0, \sigma_{n}\right)$ into

$$
\widetilde{C P^{n+1}}=\left[C P^{n+1}-\nu\left(C P^{1}\right)\right] \cup_{\varphi_{0}}\left[\nu\left(C P^{1}\right)\right] .
$$

Theorem B. For every $n \geq 4$ and non-zero $\tau \in P_{2 n}$ there is a $P L$ self-knotting

$$
\varphi_{\tau}: \partial \nu_{n+1}\left(C P^{1}\right) \rightarrow \partial \nu_{n+1}\left(C P^{1}\right)
$$

which will suffice for the glueing homeomorphism in Theorem A.
We establish this theorem by an explicit construction of φ_{τ} in Part III.
II. Here we prove Theorem A by beginning with a construction which shows how to obtain $\widetilde{C P^{n+1}} \leftrightarrow\left(\sigma_{2}, \ldots, \sigma_{n-1}, \sigma_{n}\right)$ from $\widetilde{C P^{n}} \leftrightarrow$ $\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)$ for $n \geq 4$:

Let $h: \widetilde{C P}^{n} \rightarrow C P^{n}$ be a homotopy equivalence, and let $M^{2 n}$ be the compact ($n-1$)-connected Milnor or Kervaire manifold of Index $8 \sigma_{n}$ or Kervaire-Arf invariant σ_{n} as the case may be [4]. Let $r: M^{2 n} \rightarrow S^{2 n}$ be a degree one map. Then $h \# r: \widetilde{C P} \# M^{2 n} \rightarrow C P^{n} \# S^{2 n}=C P^{n}$ is a degree one normal map with 1-connected surgery obstruction σ_{n}. We define \hat{H} as the D^{2} bundle over $\widetilde{C P}{ }^{n} \# M^{2 n}$ induced by $h \# r$ from H, the disc bundle associated to the complex line bundle over $C P^{n}$. Let $\hat{h}: \hat{H} \rightarrow H$ be the bundle mapping. We note that the map $h \# r$ is $(n-1)$-connected with homological kernel $K_{n}=\pi_{n}\left(M_{0}^{2 n}\right)$ where $M_{0}^{2 n}=M^{2 n}-D^{2 n}$. The bundle \hat{H} is trivial over $M_{0}^{2 n}$ since $M_{0}^{2 n}=(h \# r)^{-1}$ (point). In $M_{0}^{2 n} \times D^{2}$ we can represent $\pi_{n}\left(M_{0}^{2 n}\right)$ by disjointly embedded spheres $S^{n} \hookrightarrow M_{0}^{2 n} \times S^{1}$ with trivial normal bundles. This follows by general position and the fact that the normal bundles of the generating spheres $S^{n} \subset M_{0}^{2 n}$ are the stably trivial tangent disc bundles $\tau\left(S^{n}\right)$. We now attach a solid handle $D^{n+1} \times$ D^{n+1} along $S^{n} \times D^{n+1} \subset M_{0}^{2 n} \times S^{1}$ for each generator of $\pi_{n}\left(M_{0}^{2 n}\right)$ and extend the map \hat{h} across these bundles. This is possible since the embedded spheres are in the homotopy kernel of \hat{h}. Call the resulting PL manifold \tilde{H} and the extended map $\hat{h}: \hat{H} \rightarrow H$. In the process of extending \hat{h} across the handles, we may guarantee that \tilde{h} is a map of pairs $(\tilde{H}, \partial) \rightarrow$ (H, ∂). We observe, then, the:

Proposition. $\tilde{h}:(\tilde{H}, \partial) \rightarrow(H, \partial)$ is a homotopy equivalence of pairs.

This follows directly from the construction as \tilde{H} deformation retracts onto $\overparen{C P^{n}} \# M^{2 n} \cup\left\{e_{\alpha}^{n}\right\}$ where the n-cells e_{α}^{n} are attached so as to kill the entire homology kernel of $(h \# r)$. Hence $\tilde{h}: \tilde{H} \rightarrow H$ is a homology isomorphism, and as \tilde{H} is 1-connected we have by Whitehead's theorem that it is a homotopy equivalence. The restriction of \tilde{h} to the boundary is likewise a homology isomorphism as the boundaries, $D^{n+1} \times S_{\alpha}^{n}$, of the solid handles are precisely the surgeries needed to cobord $\hat{h}: \partial \hat{H} \rightarrow \partial H$ to a homotopy equivalence.

In particular as $n \geq 3$ we note that the boundary manifold, $\partial \tilde{H}$, is a PL $(2 n+1)$-sphere by the Poincaré conjecture. Thus, we attach $D^{2 n+2}$ to \tilde{H} as the PL cone on $\partial \tilde{H}$ and define:

$$
\widetilde{C P^{n+1}}=\tilde{H} \cup c(\partial \tilde{H}) \quad \text { and } \quad h: \widetilde{C P}^{n+1} \rightarrow C P^{n+1}=H \cup c(\partial H)
$$

by radial extension of \tilde{h} into $c(\partial \tilde{H})$.
Observe that h has 'built-in"' transverse inverse image $\widetilde{C P^{n}} \# M^{2 n}=$ $h^{-1}\left(C P^{n}\right)$ with surgery obstruction σ_{n}. Hence, this $\overparen{C P^{n+1}} \leftrightarrow\left(\sigma_{2}, \ldots\right.$, $\left.\sigma_{n-1}, \sigma_{n}\right)$ is the space we require.

Now, given $\overparen{C P^{n}} \leftrightarrow\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)$ let us consider a bit more closely the suspension and generalized suspension constructions described above. First, assume the homotopy equivalence

$$
h: \widetilde{C P}^{n} \rightarrow C P^{n}
$$

is the identity map on a disc $D^{2 n} \subset \widetilde{C P^{n}}$. Let $\widetilde{C P_{0}^{n}}=\widetilde{C P^{n}}-D^{2 n}, M_{0}^{2 n}=$ $M^{2 n}-D^{2 n}$ and observe that $\widetilde{C P^{n}} \# M^{2 n}=\widetilde{C P}_{0}^{n} \cup_{\partial} M_{0}^{2 n}$. Now, let $\widetilde{C P}^{n+1}$ $\leftrightarrow\left(\sigma_{2}, \ldots, \sigma_{n-1}, 0\right)$ be the suspension ${ }^{1}$ of $\widetilde{C P}^{n}$ with homotopy equivalence

$$
\tilde{h}: \widetilde{C P}^{n+1} \rightarrow C P^{n+1}
$$

and $\widehat{C P}^{n} \leftrightarrow\left(\sigma_{2}, \ldots, \sigma_{n-1}, \sigma_{n}\right)$ be the general suspension of $\widetilde{C P}^{n}$ with homotopy equivalence

$$
\hat{h}: \widehat{C P}^{n+1} \rightarrow C P^{n+1}
$$

Let $D^{2 n} \subset C P^{n}$ be the image $h\left(D^{2 n}\right)$ and let $C P^{1}=S^{2} \subset C P^{n+1}$ be represented as $D_{*}^{2} \cup c\left(\partial D_{*}^{2}\right)$ in $C P^{n+1}=H \cup c(\partial H)$ with D_{*}^{2} the fiber in H over the center of the disc $D^{2 n}$. Then $\nu_{n+1}\left(C P^{1}\right) \subset C P^{n+1}$ may be represented as the set $D_{*}^{2} \times D^{2 n} \cup c(\partial H)$, a $D^{2 n}$ bundle over the sphere $S^{2}=D_{*}^{2} \cup c\left(\partial D_{*}^{2}\right)$.

Now let $\tilde{V}=\tilde{h}^{-1}\left(\nu_{n+1}\left(C P^{1}\right)\right)$ and $\hat{V}=\hat{h}^{-1}\left(\nu_{n+1}\left(C P^{1}\right)\right)$ in $\widetilde{C P}^{n+1}$ and $\widehat{C P}^{n+1}$ respectively. We observe directly from the constructions that

[^0]$\overparen{C P}{ }^{n+1}-\tilde{V}$ and $\widehat{C P}{ }^{n+1}-\hat{V}$ are precisely the same spaces. To prove Theorem A we must show that \tilde{V} and \hat{V} are PL homeomorphic to $\nu_{n+1}\left(C P^{1}\right)$.

Lemma 1. $\tilde{V} \cong \nu_{n+1}\left(C P^{1}\right)$ if σ_{2} is even.
We observe this from PL block bundle theory as follows: by construction \tilde{V} is the union of two discs $D_{*}^{2} \times D^{2 n}$ and $c(\partial \tilde{H})=D^{2 n+2}$ along $S_{*}^{1} \times D^{2 n}$. Hence \tilde{V} is trivially a block bundle regular neighborhood of $C P^{1}=D_{*}^{2} \cup c\left(\partial D_{*}^{2}\right)$. Assume the obstruction σ_{2} is even. Then as noted by Sullivan ([23] p. 43) the splitting obstruction of the homotopy equivalence

$$
\tilde{h}: \widetilde{C P^{n+1}} \rightarrow C P^{n+1}
$$

along $C P^{1}$ vanishes as it is the $\bmod 2$ reduction of σ_{2}. Hence, by a homotopic deformation we may conclude that the transverse inverse image of $C P^{1}$ by \tilde{h} is $C P^{1} \subset \widetilde{C P^{n+1}}$. Moreover, as any two homotopic PL embeddings of $C P^{1} \subset \widetilde{C P^{n+1}}$ are ambiently PL isotopic (for $n \geq 2$ by Cor. 5.9 p. 65 [21]), we see by appeal to the uniqueness of normal block bundles (regular neighborhoods) [20] that \tilde{V} is block bundle isomorphic to the bundle induced from $\nu_{n+1}\left(C P^{1}\right)$ by \tilde{h}. Conversely, the same argument on the homotopy inverse of \tilde{h} implies $\nu_{n+1}\left(C P^{\mathrm{1}}\right)$ is block bundle induced from \tilde{V}. As we are in the stable block and vector bundle range and $\pi_{2} B_{\mathrm{PL}}=\pi_{2} B_{0}=Z_{2}$ we can conclude that \tilde{C} and $\nu\left(C P^{1}\right)$ are block bundle isomorphic; hence PL homeomorphic.

Lemma 2. $\hat{V} \simeq S^{2}$ (homotopy equivalent).

Proof. By construction $\hat{V}=D^{2} \times M_{0}^{2 n} \cup X \cup c(\partial H)$ where X represents the solid handles we attached along $S^{1} \times M_{0}^{2 n}$ to kill the homology kernel of \hat{h}. The manifold $D^{2} \times M_{0}^{2 n} \cup X$ is simply-connected with simply connected boundary and the homology of a point; hence by Smale's theorem (Thm. 1.1 [22]) it is a PL disc $D^{2 n+2}$. Thus, $\hat{V}=D^{2 n+2} \cup_{W} D^{2 n+2}$ where W is the complement of the embedding

$$
D^{2} \times S^{2 n-1} \subset S^{2 n+1}=\partial D^{2 n+2}
$$

and $S^{2 n-1}=\partial M_{0}^{2 n}$. By the Mayer-Vietoris sequence we know that W is a homology circle. Then, by a second application of the Mayer-Vietoris sequence to the union $D^{2 n+2} \cup_{W} D^{2 n+2}$ we see that \hat{V} is a homology S^{2}. Finally, by the Van Kampen theorem \hat{V} is 1 -connected and we apply the Whitehead theorem for CW complexes.

Lemma 3. $\hat{V} \cong \nu_{n+1}\left(C P^{1}\right)$.
Proof. $\partial \hat{V}=\partial\left[C P^{n+1}-\hat{V}\right]=\partial\left[C P^{n+1}-\tilde{V}\right]=\partial \tilde{V} \cong \partial \nu_{n+1}\left(C P^{1}\right)$ by Lemma 1 . Let $S^{2} \subset \hat{V}$ be a homotopy equivalence and a PL embedding via Whitney's embedding theorem. Then $S^{2} \subset \hat{V} \subset \widehat{C P}^{n+1}$ is homotopic to the standard embedding $C P^{1} \subset \widehat{C P}^{n+1}$, and as before, the PL block bundle neighborhoods of these two embeddings must be isomorphic. Let $\nu \subset \hat{V}$ be this block bundle. We note that

$$
\partial \nu=\partial \nu_{n+1}\left(C P^{1}\right) \cong \partial \tilde{V}=\partial \hat{V}
$$

by the previous lemmas. Hence, if

$$
\hat{V}-\nu=Y
$$

we have $\partial Y=\partial \hat{V} \cup . \partial \nu$, two copies of the same manifold.
We consider the Mayer-Vietoris sequence for the union $\hat{V}=Y \cup \nu$ over $\partial \nu=Y \cap \nu$:

$$
\cdots \rightarrow H_{1}(\partial \nu) \xrightarrow{i_{1 *}-i_{2 *}} H_{1}(\nu) \oplus H_{q}(Y) \xrightarrow{j_{1 *}-j_{2}} H_{1}(\hat{V}) \rightarrow \cdots
$$

where

$$
\begin{array}{ll}
i_{1}: \partial \nu \hookrightarrow \nu, & j_{1}: \nu \hookrightarrow \hat{V} \\
i_{2}: \partial \nu \hookrightarrow Y, & j_{2}: Y \hookrightarrow \hat{V} .
\end{array}
$$

Since ν and V are homotopy 2 -spheres and j_{1} is a homotopy equivalence, we see that for $q \neq 2, i_{2_{*}}: H_{q}(\partial \nu) \rightarrow H_{q}(Y)$ must be an isomorphism. When $q=2$ the sequence becomes:

$$
Z \xrightarrow{1-i_{2 *}} Z \oplus A \xrightarrow{1+j_{2 *}} Z, \quad A=H_{2}(Y)
$$

from which we obtain $i_{2_{*}}$ are isomorphisms $Z \xrightarrow{i_{2_{2}}} A \xrightarrow{j_{2_{2}}} Z$. Thus, $i_{2}: \partial \nu \subset Y$ is a homology isomorphism, and in fact, a homotopy equivalence since $\hat{V}=Y \cup \nu$ and $\hat{V}, \nu, \partial \nu$ are all 1-connected so that by Van Kampen's theorem Y is 1 -connected.

We show next that $\partial \hat{V} \stackrel{i}{\subset} Y$ is a homology isomorphism so that Y is a h-cobordism from $\partial \nu$ to $\partial \hat{V}$-i.e. $Y \stackrel{\mathrm{PL}}{\cong} \partial \nu \times I$ and $\hat{V}=Y \cup \nu \cong \nu \cong$ $\tilde{V} \nu_{n+1}\left(C P^{1}\right)$ as required.

We know already that $\partial \hat{V} \simeq Y$ as $\partial \hat{V} \cong \partial \nu \simeq Y$. Moreover, $\partial \nu \cong$ $\partial \nu_{n+1}\left(C P^{1}\right)$ is an $S^{2 n-1}$ bundle over S^{2}. Hence, by the Serre Spectral Sequence we have

$$
H_{p}(Y)=H_{p}(\partial \hat{V})= \begin{cases}Z & \text { if } p=0,2,2 n-1,2 n+1 \\ 0 & \text { otherwise }\end{cases}
$$

Then, the exact sequence of the pair $(\hat{V}, \partial \hat{V})$ is:

$$
0=\underset{H_{3}(\hat{V}, \partial \hat{V}) \rightarrow \underset{2}{H_{2}(\partial \hat{V}) \rightarrow \underset{V}{H}(\hat{V}) \rightarrow H_{1}(\hat{V}, \partial \hat{V})=0} \underset{Z}{Z} \quad Z}{\text { Z }}
$$

where the first and last groups are 0 by Poincare Duality. Thus, the inclusion $\partial \hat{V} \subset Y \subset \hat{V}$ is a homology isomorphism through $p=2$.

Now, consider the composition $f: \partial \hat{V} \stackrel{i}{\hookrightarrow} \mathrm{Y} \rightarrow \partial \hat{V}$ where the second map is a homotopy equivalence. Then $f_{*}: H_{p}(\partial \hat{V}) \rightarrow H_{p}(\partial \hat{V})$ is an isomorphism for $p \leq 2$, and by Poincaré Duality so is $f^{*}: H^{l}(\partial \hat{V}) \rightarrow H^{l}(\partial \hat{V})$ for $q=2 n-1,2 n, 2 n+1$. By the Universal Coefficient Theorem f_{*} is an isomorphism for $p=2 n-1,2 n, 2 n+1$ and so for all p. Thus, f is a homotopy equivalence, and so is i.

Theorem A is now an immediate consequence of the last lemma as we have:

$$
\begin{gathered}
\widehat{C P}^{n+1} \leftrightarrow\left(\sigma_{2}, \ldots, \sigma_{n-1}, \sigma_{n}\right)=\left[C P^{n+1}-\tilde{V}\right] \cup \hat{V} \\
\widetilde{C P}^{n} \leftrightarrow\left(\sigma_{2}, \ldots, \sigma_{n-1}, 0\right)=\left[C P^{n+1}-\nu_{n+1}\left(C P^{1}\right)\right] \cup_{\alpha_{\sigma_{n}}} \nu_{n+1}\left(C P^{1}\right)
\end{gathered}
$$

where we have identified \tilde{V} with $\nu_{n+1}\left(C P^{1}\right)$ by Lemma 1 , and the PL homeomorphism

$$
\varphi_{\sigma_{n}}: \partial\left[\widetilde{C P^{n+1}}-\nu\left(C P^{1}\right)\right] \rightarrow \partial \nu\left(C P^{1}\right)
$$

comes from the restriction to the boundary of the PL homeomorphism $\hat{V} \rightarrow \nu_{n+1}\left(C P^{\mathrm{l}}\right)$ of Lemma 3.
III. Construction of the self-knotting φ_{σ} : Here we construct for $n \geq 4$ a PL self-knotting

$$
\varphi_{\sigma}: \partial \nu_{n+1}\left(C P^{1}\right) \rightarrow \partial \nu_{n+1}\left(C P^{1}\right)
$$

with the property that it extends to a homotopy equivalence

$$
\bar{\varphi}_{\sigma}: \nu_{n+1}\left(C P^{1}\right) \rightarrow \nu_{n+1}\left(C P^{1}\right)
$$

which has a transverse-inverse image

$$
M_{0}^{2 n}=\bar{\varphi}_{\sigma}^{-1}\left(D^{2 n}\right)
$$

on a fiber $D^{2 n}$. Clearly such a φ_{σ} will suffice for the map in Theorem A.
We begin the construction by defining

$$
\Sigma_{\sigma}^{2 n-1} \subset S^{2 n+1}
$$

to be the smooth Brieskorn knot represented as the link of the singularity on the hypersurface in C^{n+1} defined by

$$
p(Z)=\left\{\begin{array}{l}
Z_{0}^{6 \sigma-1}+Z_{1}^{3}+Z_{2}^{2}+\cdots+Z_{n}^{2}, \quad n \text { even } \\
Z_{0}^{3}+Z_{1}^{2}+\cdots+Z_{n}^{2}, \quad n \text { odd. }
\end{array}\right.
$$

It is well-known that $S^{2 n+1}-\Sigma_{\sigma}^{2 n-1}$ is a smooth fiber bundle over the circle with fiber $M_{0}^{2 n}$, the smooth Milnor or Kervaire manifold with surgery invariant σ.

Now, let $S^{1} \subset S^{2 n+1}$ be a fiber on the boundary of the smooth tubular neighborhood $D^{2} \times \Sigma_{\sigma}^{2 n-1}$ of the knot (a trivial bundle as $\pi_{2 n-1}(\mathrm{SO}(2))=0$ for $\left.n>1\right)$. Since $n>1$ this circle S^{1} is smoothly unknotted in $S^{2 n+1}$ so that the complement of a small tube $S^{1} \times D^{2 n}$ about it is diffeomorphic to $D^{2} \times S^{2 n-1}$. Hence the knot $\Sigma_{\sigma}^{2 n-1}$ lies in this complement with a trivial normal bundle and we can therefore define:

$$
\beta: D^{2} \times \Sigma_{\sigma}^{2 n-1} \hookrightarrow D^{2} \times S^{2 n-1}
$$

as this embedding. Let $W^{2 n+1}$ be the complement of this smooth embedding. Then we observe:
(a) $\partial W=S^{1} \times S^{2 n-1} \cup S^{1} \times \Sigma_{\sigma}^{2 n-1}$.
(b) W is a smooth fiber bundle over the circle S^{1} with fiber $F^{2 n}=$ $M_{0}^{2 n}-D^{2}$ and $\partial F=S^{2 n-1} \cup \Sigma_{\sigma}^{2 n-1}$.
(c) the bundle projection is trivial on $\partial W \rightarrow S^{1}$.

Now, using the smooth embedding β we define a piecewise-linear embedding

$$
\gamma_{\sigma}: D^{2} \times S^{2 n-1} \hookrightarrow D^{2} \times S^{2 n-1}
$$

as the composite map

$$
D^{2} \times S^{2 n-1} \xrightarrow{\mathrm{id} \times \alpha_{o}} D^{2} \times \Sigma_{\sigma}^{2 n-1} \xrightarrow{\beta} D^{2} \times S^{2 n-1}
$$

where $\alpha_{\sigma}: S^{2 n-1} \rightarrow \Sigma_{\sigma}^{2 n-1}$ is a specific PL homeomorphism.

We now describe the normal bundle $\nu_{n+1}\left(C P^{1}\right)$ in $C P^{n+1}$ as:

$$
\nu_{n+1}\left(C P^{1}\right)=D_{-}^{2} \times S^{2 n-1} \cup_{\rho} D_{+}^{2} \times S^{2 n-1}
$$

(*) where $\rho: S^{1} \times S^{2 n-1} \rightarrow S^{1} \times S^{2 n-1}$ is a smooth bundle automorphism representing an element in $\pi_{1}(\mathrm{SO}(2 n))=Z / 2 Z(n>1)$. [We note in fact that $\gamma_{n+1}\left(C P^{1}\right)$ is trivial for n even and non-trivial for n odd as it is the Whitney sum of n copies of the canonical line bundle over $C P^{1}=S^{2}$.]

In the above description we are expressing $C P^{1}$ as $S^{2}=D_{-}^{2} \cup D_{+}^{2}$. Using this representation we will define the self-knotting φ_{σ} by showing that the PL embedding

$$
\gamma_{\sigma}: D_{+}^{2} \times S^{2 n-1} \leadsto D_{+}^{2} \times S^{2 n-1}
$$

may be extended to a PL homeomorphism on all of $V_{n+1}\left(C P^{1}\right)$. We will show this using the very agreeable bundle structure on the complement W of the embedding γ_{0}.

The map

$$
\varphi_{\sigma}: D_{-}^{2} \times S^{2 n-1} \cup_{\rho} D_{+}^{2} \times S^{2 n-1} \rightarrow D_{-}^{2} \times S^{2 n-1} \cup_{\rho} D_{+}^{2} \times S^{2 n-1}
$$

will in fact be defined as the union of three maps -

$$
\begin{align*}
\gamma_{\sigma}: D_{+}^{2} \times S^{2 n-1} & \mapsto D_{+}^{2} \times S^{2 n-1}, \tag{1}\\
\eta: \tilde{W}^{2 n+1} & \rightarrow W^{2 n+1}, \tag{2}\\
\text { id } \times \mu: D^{2} \times \Sigma_{-\sigma}^{2 n-1} & \rightarrow D_{-}^{2} \times S^{2 n-1} \tag{3}
\end{align*}
$$

where η is a bundle homeomorphism of bundles over S^{1} and $\mu: \Sigma_{-\sigma}^{2 n-1} \rightarrow$ $S^{2 n-1}$ is a PL homeomorphism and

$$
D^{2} \times \Sigma_{-\sigma}^{2 n-1} \cup \tilde{W}^{2 n+1}=D_{-}^{2} \times S^{2 n+1}
$$

Essentially what we are producing in this construction is a map with the symmetric property that φ_{σ} embeds a fiber (the core of $D_{+}^{2} \times S^{2 n-1}$) piecewise linearly onto the smooth fibered knot $\Sigma_{-\sigma}^{2 n-1} \subset D_{-}^{2} \times S^{2 n-1}$ while φ_{σ}^{-1} embeds a fiber (the core of $D_{-}^{2} \times S^{2 n-1}$) piecewise linearly onto the smooth fibered knot $\Sigma_{\sigma}^{2 n-1} \subset D_{-}^{2} \times S^{2 n-1}$.

The construction will be completed by (a) defining the bundle \tilde{W} and the bundle map η in (2), (b) showing that $D^{2} \times \Sigma_{-\sigma}^{2 n-1} \cup \tilde{W}$ is in fact $D^{2} \times S^{2 n-1}$ by a PL homeomorphism which is the identity on the boundary, (c) showing that the maps (1), (2), (3) agree on boundaries after taking the defining automorphism ρ into account, and finally by (d) showing that φ_{σ} is homotopic to the identity.

We define the bundle \tilde{W} over S^{1} by defining its fiber \tilde{F} and its monodromy map $\tilde{h}: \tilde{F} \rightarrow \tilde{F}$.

Recall that the $2 n$-manifold F (fiber of W) is $(n-1)$ connected and that $\partial F=S^{2 n-1} \cup \Sigma_{-\sigma}^{2 n-}$ where the smooth exotic sphere is defined as $\Sigma_{\sigma}^{2 n-1}=D_{-}^{2 n-1} \cup_{\sigma}^{\cdot} D_{+}^{2 n+1}$ and $\sigma: S^{2 n-2} \rightarrow S^{2 n-2}$ is an exotic diffeomorphism.

Let $I \subset F$ be a path connecting the centers of the discs $D_{+}^{2 n-1}$ and $D_{+}^{2 n-1}$ of $\Sigma_{\sigma}^{2 n-1}$ and $S^{2 n-1}$. Then a tubular neighborhood of I is $I \times D_{+}^{2 n-1}$. We define \tilde{F} as the smooth manifold

$$
\tilde{F}=\left[F-I \times D_{+}^{2 n-1}\right] \cup\left[I \times D_{+}^{2 n-1}\right]
$$

where the union is taken over the diffeomorphism

$$
\mathrm{id}_{I} \times \sigma^{-1}: I \times S^{2 n-2} \rightarrow I \times S^{2 n-2}
$$

Then $\partial \tilde{F}=\Sigma_{-\sigma}^{2 n-} \cup S^{2 n-1}$ as a smooth manifold and we can define a PL homeomorphism

$$
\hat{\eta}: \tilde{F} \rightarrow F
$$

where $\hat{\eta}$ is the identity on $F-I \times D_{+}^{2 n-1}$ and is $\operatorname{id}_{I} \times$ (cone extension of σ) on $I \times D_{+}^{2 n-1}$.

Then we define the monodromy $\tilde{h}: \tilde{F} \rightarrow \tilde{F}$ as the composite map

$$
\tilde{h}=\hat{\eta}^{-1} \circ h \circ \hat{\eta}
$$

where $h: F \rightarrow F$ is the monodromy map defining the bundle W. Since ∂W is a trivial bundle we know that h is the identiy map on ∂F. Hence, \tilde{h} is the identity on $\partial \tilde{F}$ and the bundle \tilde{W} has the trivial boundary

$$
\partial \tilde{W}=S^{1} \times \Sigma_{-\sigma}^{2 n-} \bigcup S^{1} \times S^{2 n-1}
$$

Since $\hat{\eta} \circ \tilde{h}=h \circ \hat{\eta}$ the PL homeomorphism $\hat{\eta}: \tilde{F} \rightarrow F$ induces a well-defined bundle homeomorphism

$$
\eta: \tilde{W}^{2 n+1} \rightarrow W^{2 n+1}
$$

Restricted to the boundary η is a pair of bundle maps

$$
\begin{aligned}
\mathrm{id}_{S^{1}} \times \alpha_{-\sigma}^{-1}: S^{1} \times \Sigma_{-\sigma}^{2 n-} & \rightarrow S^{1} \times S^{2 n-1} \\
\mathrm{id}_{S^{1}} \times \alpha_{\sigma}: S^{1} \times S^{2 n-1} & \rightarrow S^{1} \times \Sigma_{\sigma}^{2 n-1}
\end{aligned}
$$

where the PL homeomorphism $\alpha_{-\sigma}$ and α_{σ} are the identity on $D_{-}^{2 n-1}$ and the cone extension of σ^{-1} and σ respectively on $D_{+}^{2 n-1}$.

We next embed \tilde{W} in $D^{2} \times S^{2 n-1}$ as a knot complement which will act as an inverse to W :

Recall the bundle isomorphism

$$
\begin{equation*}
\rho: S^{1} \times S^{2 n-1} \rightarrow S^{1} \times S^{2 n-1} \tag{*}
\end{equation*}
$$

which defines $\partial \nu_{n+1}\left(C P^{1}\right)$. We define a PL bundle map

$$
\hat{\rho}: S^{1} \times \Sigma_{-\sigma}^{2 n-1} \rightarrow S^{1} \times \Sigma_{-\sigma}^{2 n-1}
$$

as the composite: $\hat{\rho}=\left(\mathrm{id}_{S^{1}} \times \alpha_{-\sigma}\right) \cdot \rho \cdot\left(\mathrm{id}_{S^{1}} \times \alpha_{-\sigma}\right)^{-1}$. We consider the PL manifold

$$
D^{2} \times \Sigma_{-\sigma}^{2 n-1} \cup_{\hat{\rho}} \tilde{W}^{2 n+1}
$$

where the union is over the appropriate component of $\partial \tilde{W}$ and show:
Proposition. The PL manifold $D^{2} \times \Sigma_{-\sigma}^{2 n-1} \cup_{\hat{\rho}} \tilde{W}^{2 n+1}$ is isomorphic to $D^{2} \times S^{2 n-1}$ by a $P L$ homeomorphism Λ which restricted to the boundary $S^{1} \times S^{2 n-1}$ is an $S^{2 n-1}$ bundle isomorphism λ.

Proof. We recall from the definition of $W^{2 n+1}$ that $S^{1} \times D^{2 n} \cup W^{2 n+1}$ is the knot complement of our original Brieskorn knot and so has the homology of S^{1}. A simple exercise with the Mayer-Vietoris sequence implies then that the manifold $\tilde{W}^{2 n+1} \cup S^{1} \times D^{2 n}$ likewise is a homology circle, and a second application of the sequence implies that the PL manifold.

$$
P^{2 n+1}=D^{2} \times \Sigma_{-\sigma}^{2 n-1} \cup_{\hat{\rho}} \tilde{W} \cup S^{1} \times D^{2 n}
$$

has the homology of $S^{2 n+1}$. Moreover, $P^{2 n+1}$ is simply connected since $\hat{W} \cup S^{1} \times D^{2 n}$ fibers over S^{1} with fiber $\tilde{F}^{2 n} \cup D^{2 n}$ which is $(n-1)$ connected. Hence $\pi_{1}\left(\tilde{W} \cup S^{1} \times D^{2 n}\right)=Z$ and by the Van Kampen theorem on the union

$$
\left[D^{2} \times \Sigma_{-\sigma}^{2 n-1}\right] \cup_{S^{1} \times \Sigma_{-\sigma}}\left[\tilde{W} \cup S^{1} \times D^{2 n}\right]
$$

we have $\pi_{1}\left(P^{2 n+1}\right)=0$. By the Hurewicz and Whitehead theorems any simply-connected homology sphere is a homotopy sphere, and by the generalized Poincaré conjecture $(2 n+1 \geq 9) P^{2 n+1}$ is a PL sphere.

The identification $D^{2} \times \Sigma_{-\sigma}^{2 n-1} \cup \tilde{W} S^{1} \times D^{2 n} \cong S^{2 n+1}$ provides a PL embedding $S^{1} \subset S^{2 n+1}$ and exhibits $i\left(S^{1} \times D^{2 n}\right) \subset S^{2 n+1}$ as a representative for the PL normal microbundle to this embedding. We apply a
theorem due to Lashof and Rothenberg (Thm. 7.3 in [13]) to obtain a piecewise differentiable homeomorphism $g: S^{2 n+1} \rightarrow S^{2 n+1}$ so that $g \circ i$: $S^{1} \times D^{2 n} \rightarrow S^{2 n+1}$ is the smooth vector bundle to the smooth embedding $g \circ i: S^{1} \rightarrow S^{2 n+1}$. By smoothly unknotting this circle and applying the smooth tubular neighborhood theorem we obtain a diffeomorphism h : $S^{2 n+1} \rightarrow S^{2 n+1}$ so that

$$
\begin{array}{lll}
h \circ g \circ i: S^{1} \times D^{2 n} & \rightarrow & S^{2 n+1} \\
& \bar{\lambda} \searrow & \uparrow j \\
& & S^{1} \times D^{2 n}
\end{array}
$$

commutes where j is the standard embedding and $\bar{\lambda}$ is a vector bundle isomorphism. Hence, the restriction map

$$
\begin{array}{r}
h \circ g \mid: S^{2 n+1}-i\left(S^{1} \times D^{2 n}\right) \rightarrow S^{2 n+1}-j\left(S^{1} \times D^{2 n}\right) \\
\| \\
D^{2} \times S^{2 n-1}
\end{array}
$$

defines a piecewise differentiable homeomorphism

$$
\Lambda:\left[D^{2} \times \Sigma_{-\sigma}^{2 n-} \cup_{\hat{\rho}} \hat{W}\right] \rightarrow D^{2} \times S^{2 n-1}
$$

which restricts as $\lambda=\bar{\lambda}$ on the boundary. Finally, we observe that (cf. Cor. 10.13 in [19]) we may choose a smooth triangulation of $D^{2} \times S^{2 n-1}$ so that Λ is PL. Now, using the homeomorphisms Λ and η we define a PL homeomorphism:

$$
\begin{equation*}
\varphi_{\sigma}: \xi \rightarrow \partial \nu_{n+1}\left(C P^{1}\right) \tag{1}
\end{equation*}
$$

where ξ is the $S^{2 n-1}$ bundle over $C P^{1}=S^{2}$ defined by λ^{-1} :

$$
\begin{gathered}
\xi=D_{-}^{2} \times S^{2 n-1} \cup_{\lambda^{-1}} D_{+}^{2} \times S^{2 n-1} \\
\stackrel{\Lambda^{-1} \cup \mathrm{id}}{\rightarrow} D^{2} \times \Sigma_{-\sigma}^{2 n-1} \cup_{\hat{\rho}} \tilde{W}^{2 n+1} \cup_{\mathrm{id}} D_{+}^{2} \times S^{2 n-1} \\
\left(\mathrm{id} \times \alpha_{-\sigma}\right) \cup \eta \cup\left(\mathrm{id} \times \alpha_{\sigma}\right) \\
\xrightarrow{2} D_{-}^{2} \times S^{2 n-1} \cup_{\rho} W \cup D^{2} \times \Sigma_{-\sigma}^{2 n-1} \\
=D_{-}^{2} \times S^{2 n-1} \cup_{\rho} D_{+}^{2} \times S^{2 n-1}=\partial \nu_{n+1}\left(C P^{1}\right) .
\end{gathered}
$$

From the next lemma to the effect that two non-isomorphic sphere bundles over S^{2} cannot be PL homeomorphic it follows that the existence of the map φ_{σ} itself guarantees that ξ and $\partial \nu_{n+1}\left(C P^{1}\right)$ are the same bundle.

Lemma. For $m \geq 3$ the unique non-trivial orthogonal S^{m} bundle over S^{2}, ξ, is not PL homeomorphic to $S^{2} \times S^{m}$.

Proof. Suppose $t: \xi \rightarrow S^{2} \times S^{m}$ is a PL homeomorphism. Let E be the non-trivial D^{m+1} bundle over S^{2} with $\partial E=\xi$ and define the PL manifold

$$
M^{m+3}=E \cup_{t} D^{3} \times S^{m}
$$

M is the union of simply connected spaces over a path connected intersection. Hence, $\pi_{1}(M)=\{1\}$. For $m \geq 3$ the homotopy exact sequence of the fibration $S^{m} \rightarrow \partial E \xrightarrow{p} S^{2}$ implies that $p_{*}: \pi_{2}(\partial E) \rightarrow \pi_{2}\left(S^{2}\right)$ is an isomorphism, and by the Whitehead theorem so is the inclusion $H_{2}(\partial E) \rightarrow H_{2}(E)$. Hence, in the Mayer-Vietoris sequence

$$
\begin{aligned}
\cdots & \rightarrow H_{j}\left(S^{2} \times S^{m}\right) \xrightarrow{\psi_{j}} H_{j}(E) \oplus H_{j}\left(D^{3} \times S^{m}\right) \rightarrow H_{j}(M) \\
& \rightarrow H_{j-1}\left(S^{2} \times S^{m}\right) \rightarrow \cdots
\end{aligned}
$$

ψ_{j} is an isomorphism for $j \leq m+1$. Trivally, $H_{m+2}(M)=0$, and again we have an $(m+2)$-connected $(m+3)$-dimensional PL manifold which is consequently a PL sphere.

Then, $E \cup_{t} D^{3} \times S^{m} \cong S^{m+3}$ defines the vector bundle E as a PL normal micro-bundle to the embedding of its zero section $S^{2} \hookrightarrow S^{m+3}$. By Zeeman's PL unknotting theorem and the uniqueness [7] of stable PL normal microbundles, we see that E and $S^{2} \times D^{m+1}$ must be micro-bundle isomorphic. Let $S^{2} \xrightarrow{b}$ BO classify E as a vector bundle. Then $S^{2} \rightarrow$ BO \rightarrow BPL is trivial, and as by smoothing theory the fiber PL/0 is 6 -connected we see that b is homotopically trivial. As E was assumed non-trivial as a vector bundle the PL homeomorphism t cannot exist.

Thus, we define

$$
\varphi_{\sigma}: \partial \nu_{n+1}\left(C P^{1}\right)=\zeta \rightarrow \partial \nu_{n+1}\left(C P^{1}\right) \quad \text { from (1) as required. }
$$

Next we show that the φ_{σ} just constructed is indeed a self-knotting and that it will suffice for Theorem A.

Recalling from bundle theory that every S^{N} bundle over S^{2} for $N \geq 2$ has a section, we show

Proposition. Any orientation preserving PL homeomorphism $\varphi: \nu \rightarrow \nu$, ν an orthogonal S^{N} bundle over S^{2}, which embeds a section $S^{2} \stackrel{J}{\hookrightarrow} \nu$ homotopically to itself is homotopic to the identity.

Proof. A tubular neighborhood of the section $j\left(S^{2}\right)$ is a D^{N} bundle U in the same stable bundle class as $\nu . \varphi(U)$ PL embeds this bundle in ν with an inherited smooth structure. By the main theorem of smoothing
theory ([8] or [13], Thm. 7.3) and the uniqueness of smoothings on S^{2} we can piecewise differentially isotope this embedding to a smooth embedding of $U \rightarrow \nu$. We may easily make the isotopy ambient. Next, we smoothly unknot the core sphere of U and apply the smooth tubular neighborhood theorem. We have, therefore, P.D. isotoped φ so that restricted to U it is a D^{N} bundle isomorphism. Since $\pi_{2}(\mathrm{SO}(N))=0$ we can isotope this bundle mapping to the identity through bundle isomorphisms on U all of which extend to ν as U is a sub-bundle. Thus, we have isotoped φ so that it is the identity on U. Now, $\nu-U \cong U$ as each fiber of U is a hemisphere of a fiber in ν. We isotope $\varphi \operatorname{rel}(U)$ so that it is the identity on the zero section of the bundle $\nu-U$. Finally, we homotope φ to the identity by collapsing the fibers of $\nu-U$ to the zero-section.

We observe that the φ_{σ} constructed above satisfies the hypothesis of this last proposition as follows: φ_{σ} is orientation preserving by construction. Also, as the original Brieskorn knot embedded a fiber $S^{2 n+1}$ homotopically to the usual embedding, we know that φ_{σ} does also. That is $\left(\varphi_{\sigma}\right)_{*}[\partial \nu]=[\partial \nu]$ and $\left(\varphi_{\sigma}\right)^{*}\left(e^{2 n-1}\right)=e^{2 n-1}$, where $e^{2 n-1} \in H^{2 n-1}(\partial \nu)$ is the class represented by inclusion of a fiber. By Poincare Duality, then, $\left(\varphi_{\sigma}\right)_{*}\left(e_{2}\right)=e_{2}$ for $e_{2} \in H_{2}(\partial \nu)$ the class dual to $e^{2 n-1}$. This implies by the Hurewicz Theorem that φ_{σ} induces the identity homomorphism on $\pi_{2}(\partial \nu)$, which is generated by the inclusion of a section.

The map φ_{σ} constructed in section C embeds a fiber $S^{2 n-1}$ onto the image of the Brieskorn knot. Hence, in the decomposition

$$
\widetilde{C P^{n+1}}=\left[C P^{n+1}-\nu_{n+1}\left(C P^{1}\right)\right] \cup_{\varphi_{o}}\left[\nu_{n+1}\left(C P^{1}\right)\right]
$$

the identification is in the order:

$$
\varphi_{\sigma}: \partial\left[C P^{n+1}-\nu\right] \rightarrow \partial \nu
$$

To show, therefore, that $\widetilde{C P^{n+1}} \leftrightarrow(0, \ldots, 0, \sigma)$ we must extend φ_{σ}^{-1} to a homotopy equivalence $\overline{\varphi_{\sigma}^{-1}}: \nu \rightarrow \nu$ with transverse-inverse image of a fiber being the Milnor or Kervaire manifold $M_{0}^{2 n}$. Note that any extension will be a homotopy equivalence as $\nu \simeq S^{2}$ and φ_{σ}^{-1} induces the identity on $\pi_{2}(\partial \nu)=\pi_{2}(\nu)$.

Proposition. The PL homeomorphism $\varphi_{\sigma}^{-1}: \partial \nu_{N+1}\left(C P^{1}\right) \rightarrow \partial \nu_{n+1}\left(C P^{1}\right)$ constructed above extends to $\bar{\varphi}_{\sigma}^{-1}: \nu_{n+1}\left(C P^{1}\right) \rightarrow \nu_{n+1}\left(C P^{1}\right)$ with transverse-inverse image

$$
\left(\bar{\varphi}_{\sigma}^{-1}\right)^{-1}\left(D^{2 n}\right)=M_{0}^{2 n}
$$

Proof. $\left(\varphi_{\sigma}^{-1}\right)^{-1}\left(S^{2 n-1}\right)=\varphi_{\sigma}\left(S^{2 n-1}\right)=\Sigma_{\sigma}^{2 n-} \subset \partial \nu$ by the construction of φ_{σ}. Moreover, the restriction $\varphi_{\sigma}^{-1} \mid: D^{2} \times \Sigma_{\sigma}^{2 n-1} \rightarrow D_{+}^{2} \times S^{2 n-1}$ is a product map. Now, $\Sigma_{\sigma}^{2 n-1}$ bounds a fiber $F^{2 n} \subset W^{2 n+1}$ whose other boundary component is a fiber $S^{2 n-1}$ of $\partial \nu$. Let $D^{2 n} \subset \nu$ be the fiber whose boundary is this same sphere. Then, $F^{2 n} \cup D^{2 n}=M_{0}^{2 n}$ by the definition of $F^{2 n}$. By pushing $F^{2 n}$ into ν along a vector field normal to $\partial \nu$ and smoothing the corner at $S^{2 n-1}$ between $F^{2 n}$ and $D^{2 n}$ we obtain a smooth embedding $M_{0}^{2 n} \hookrightarrow \nu$ extending

$$
\partial M_{0}^{2 n}=\Sigma_{\sigma}^{2 n-1} \subset \partial \nu
$$

Moreover, this embedding will have trivial normal D^{2} bundle as $H^{1}\left(M_{0}^{2 n}, Z\right)=0$. Hence, we can extend the product map

$$
\varphi_{\sigma}^{-1}: D^{2} \times \Sigma_{\sigma}^{2 n-1} \rightarrow D_{+}^{2} \times S^{2 n-1}
$$

to a bundle map $\hat{\varphi}_{\sigma}^{-1}: D^{2} \times M_{0}^{2 n} \rightarrow D_{+}^{2} \times D^{2 n}$ covering a degree one extension $M_{0}^{2 n} \rightarrow D^{2 n}$. Since $\left[\nu-D_{+}^{2}\right] \times D_{-}^{2} \times D^{2 n}=D^{2 n-2}$ there are no cohomology obstructions to extending

$$
\varphi_{\sigma}^{-1} \cup \hat{\varphi}_{\sigma}^{-1} \text { to } \overline{\varphi_{\sigma}^{-1}}: \nu \rightarrow \nu
$$

with the required transverse-inverse image built in.

References

[1] Y. S. Akbulut, Algebraic Equations for a Class of P. L. Manifolds, Ph.D. Thesis, Berkeley, 1974.
[2] Y. S. Akbulut, and H. C. King, Real algebraic variety structures on PL manifolds, Bull. Amer. Math. Soc., 83 (1977), 281-282.
[3] W. Browder, Manifolds with $\pi_{1}=Z$, Bull. Amer. Math. Soc., 72 (1966), 238-244.
[4] _, Surgery on Simply-Connected Manifolds, Springer-Verlag, New York, 1972.
[5] G. Brumfiel, I. Madsen, and R. J. Milgram, PL characteristic classes and cobordism, Annals of Math., 97 (1973), 82-159.
[6] A. Haefliger, Plongemonts differentiables de varietés dans varietés, Comm. Math. Helv., 36 (1961), 47-82.
[7] A. Haefliger and C. T. C. Wall, Piecewise linear bundles in the stable range, Topology, 4 (1965), 209-214.
[8] M. W. Hirsch and B. Mazur, Smoothings of Piecewise Linear Manifolds, Princeton, 1974.
[9] F. Hirzebruch, Singularities and Exotic Spheres, Seminar Bourbaki No. 314, 1966.
[10] M. Kato, A concordance classification of PL homeomorphisms of $S^{p} \times S^{q}$, Topology, 8 (1969), 371-383.
[11] M. Kervaire and J. Milnor, Groups of homotopy spheres I, Annals of Math., 77 (1963), 504-537.
[12] S. Lang, Introduction to Differentiable Manifolds, Interscience, New York, 1962.
[13] R. Lashof and M. Rothenberg, Microbundles and Smoothing, Topology, 3 (1965), 357-388.
[14] I. Madsen and R. J. Milgram, The oriented topological and PL cobordism rings, Bull. Amer. Math. Soc., 80 (1974), 855-860.
[15] , The Classifying Spaces for Surgery and Cobordism of Manifolds, Princeton University Press, Princton New Jersey, 1979.
[16] D. Meadows, Some groups of PL self-knotting, Houston J. Math., (to appear).
[17] J. Milnor, Singular Points of Complex Hypersurfaces, Princeton University Press, Princeton, New Jersey, 1968.
[18] J. Milnor and J. D. Stasheff, Characteristic Classes, Princeton University Press, Princeton, New Jersey, 1974.
[19] J. Munkres, Elementary Differential Topology, Princeton, 1966.
[20] C. P. Rourke and B. J. Sanderson, Block bundles I, II, and III, Ann. of Math., 87 (1968), 1-28, 256-278, 431-483.
[21] ___, Introduction to Piecewise-Linear Topology, Springer-Verlag, New York, 1972.
[22] S. Smale, Differentiable and combinatorial structures on manifolds, Ann. of Math., 74 (1961), 498-502.
[23] D. Sullivan, Triangulating and smoothing homotopy equivalences, mimeographed notes, Princeton University.
[24] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, New York, 1970.
[25] G. W. Whitehead, Homotopy Theory, M.I.T. Press, Cambridge, Massachusetts, 1966.
[26] R. E. Williamson Jr., Cobordism of combinatorial manifolds, Ann. of Math., 83 (1966), 1-133.
[27] H. Winkelnkemper, Manifolds as open books, Bull. Amer. Math. Soc., 79 (1973), 45-51.
[28] E.-C. Zeeman, Seminar on combinatorial topology, I.H.E.S., 1963.
Received March 24, 1980.

University of Rochester
Rochester, NY 14627

[^0]: ${ }^{1}$ We say $\widetilde{C P}{ }^{n+1} \leftrightarrow\left(\sigma_{2}, \sigma_{3}, \ldots, \sigma_{n-1}, 0\right)$ in the "suspension" of $\widetilde{C P}{ }^{n} \leftrightarrow\left(\sigma_{2}, \sigma_{3}, \ldots, \sigma_{n-1}\right)$ as it is precisely the Thom complex of the line bundle induced over $\widetilde{C P}{ }^{n}$.

