SOME POINCARÉ SERIES RELATED TO IDENTITIES OF 2×2 MATRICES

PATRICK HALPIN

A partial solution to a problem of Procesi has recently been given by Formanek, Halpin, Li by determining the Poincaré series of the ideal of two variable identities of $M_2(k)$. Two related results are obtained in this article.

A weak identity of $M_n(k)$ is a polynomial which vanishes identically on sl_n , the subspace of $M_n(k)$ of matrices of trace zero. We show that the Poincaré series of the ideal of two variable weak identities of $M_2(k)$ is rational. In addition it is shown that the ideal of identities of upper triangular 2×2 matrices in an arbitrary finite number of variables has a rational Poincaré series. As an application we are able to determine this ideal precisely.

Introduction. Let $S = K \langle x_1, ..., x_n \rangle$ be the free associative algebra over k where k is any field of characteristic zero. S is naturally graded by giving x_1 degree (1, 0, ..., 0), x_2 degree (0, 1, ..., 0), etc. Denote by $S_{(i_1, ..., i_n)}$ the subspace of S generated by monomials of degree $(i_1, ..., i_n)$. If A is a homogeneously generated ideal of S then we associate a series to A, called the Poincaré series of A, via

$$P(A) = \sum_{i_1, \dots, i_n \ge 0} a(i_1, \dots, i_n) s_1^{i_1} s_2^{i_2} \cdots s_n^{i_n}$$

where $a(i_1, \ldots, i_n) = \dim_k (A \cap S_{(i_1, \ldots, i_n)})$. In [1] Formanek, Halpin, Li showed that the Poincaré series of the ideal of two variables identities of $M_2(k)$ is a rational function in s_1 and s_2 . In this article we obtain two related results.

A weak identity of $M_n(k)$ is a polynomial which vanishes upon substitution of elements of $sl_n(k)$, where $sl_n(k)$ denotes the subspace of $M_n(k)$ of matrices of trace zero. The notion of a weak identity was introduced by Razmyslov [2] in connection with the study of central polynomials. Let $T_2^W(x_1, x_2)$ denote the ideal of $k \langle x_1, x_2 \rangle$ of weak identities of $M_2(k)$. In Section 1 we determine $P(T_2^W(x_1, x_2))$ and find that it is again a rational function in s_1 and s_2 .

In §2 we consider the identities of the subalgebra of $M_2(k)$ consisting of upper triangular matrices. By restricting to upper triangular matrices we are able to obtain results more complete than those obtained in [1]. We

PATRICK HALPIN

calculate the Poincaré series of the ideal of identities of upper triangular 2×2 matrices in an arbitrary finite number of variables. As an application the ideal of identities of upper triangular 2×2 matrices is determined explicitly.

1. Weak identities of $M_2(k)$. Let $T_2^{\mathcal{W}}(x_1, x_2)$ denote the collection of two variable weak identities of $M_2(k)$ where k is a field of characteristic zero. It is easy to see that $T_2^{\mathcal{W}}(x_1, x_2)$ is an ideal of $k \langle x_1, x_2 \rangle$, although it is not a *T*-ideal in the usual sense. As in the case of the identities of $M_n(k)$, the ideal of weak identities $M_n(k)$ is homogeneously generated. The goal of this section is to determine $P(T_2^{\mathcal{W}}(x_1, x_2))$.

Let

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{22} & -X_{11} \end{pmatrix}, \qquad Y = \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & -Y_{11} \end{pmatrix}$$

be 2×2 generic matrices of trace zero. The x_{ij} , y_{ij} are commuting indeterminates. Define R = k[X, Y] as the algebra generated over k by X and Y. R may be graded by assigning X degree (1,0) and Y degree (0, 1). Let $A = k[x_{ij}, y_{ij}]$ be the commutative polynomial ring generated over k by the six indeterminates x_{ij} , y_{ij} . A may be graded by assigning each x_{ij} degree (1,0) and each y_{ij} degree (0, 1).

The following lemma, which is analogous to a well known result on identities of $M_n(k)$, is clear.

LEMMA 1. The sequence

$$0 \to T_2^{\mathcal{W}}(x_1, x_2) \to k \langle x_1, x_2 \rangle \xrightarrow{\pi} k[X, Y] \to 0,$$

where $\pi(x_1) = X$ and $\pi(x_2) = Y$, is an exact sequence of graded k-modules.

By D, T we denote determinant, trace respectively. We define

$$B = k[D(X), D(Y), T(XY)]$$

= $k[x_{11}^2 + x_{12}x_{21}, y_{11}^2 + y_{12}y_{21}, x_{12}y_{21} + x_{21}y_{12} + 2x_{11}y_{11}]$

B inherits a grading as a homogeneously generated submodule of A.

LEMMA 2. B is a commutative polynomial ring over k in D(X), D(Y), T(XY).

Proof. This is easily seen by specializing $x_{12} = x_{21} = 0$.

The proof of the following lemma is routine and is therefore omitted.

LEMMA 3. I, X, Y, XY are linearly independent over A and so are linearly independent over B.

THEOREM 4. $R = BI \oplus BX \oplus BY \oplus BXY$, a direct sum of k-spaces.

Proof. The following relations are easily verified and show that $BI \oplus BX \oplus BY \oplus BYX \subseteq R$:

$$X^{2} = -D(X)I,$$

$$Y^{2} = -D(Y)I,$$

$$XY + YX = T(XY)I.$$

For the other inclusion note that B is the ring generated by D(X), D(Y), T(XY). Therefore the three relations above show that $BI \oplus BX \oplus BY \oplus BXY$ is a ring containing X, Y and hence $R \subseteq BI \oplus BX \oplus BY \oplus BXY$.

The following easy lemma, used in [1], will be used extensively in the article.

LEMMA 5. Let M and N be homogeneous k-submodules of $M_2(k[x_{ij}, y_{ij}])$.

(1) If $M \oplus N$ is a direct sum then $P(M \oplus N) = P(M) + P(N)$.

(2) If $U \in M_2(k[x_{ij}, y_{ij}])$ is a homogeneous nonzero divisor of degree (p, q) then $P(MU) = s_1^p s_2^q P(M)$.

THEOREM 6. We have

(1)
$$P(R) = \frac{1}{(1-s_1)(1-s_2)(1-s_1s_2)}$$

and

(2)
$$P(T_2^{W}(x_1, x_2)) = \frac{s_1 s_2 (s_1 + s_2 - s_1 s_2)}{(1 - s_1)(1 - s_2)(1 - s_2 s_2)(1 - s_1 - n s_2)}.$$

Proof. By Lemma 2 B is a commutative polynomial ring in D(X), D(Y), T(XY) of degrees (2, 0), (0, 2), (1, 1) respectively. Therefore P(B) = P(k[D(X), D(Y), T(XY)]) $= (1 + s_1^2 + s_1^4 + \cdots)(1 + s_2^2 + s_2^4 + \cdots)(1 + s_1s_2 + s_1^2s_2^2 + \cdots)$ $= \frac{1}{(1 - s_1^2)(1 - s_2^2)(1 - s_1s_2)}.$ Therefore

$$P(R) = P(BI \oplus BX \oplus BY \oplus BXY)$$

= $P(B) + P(BX) + P(BY) + P(BXY) = (1 + s_1)(1 + s_2)P(B)$
= $\frac{1}{(1 - s_1)(1 - s_2)(1 - s_1s_2)}$.

For (2) we note that by the exact sequence of Lemma 1

$$P(T_2^{W}(x_1, x_2)) = P(k \langle x_1, x_2 \rangle) - P(R)$$

= $\frac{1}{1 - s_1 - s_2} - \frac{1}{(1 - s_1)(1 - s_2)(1 - s_1s_2)}$
= $\frac{s_1 s_2(s_1 + s_2 - s_1s_2)}{(1 - s_1)(1 - s_2)(1 - s_1s_2)(1 - s_1 - s_2)}.$

2. Upper triangular matrices. The object of study in this section is the ideal of identities of upper triangular 2×2 matrices.

We first establish the notation that will be used in this section.Let $A = k[x_{ij}^{(k)}; 1 \le i \le j \le 2, 1 \le k \le n]$ be the commutative polynomial ring generated over k by the 3n variables $x_{ij}^{(k)}$. By $T_2^U(x_1, \ldots, x_n)$ we mean the ideal of identities of upper triangular 2×2 matrices in x_1, \ldots, x_n with coefficients in k. Now let X_1, \ldots, X_n be upper triangular 2×2 generic matrics where

$$X_i = egin{pmatrix} x_{11}^{(i)} & x_{12}^{(i)} \ 0 & x_{22}^{(i)} \end{pmatrix}.$$

 $R = k[X_1, \dots, X_n]$ denotes the algebra generated over k by X_1, \dots, X_n .

We begin with a version of the well known diagonalization technique.

LEMMA 7. $R = k[X_1, X_2, ..., X_n]$ is isomorphic (as k-algebras) to $k[X, X_2, ..., X_n]$ where

$$X = \begin{pmatrix} x_{11}^{(1)} & 0\\ 0 & x_{22}^{(1)} \end{pmatrix}.$$

Proof. The matrix X_1 is diagonalizable by some matrix T which may be taken upper triangular. Then

$$R \simeq T^{-1}RT = k [X, T^{-1}X_2T, \dots, T^{-1}X_nT] \simeq k [X, X_2, \dots, X_n].$$

In view of Lemma 7 from now on we will take $R = k[X_1, ..., X_n]$ where $X_1 = X$.

We grade $k \langle x_1, \ldots, x_n \rangle$ as in the previous section. Similarly $A = k[x_{ii}^{(k)}; 1 \le i \le j \le 2, 1 \le k \le n]$ and $B = k[x_{ii}^{(k)}; i = 1, 2, 1 \le k \le n]$ are graded by giving each $x_{ij}^{(1)}$ degree $(1, 0, \ldots, 0)$, each $x_{ij}^{(2)}$ degree $(0, 1, \ldots, 0)$, etc. Also R is graded by assigning X_1 degree $(1, 0, \ldots, 0)$, X_2 degree $(0, 1, \ldots, 0)$, etc.

With these gradings we state an obvious lemma which is analogous to Lemma 1.

LEMMA 8. The sequence below, with the obvious maps, is an exact sequence of graded k-modules:

$$0 \to T_2^U(x_1,\ldots,x_n) \to k \langle x_1,\ldots,x_n \rangle \to R \to 0.$$

The main theorem of this section is the evaluation of $P(T_2^U(x_1,...,x_n))$ which will be proved by induction on *n*. In order to start the induction at n = 2 we first calculate $P(R_0)$ where $R_0 = k[X_1, X_2]$.

LEMMA 9. The commutator ideal $[R_0, R_0]$ equals

 $k[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}] \cdot [X_1, X_2].$

Proof. $[R_0, R_0]$ is the ideal of R_0 generated by

$$[X_1, X_2] = \begin{pmatrix} 0 & (x_{11}^{(1)} - x_{22}^{(1)})x_{12}^{(2)} \\ 0 & 0 \end{pmatrix}.$$

Now notice that

$$X_i[X_1, X_2] = x_{11}^{(i)}[X_1, X_2]$$

and

$$[X_1, X_2]X_i = x_{22}^{(i)}[X_1, X_2].$$

Therefore

$$[R_0, R_0] \subseteq k[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}] \cdot [X_1, X_2]$$

For the reverse inclusion if $(x_{11}^{(1)})^a (x_{22}^{(1)})^b (x_{11}^{(2)})^c (x_{22}^{(2)})^d$ is any monomial in $k[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}]$ then one sees easily that

$$(x_{11}^{(1)})^{a} (x_{22}^{(1)})^{b} (x_{11}^{(2)})^{c} (x_{22}^{(2)})^{d} [X_{1}, X_{2}]$$

= $X_{1}^{a} X_{2}^{c} [X_{1}, X_{2}] X_{1}^{b} X_{2}^{d} \in [R_{0}, R_{0}].$

Lemma 10.

$$P([R_0, R_0]) = \frac{s_1 s_2}{(1 - s_1)^2 (1 - s_2)^2}$$

Proof. Since $x_{11}^{(1)}$, $x_{22}^{(1)}$, $x_{21}^{(2)}$, $x_{22}^{(2)}$ have degrees (1, 0), (1, 0), (0, 1), (0, 1) respectively, we have

$$P([R_0, R_0]) = P(k[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}] \cdot [X_1, X_2])$$

= $s_1 s_2 P(k[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}])$
= $s_1 s_2 (1 + s_1 + s_1^2 + \cdots)^2 (1 + s_2 + s_2^2 + \cdots)^2$
= $\frac{s_1 s_2}{(1 - s_1)^2 (1 - s_2)^2}.$

LEMMA 11.

$$P(R_0) = \frac{1 - s_1 - s_2 + 2s_1s_2}{(1 - s_1)^2(1 - s_2)^2}.$$

Proof. Since $R_0/[R_0, R_0] \cong k[x_1, x_2]$, a commutative polynomial ring, it follows that as k-spaces

$$R_0 \cong_k [R_0, R_0] \oplus_k k[x_1, x_2].$$

Therefore

$$P(R_0) = P([R_0, R_0]) + P(k[x_1, x_2])$$

= $\frac{s_1 s_2}{(1 - s_1)^2 (1 - s_2)^2} + \frac{1}{(1 - s_1)(1 - s_2)} = \frac{1 - s_1 - s_2 + 2s_1 s_2}{(1 - s_1)^2 (1 - s_2)^2}.$

In order to calculate $P(T_2^U(x_1,...,x_n))$ it suffices to calculate $P(k[X_1,...,X_n])$. We proceed by induction on *n*, having established the case n = 2. The following lemma will be used to execute the inductive step.

LEMMA 12. The ideal $[X_1, R]$ of R equals $[X_1, X_2]B \oplus_k [X_1, X_3]B \oplus_k \cdots \oplus_k [X_1, X_n]B$.

Proof. The ideal $[X_1, R]$ is the ideal of R generated by

$$\begin{bmatrix} X_1, X_2 \end{bmatrix} = \begin{pmatrix} 0 & \left(x_{11}^{(1)} - x_{22}^{(1)} \right) x_{12}^{(2)} \\ 0 & 0 \end{pmatrix}$$

$$\vdots$$

$$\begin{bmatrix} X_1, X_n \end{bmatrix} = \begin{pmatrix} 0 & \left(x_{11}^{(1)} - x_{22}^{(1)} \right) x_{12}^{(n)} \\ 0 & 0 \end{pmatrix}.$$

112

Notice that

$$X_i[X_1, X_j] = x_{11}^{(i)}[X_1, X_j]$$

and

$$[X_1, X_j] X_i = x_{22}^{(i)} [X_1, X_j].$$

The lemma now follows easily as in Lemma 9. Of course the sum above is direct since the $x_{12}^{(k)}$, $1 \le k \le n$, are distinct indeterminates.

As an immediate consequence of Lemma 12 we may compute $P([X_1, R])$.

Lemma 13.

$$P([X_1, R]) = \frac{s_1s_2 + s_1s_3 + \dots + s_1s_n}{(1 - s_1)^2(1 - s_2)^2 \cdots (1 - s_n)^2}.$$

THEOREM 14.

$$P(R) = \frac{(2(1-s_1)\cdots(1-s_n)) + (s_1+\cdots+s_n) - 1}{(1-s_1)^2(1-s_2)^2\cdots(1-s_n)^2}.$$

Proof. We induct on *n*. The case n = 2 is Lemma 11 so we assume $n \ge 3$ and that the theorem is true for n - 1 variables.

R has the following decomposition as a *k*-space:

$$R \simeq_k R/[X_1, R] \oplus_k [X_1, R] \simeq_k \bigoplus_{i=0}^{\infty} X_1^i k[X_2, \dots, X_n] \oplus_k [X_1, R].$$

Therefore,

$$P(R) = P\left(\bigoplus_{i=0}^{\infty} X_{1}^{i} k[X_{2},...,X_{n}]\right) + P([X_{1}, R])$$
$$= (1 + s_{1} + s_{1}^{2} + \cdots) P(k[X_{2},...,X_{n}]) + P([X_{1}, R]).$$

By the inductive hypothesis $P(k[X_2,...,X_n])$ equals

$$\frac{(2(1-s_2)\cdots(1-s_n))+(s_2+\cdots+s_n)-1}{(1-s_2)^2(1-s_3)^2\cdots(1-s_n)^2},$$

and by Lemma 13 $P([X_1, R])$ equals

$$\frac{s_1s_2 + \cdots + s_1s_n}{(1 - s_1)^2 \cdots (1 - s_n)^2}.$$

Thus

$$P(R) = \frac{(2(1-s_2)\cdots(1-s_n)) + (s_2 + \cdots + s_n) - 1}{(1-s_1)(1-s_2)^2(1-s_3)^2\cdots(1-s_n)^2} + \frac{s_1s_2 + \cdots + s_1s_n}{(1-s_1)^2\cdots(1-s_n)^2} = \frac{(2(1-s_1)\cdots(1-s_n)) + (s_1 + \cdots + s_n) - 1}{(1-s_1)^2(1-s_2)^2\cdots(1-s_n)^2}.$$

We now prove the main result of this section.

THEOREM 15.

$$P(T_2^U(x_1,\ldots,x_n)) = \frac{((1-s_1)\cdots(1-s_n)-(1-s_1-\cdots-s_n))^2}{(1-s_1-\cdots-s_n)(1-s_1)^2\cdots(1-s_n)^2}$$

Proof. By the exact sequence of Lemma 8 we have

$$P(T_2^U(x_1,...,x_n)) = P(k\langle x_1,...,x_n\rangle) - P(k[X_1,...,X_n])$$

= $\frac{1}{1-s_1-\cdots-s_n} - \frac{2((1-s_1)\cdots(1-s_n)) + (s_1+\cdots+s_n) - 1}{(1-s_1)^2\cdots(1-s_n)^2}$
= $\frac{((1-s_1)\cdots(1-s_n) - (1-s_1-\cdots-s_n))^2}{(1-s_1-\cdots-s_n)(1-s_1)^2\cdots(1-s_n)^2}$.

As an application of Theorem 15 we now give a precise description of $T_2^U(x_1, \ldots, x_n)$. Let $T_1(x_1, \ldots, x_n)$ denote the commutator ideal of $k \langle x_1, \ldots, x_n \rangle$. In other words, $T_1(x_1, \ldots, x_n)$ is the ideal of $k \langle x_1, \ldots, x_n \rangle$ such that the sequence

$$0 \to T_1(x_1, \dots, x_n) \to k \langle x_1, \dots, x_n \rangle \to k[x_1, \dots, x_n] \to 0$$

is exact. It follows that

$$P(T_1(x_1,...,x_n)) = \frac{1}{1-s_1-\cdots-s_n} - \frac{1}{(1-s_1)\cdots(1-s_n)}$$
$$= \frac{(1-s_1)\cdots(1-s_n)-(1-s_1-\cdots-s_n)}{(1-s_1-\cdots-s_n)(1-s_1)\cdots(1-s_n)}.$$

We will show that $T_2^U(x_1,...,x_n) = (T_1(x_1,...,x_n))^2$. To show one inclusion is very easy. It then suffices to show that both members have the same Poincaré series. To calculate the Poincaré series of $(T_1(x_1,...,x_n))^2$ we need to make use of a combinatorial lemma, due to Formanek. We sketch a proof of the lemma.

114

LEMMA 16. (Formanek) Let I and J be homogeneously generated ideals of $k \langle x_1, \ldots, x_n \rangle$. Then $P(IJ) = P(I)P(J)(1 - s_1 - \cdots - s_n)$.

Proof. One first shows, using only elementary arguments, that I and J are free as left ideals on homogeneous generators. Let $\alpha(i_1, \ldots, i_n)$ equal the number of free generators of I considered as a left ideal of degree (i_1, \ldots, i_n) . Define

$$G(I) = \sum_{i_1,\ldots,i_n \geq 0} \alpha(i_1,\ldots,i_n) s_1^{i_1} s_2^{i_2} \cdots s_n^{i_n}.$$

Similarly define G(J) and G(IJ). Then G(IJ) = G(I)G(J) and $P(I) = G(I)/(1 - s_1 - \dots - s_n)$. The lemma follows.

THEOREM 17. $T_2^U(x_1,...,x_n) = (T_1(x_1,...,x_n))^2$.

Proof. We first show that $(T_1(x_1,...,x_n))^2 \subseteq T_2^U(x_1,...,x_n)$. Any element of $(T_1(x_1,...,x_n))^2$ is a sum of terms of the form $r_1[x_i, x_j]r_2[x_k, x_l]r_3$ where $1 \le i, j, k, l \le n$ and $r_1, r_2, r_3 \in k \langle x_1,...,x_n \rangle$. The commutator of two upper triangular matrices is strictly upper triangular. Therefore each term of the form above is an identity for R since any finite product of upper triangular 2×2 matrices where at least two of the factors are strictly upper triangular is zero. Therefore $(T_1(x_1,...,x_n))^2 \subseteq T_2^U(x_1,...,x_n)$.

As mentioned above it now suffices to show that $(T_1(x_1,...,x_n))^2$ and $T_2^U(x_1,...,x_n)$ have the same Poincaré series. By Lemma 16

$$P((T_1(x_1,\ldots,x_n))^2) = (1-s_1-\cdots-s_n)(P(T_1(x_1,\ldots,x_n)))^2$$

= $(1-s_1-\cdots-s_n)\left(\frac{(1-s_1)\cdots(1-s_n)-(1-s_1-\cdots-s_n)}{(1-s_1-\cdots-s_n)(1-s_1)\cdots(1-s_n)}\right)^2$
= $P(T_2^U(x_1,\ldots,x_n)).$

References

1. E. Formanek, P. Halpin, W.-C. Li, The Poincaré series of the ring of 2×2 generic matrices, J. Algebra, 69 (1981), 105–112.

2. Y. Razmyslov, On a problem of Kaplansky, Izv. A.N.S.S.S.R. Sec. Math., 37 (1973), 479–496 (Russian). Translation: Math. USSR-Izv., Vol. 7 (1973), No. 3.

Received August 24, 1981. This article is a portion of the author's Ph.D. thesis at The Pennsylvania State University.

SUNY Oswego, NY 13126