SOME POINCARÉ SERIES RELATED TO IDENTITIES OF 2×2 MATRICES

Patrick Halpin

Abstract

A partial solution to a problem of Procesi has recently been given by Formanek, Halpin, Li by determining the Poincare series of the ideal of two variable identities of $M_{2}(k)$. Two related results are obtained in this article.

A weak identity of $M_{n}(k)$ is a polynomial which vanishes identically on $s l_{n}$, the subspace of $M_{n}(k)$ of matrices of trace zero. We show that the Poincare series of the ideal of two variable weak identities of $M_{2}(k)$ is rational. In addition it is shown that the ideal of identities of upper triangular 2×2 matrices in an arbitrary finite number of variables has a rational Poincaré series. As an application we are able to determine this ideal precisely.

Introduction. Let $S=K\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be the free associative algebra over k where k is any field of characteristic zero. S is naturally graded by giving x_{1} degree $(1,0, \ldots, 0), x_{2}$ degree $(0,1, \ldots, 0)$, etc. Denote by $S_{\left(i_{1}, \ldots, i_{n}\right)}$ the subspace of S generated by monomials of degree $\left(i_{1}, \ldots, i_{n}\right)$. If A is a homogeneously generated ideal of S then we associate a series to A, called the Poincaré series of A, via

$$
P(A)=\sum_{i_{1}, \ldots, i_{n} \geq 0} a\left(i_{1}, \ldots, i_{n}\right) s_{1}^{l_{1}} s_{2}^{l_{2}} \cdots s_{n}^{i_{n}}
$$

where $a\left(i_{1}, \ldots, i_{n}\right)=\operatorname{dim}_{k}\left(A \cap S_{\left(i_{1}, \ldots, i_{n}\right)}\right)$. In [1] Formanek, Halpin, Li showed that the Poincare series of the ideal of two variables identities of $M_{2}(k)$ is a rational function in s_{1} and s_{2}. In this article we obtain two related results.

A weak identity of $M_{n}(k)$ is a polynomial which vanishes upon substitution of elements of $\mathrm{sl}_{n}(k)$, where $\mathrm{sl}_{n}(k)$ denotes the subspace of $M_{n}(k)$ of matrices of trace zero. The notion of a weak identity was introduced by Razmyslov [2] in connection with the study of central polynomials. Let $T_{2}^{W}\left(x_{1}, x_{2}\right)$ denote the ideal of $k\left\langle x_{1}, x_{2}\right\rangle$ of weak identities of $M_{2}(k)$. In Section 1 we determine $P\left(T_{2}^{W}\left(x_{1}, x_{2}\right)\right)$ and find that it is again a rational function in s_{1} and s_{2}.

In §2 we consider the identities of the subalgebra of $M_{2}(k)$ consisting of upper triangular matrices. By restricting to upper triangular matrices we are able to obtain results more complete than those obtained in [1]. We
calculate the Poincare series of the ideal of identities of upper triangular 2×2 matrices in an arbitrary finite number of variables. As an application the ideal of identities of upper triangular 2×2 matrices is determined explicitly.

1. Weak identities of $\mathrm{M}_{2}(\mathrm{k})$. Let $T_{2}^{W}\left(x_{1}, x_{2}\right)$ denote the collection of two variable weak identities of $M_{2}(k)$ where k is a field of characteristic zero. It is easy to see that $T_{2}^{W}\left(x_{1}, x_{2}\right)$ is an ideal of $k\left\langle x_{1}, x_{2}\right\rangle$, although it is not a T-ideal in the usual sense. As in the case of the identities of $M_{n}(k)$, the ideal of weak identities $M_{n}(k)$ is homogeneously generated. The goal of this section is to determine $P\left(T_{2}^{W}\left(x_{1}, x_{2}\right)\right)$.

Let

$$
X=\left(\begin{array}{rr}
X_{11} & X_{12} \\
X_{22} & -X_{11}
\end{array}\right), \quad Y=\left(\begin{array}{rr}
Y_{11} & Y_{12} \\
Y_{21} & -Y_{11}
\end{array}\right)
$$

be 2×2 generic matrices of trace zero. The $x_{i J}, y_{t J}$ are commuting indeterminates. Define $R=k[X, Y]$ as the algebra generated over k by X and Y. R may be graded by assigning X degree $(1,0)$ and Y degree $(0,1)$. Let $A=k\left[x_{i \jmath}, y_{i j}\right]$ be the commutative polynomial ring generated over k by the six indeterminates $x_{i j}, y_{i j} . A$ may be graded by assigning each $x_{i,}$ degree $(1,0)$ and each $y_{i j}$ degree $(0,1)$.

The following lemma, which is analogous to a well known result on identities of $M_{n}(k)$, is clear.

Lemma 1. The sequence

$$
0 \rightarrow T_{2}^{W}\left(x_{1}, x_{2}\right) \rightarrow k\left\langle x_{1}, x_{2}\right\rangle \xrightarrow{\pi} k[X, Y] \rightarrow 0,
$$

where $\pi\left(x_{1}\right)=X$ and $\pi\left(x_{2}\right)=Y$, is an exace sequence of graded k-modules.
By D, T we denote determinant, trace respectively. We define

$$
\begin{aligned}
B & =k[D(X), D(Y), T(X Y)] \\
& =k\left[x_{11}^{2}+x_{12} x_{21}, y_{11}^{2}+y_{12} y_{21}, x_{12} y_{21}+x_{21} y_{12}+2 x_{11} y_{11}\right]
\end{aligned}
$$

B inherits a grading as a homogeneously generated submodule of A.
Lemma 2. B is a commutative polynomial ring over k in $D(X), D(Y)$, $T(X Y)$.

Proof. This is easily seen by specializing $x_{12}=x_{21}=0$.
The proof of the following lemma is routine and is therefore omitted.

Lemma 3. $I, X, Y, X Y$ are linearly independent over A and so are linearly independent over B.

Theorem 4. $R=B I \oplus B X \oplus B Y \oplus B X Y$, a direct sum of k-spaces.
Proof. The following relations are easily verified and show that $B I \oplus B X \oplus B Y \oplus B Y X \subseteq R:$

$$
\begin{aligned}
X^{2} & =-D(X) I \\
Y^{2} & =-D(Y) I \\
X Y+Y X & =T(X Y) I
\end{aligned}
$$

For the other inclusion note that B is the ring generated by $D(X), D(Y)$, $T(X Y)$. Therefore the three relations above show that $B I \oplus B X \oplus B Y \oplus$ $B X Y$ is a ring containing X, Y and hence $R \subseteq B I \oplus B X \oplus B Y \oplus B X Y$.

The following easy lemma, used in [1], will be used extensively in the article.

Lemma 5. Let M and N be homogeneous k-submodules of $M_{2}\left(k\left[x_{i j}, y_{i j}\right]\right)$.
(1) If $M \oplus N$ is a direct sum then $P(M \oplus N)=P(M)+P(N)$.
(2) If $U \in M_{2}\left(k\left[x_{i j}, y_{i j}\right]\right)$ is a homogeneous nonzero divisor of degree (p, q) then $P(M U)=s_{1}^{p} s_{2}^{q} P(M)$.

Theorem 6. We have

$$
\begin{equation*}
P(R)=\frac{1}{\left(1-s_{1}\right)\left(1-s_{2}\right)\left(1-s_{1} s_{2}\right)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(T_{2}^{W}\left(x_{1}, x_{2}\right)\right)=\frac{s_{1} s_{2}\left(s_{1}+s_{2}-s_{1} s_{2}\right)}{\left(1-s_{1}\right)\left(1-s_{2}\right)\left(1-s_{2} s_{2}\right)\left(1-s_{1}-n s_{2}\right)} . \tag{2}
\end{equation*}
$$

Proof. By Lemma $2 B$ is a commutative polynomial ring in $D(X)$, $D(Y), T(X Y)$ of degrees $(2,0),(0,2),(1,1)$ respectively. Therefore

$$
\begin{aligned}
P(B) & =P(k[D(X), D(Y), T(X Y)]) \\
& =\left(1+s_{1}^{2}+s_{1}^{4}+\cdots\right)\left(1+s_{2}^{2}+s_{2}^{4}+\cdots\right)\left(1+s_{1} s_{2}+s_{1}^{2} s_{2}^{2}+\cdots\right) \\
& =\frac{1}{\left(1-s_{1}^{2}\right)\left(1-s_{2}^{2}\right)\left(1-s_{1} s_{2}\right)} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P(R) & =P(B I \oplus B X \oplus B Y \oplus B X Y) \\
& =P(B)+P(B X)+P(B Y)+P(B X Y)=\left(1+s_{1}\right)\left(1+s_{2}\right) P(B) \\
& =\frac{1}{\left(1-s_{1}\right)\left(1-s_{2}\right)\left(1-s_{1} s_{2}\right)}
\end{aligned}
$$

For (2) we note that by the exact sequence of Lemma 1

$$
\begin{aligned}
P\left(T_{2}^{W}\left(x_{1}, x_{2}\right)\right) & =P\left(k\left\langle x_{1}, x_{2}\right\rangle\right)-P(R) \\
& =\frac{1}{1-s_{1}-s_{2}}-\frac{1}{\left(1-s_{1}\right)\left(1-s_{2}\right)\left(1-s_{1} s_{2}\right)} \\
& =\frac{s_{1} s_{2}\left(s_{1}+s_{2}-s_{1} s_{2}\right)}{\left(1-s_{1}\right)\left(1-s_{2}\right)\left(1-s_{1} s_{2}\right)\left(1-s_{1}-s_{2}\right)}
\end{aligned}
$$

2. Upper triangular matrices. The object of study in this section is the ideal of identities of upper triangular 2×2 matrices.

We first establish the notation that will be used in this section.Let $A=k\left[x_{i j}^{(k)} ; 1 \leq i \leq j \leq 2,1 \leq k \leq n\right]$ be the commutative polynomial ring generated over k by the $3 n$ variables $x_{i j}^{(k)}$. By $T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)$ we mean the ideal of identities of upper triangular 2×2 matrices in x_{1}, \ldots, x_{n} with coefficients in k. Now let X_{1}, \ldots, X_{n} be upper triangular 2×2 generic matrics where

$$
X_{t}=\left(\begin{array}{ll}
x_{11}^{(l)} & x_{12}^{(t)} \\
0 & x_{22}^{(t)}
\end{array}\right)
$$

$R=k\left[X_{1}, \ldots, X_{n}\right]$ denotes the algebra generated over k by X_{1}, \ldots, X_{n}.
We begin with a version of the well known diagonalization technique.
Lemma 7. $R=k\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ is isomorphic (as k-algebras) to $k\left[X, X_{2}, \ldots, X_{n}\right]$ where

$$
X=\left(\begin{array}{cc}
x_{11}^{(1)} & 0 \\
0 & x_{22}^{(1)}
\end{array}\right)
$$

Proof. The matrix X_{1} is diagonalizable by some matrix T which may be taken upper triangular. Then

$$
R \cong T^{-1} R T=k\left[X, T^{-1} X_{2} T, \ldots, T^{-1} X_{n} T\right] \cong k\left[X, X_{2}, \ldots, X_{n}\right]
$$

In view of Lemma 7 from now on we will take $R=k\left[X_{1}, \ldots, X_{n}\right]$ where $X_{1}=X$.

We grade $k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ as in the previous section. Similarly $A=$ $k\left[x_{i j}^{(k)} ; 1 \leq i \leq j \leq 2,1 \leq k \leq n\right]$ and $B=k\left[x_{i i}^{(k)} ; i=1,2,1 \leq k \leq n\right]$ are graded by giving each $x_{i j}^{(1)}$ degree $(1,0, \ldots, 0)$, each $x_{i j}^{(2)}$ degree $(0,1, \ldots, 0)$, etc. Also R is graded by assigning X_{1} degree $(1,0, \ldots, 0), X_{2}$ degree $(0,1, \ldots, 0)$, etc.

With these gradings we state an obvious lemma which is analogous to Lemma 1.

Lemma 8. The sequence below, with the obvious maps, is an exact sequence of graded k-modules:

$$
0 \rightarrow T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right) \rightarrow k\left\langle x_{1}, \ldots, x_{n}\right\rangle \rightarrow R \rightarrow 0
$$

The main theorem of this section is the evaluation of $P\left(T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)\right)$ which will be proved by induction on n. In order to start the induction at $n=2$ we first calculate $P\left(R_{0}\right)$ where $R_{0}=k\left[X_{1}, X_{2}\right]$.

Lemma 9. The commutator ideal $\left[R_{0}, R_{0}\right]$ equals

$$
k\left[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}\right] \cdot\left[X_{1}, X_{2}\right]
$$

Proof. [R_{0}, R_{0}] is the ideal of R_{0} generated by

$$
\left[X_{1}, X_{2}\right]=\left(\begin{array}{cc}
0 & \left(x_{11}^{(1)}-x_{22}^{(1)}\right) x_{12}^{(2)} \\
0 & 0
\end{array}\right)
$$

Now notice that

$$
X_{i}\left[X_{1}, X_{2}\right]=x_{11}^{(i)}\left[X_{1}, X_{2}\right]
$$

and

$$
\left[X_{1}, X_{2}\right] X_{i}=x_{22}^{(i)}\left[X_{1}, X_{2}\right]
$$

Therefore

$$
\left[R_{0}, R_{0}\right] \subseteq k\left[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}\right] \cdot\left[X_{1}, X_{2}\right]
$$

For the reverse inclusion if $\left(x_{11}^{(1)}\right)^{a}\left(x_{22}^{(1)}\right)^{b}\left(x_{11}^{(2)}\right)^{c}\left(x_{22}^{(2)}\right)^{d}$ is any monomial in $k\left[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}\right]$ then one sees easily that

$$
\begin{aligned}
& \left(x_{11}^{(1)}\right)^{a}\left(x_{22}^{(1)}\right)^{b}\left(x_{11}^{(2)}\right)^{c}\left(x_{22}^{(2)}\right)^{d}\left[X_{1}, X_{2}\right] \\
& \quad=X_{1}^{a} X_{2}^{c}\left[X_{1}, X_{2}\right] X_{1}^{b} X_{2}^{d} \in\left[R_{0}, R_{0}\right]
\end{aligned}
$$

Lemma 10.

$$
P\left(\left[R_{0}, R_{0}\right]\right)=\frac{s_{1} s_{2}}{\left(1-s_{1}\right)^{2}\left(1-s_{2}\right)^{2}} .
$$

Proof. Since $x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}$ have degrees $(1,0),(1,0),(0,1),(0,1)$ respectively, we have

$$
\begin{aligned}
P\left(\left[R_{0}, R_{0}\right]\right) & =P\left(k\left[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}\right] \cdot\left[X_{1}, X_{2}\right]\right) \\
& =s_{1} s_{2} P\left(k\left[x_{11}^{(1)}, x_{22}^{(1)}, x_{11}^{(2)}, x_{22}^{(2)}\right]\right) \\
& =s_{1} s_{2}\left(1+s_{1}+s_{1}^{2}+\cdots\right)^{2}\left(1+s_{2}+s_{2}^{2}+\cdots\right)^{2} \\
& =\frac{s_{1} s_{2}}{\left(1-s_{1}\right)^{2}\left(1-s_{2}\right)^{2}} .
\end{aligned}
$$

Lemma 11.

$$
P\left(R_{0}\right)=\frac{1-s_{1}-s_{2}+2 s_{1} s_{2}}{\left(1-s_{1}\right)^{2}\left(1-s_{2}\right)^{2}}
$$

Proof. Since $R_{0} /\left[R_{0}, R_{0}\right] \cong k\left[x_{1}, x_{2}\right]$, a commutative polynomial ring, it follows that as k-spaces

$$
R_{0} \cong{ }_{k}\left[R_{0}, R_{0}\right] \oplus_{k} k\left[x_{1}, x_{2}\right]
$$

Therefore

$$
\begin{aligned}
& P\left(R_{0}\right)=P\left(\left[R_{0}, R_{0}\right]\right)+P\left(k\left[x_{1}, x_{2}\right]\right) \\
& \quad=\frac{s_{1} s_{2}}{\left(1-s_{1}\right)^{2}\left(1-s_{2}\right)^{2}}+\frac{1}{\left(1-s_{1}\right)\left(1-s_{2}\right)}=\frac{1-s_{1}-s_{2}+2 s_{1} s_{2}}{\left(1-s_{1}\right)^{2}\left(1-s_{2}\right)^{2}} .
\end{aligned}
$$

In order to calculate $P\left(T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)\right)$ it suffices to calculate $P\left(k\left[X_{1}, \ldots, X_{n}\right]\right)$. We proceed by induction on n, having established the case $n=2$. The following lemma will be used to execute the inductive step.

Lemma 12. The ideal $\left[X_{1}, R\right]$ of R equals $\left[X_{1}, X_{2}\right] B \oplus_{k}\left[X_{1}, X_{3}\right] B \oplus_{k}$ $\cdots \oplus_{k}\left[X_{1}, X_{n}\right] B$.

Proof. The ideal $\left[X_{1}, R\right]$ is the ideal of R generated by

$$
\begin{aligned}
& {\left[X_{1}, X_{2}\right] }=\left(\begin{array}{cc}
0 & \left(x_{11}^{(1)}-x_{22}^{(1)}\right) x_{12}^{(2)} \\
0 & 0
\end{array}\right) \\
& \vdots \\
& {\left[X_{1}, X_{n}\right] }=\left(\begin{array}{cc}
0 & \left(x_{11}^{(1)}-x_{22}^{(1)}\right) x_{12}^{(n)} \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Notice that

$$
X_{i}\left[X_{1}, X_{j}\right]=x_{11}^{(i)}\left[X_{1}, X_{j}\right]
$$

and

$$
\left[X_{1}, X_{j}\right] X_{i}=x_{22}^{(i)}\left[X_{1}, X_{j}\right]
$$

The lemma now follows easily as in Lemma 9. Of course the sum above is direct since the $x_{12}^{(k)}, 1 \leq k \leq n$, are distinct indeterminates.

As an immediate consequence of Lemma 12 we may compute $P\left(\left[X_{1}, R\right]\right)$.

Lemma 13.

$$
P\left(\left[X_{1}, R\right]\right)=\frac{s_{1} s_{2}+s_{1} s_{3}+\cdots+s_{1} s_{n}}{\left(1-s_{1}\right)^{2}\left(1-s_{2}\right)^{2} \cdots\left(1-s_{n}\right)^{2}}
$$

Theorem 14.

$$
P(R)=\frac{\left(2\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)\right)+\left(s_{1}+\cdots+s_{n}\right)-1}{\left(1-s_{1}\right)^{2}\left(1-s_{2}\right)^{2} \cdots\left(1-s_{n}\right)^{2}}
$$

Proof. We induct on n. The case $n=2$ is Lemma 11 so we assume $n \geq 3$ and that the theorem is true for $n-1$ variables.
R has the following decomposition as a k-space:

$$
R \cong_{k} R /\left[X_{1}, R\right] \oplus_{k}\left[X_{1}, R\right] \cong_{k} \bigoplus_{i=0}^{\infty} X_{1}^{i} k\left[X_{2}, \ldots, X_{n}\right] \oplus_{k}\left[X_{1}, R\right]
$$

Therefore,

$$
\begin{aligned}
P(R) & =P\left(\bigoplus_{i=0}^{\infty} X_{1}^{i} k\left[X_{2}, \ldots, X_{n}\right]\right)+P\left(\left[X_{1}, R\right]\right) \\
& =\left(1+s_{1}+s_{1}^{2}+\cdots\right) P\left(k\left[X_{2}, \ldots, X_{n}\right]\right)+P\left(\left[X_{1}, R\right]\right)
\end{aligned}
$$

By the inductive hypothesis $P\left(k\left[X_{2}, \ldots, X_{n}\right]\right)$ equals

$$
\frac{\left(2\left(1-s_{2}\right) \cdots\left(1-s_{n}\right)\right)+\left(s_{2}+\cdots+s_{n}\right)-1}{\left(1-s_{2}\right)^{2}\left(1-s_{3}\right)^{2} \cdots\left(1-s_{n}\right)^{2}}
$$

and by Lemma $13 P\left(\left[X_{1}, R\right]\right)$ equals

$$
\frac{s_{1} s_{2}+\cdots+s_{1} s_{n}}{\left(1-s_{1}\right)^{2} \cdots\left(1-s_{n}\right)^{2}}
$$

Thus

$$
\begin{aligned}
P(R)= & \frac{\left(2\left(1-s_{2}\right) \cdots\left(1-s_{n}\right)\right)+\left(s_{2}+\cdots+s_{n}\right)-1}{\left(1-s_{1}\right)\left(1-s_{2}\right)^{2}\left(1-s_{3}\right)^{2} \cdots\left(1-s_{n}\right)^{2}} \\
& +\frac{s_{1} s_{2}+\cdots+s_{1} s_{n}}{\left(1-s_{1}\right)^{2} \cdots\left(1-s_{n}\right)^{2}} \\
= & \frac{\left(2\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)\right)+\left(s_{1}+\cdots+s_{n}\right)-1}{\left(1-s_{1}\right)^{2}\left(1-s_{2}\right)^{2} \cdots\left(1-s_{n}\right)^{2}} .
\end{aligned}
$$

We now prove the main result of this section.
Theorem 15.

$$
P\left(T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)\right)=\frac{\left(\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)-\left(1-s_{1}-\cdots-s_{n}\right)\right)^{2}}{\left(1-s_{1}-\cdots-s_{n}\right)\left(1-s_{1}\right)^{2} \cdots\left(1-s_{n}\right)^{2}}
$$

Proof. By the exact sequence of Lemma 8 we have

$$
\begin{aligned}
& P\left(T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)\right)=P\left(k\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)-P\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \\
& \quad=\frac{1}{1-s_{1}-\cdots-s_{n}}-\frac{2\left(\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)\right)+\left(s_{1}+\cdots+s_{n}\right)-1}{\left(1-s_{1}\right)^{2} \cdots\left(1-s_{n}\right)^{2}} \\
& \quad=\frac{\left(\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)-\left(1-s_{1}-\cdots-s_{n}\right)\right)^{2}}{\left(1-s_{1}-\cdots-s_{n}\right)\left(1-s_{1}\right)^{2} \cdots\left(1-s_{n}\right)^{2}} .
\end{aligned}
$$

As an application of Theorem 15 we now give a precise description of $T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)$. Let $T_{1}\left(x_{1}, \ldots, x_{n}\right)$ denote the commutator ideal of $k\left\langle x_{1}, \ldots, x_{n}\right\rangle$. In other words, $T_{1}\left(x_{1}, \ldots, x_{n}\right)$ is the ideal of $k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ such that the sequence

$$
0 \rightarrow T_{1}\left(x_{1}, \ldots, x_{n}\right) \rightarrow k\left\langle x_{1}, \ldots, x_{n}\right\rangle \rightarrow k\left[x_{1}, \ldots, x_{n}\right] \rightarrow 0
$$

is exact. It follows that

$$
\begin{aligned}
P\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right) & =\frac{1}{1-s_{1}-\cdots-s_{n}}-\frac{1}{\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)} \\
& =\frac{\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)-\left(1-s_{1}-\cdots-s_{n}\right)}{\left(1-s_{1}-\cdots-s_{n}\right)\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)}
\end{aligned}
$$

We will show that $T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)=\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}$. To show one inclusion is very easy. It then suffices to show that both members have the same Poincaré series. To calculate the Poincaré series of $\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}$ we need to make use of a combinatorial lemma, due to Formanek. We sketch a proof of the lemma.

Lemma 16. (Formanek) Let I and J be homogeneously generated ideals of $k\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then $P(I J)=P(I) P(J)\left(1-s_{1}-\cdots-s_{n}\right)$.

Proof. One first shows, using only elementary arguments, that I and J are free as left ideals on homogeneous generators. Let $\alpha\left(i_{1}, \ldots, i_{n}\right)$ equal the number of free generators of I considered as a left ideal of degree $\left(i_{1}, \ldots, i_{n}\right)$. Define

$$
G(I)=\sum_{i_{1}, \ldots, i_{n} \geq 0} \alpha\left(i_{1}, \ldots, i_{n}\right) s_{1}^{i_{1}} s_{2}^{i_{2}} \cdots s_{n}^{i_{n}}
$$

Similarly define $G(J)$ and $G(I J)$. Then $G(I J)=G(I) G(J)$ and $P(I)=$ $G(I) /\left(1-s_{1}-\cdots-s_{n}\right)$. The lemma follows.

THEOREM 17. $T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)=\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}$.
Proof. We first show that $\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2} \subseteq T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)$. Any element of $\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}$ is a sum of terms of the form $r_{1}\left[x_{i}, x_{j}\right] r_{2}\left[x_{k}, x_{l}\right] r_{3}$ where $1 \leq i, j, k, l \leq n$ and $r_{1}, r_{2}, r_{3} \in k\left\langle x_{1}, \ldots, x_{n}\right\rangle$. The commutator of two upper triangular matrices is strictly upper triangular. Therefore each term of the form above is an identity for R since any finite product of upper triangular 2×2 matrices where at least two of the factors are strictly upper triangular is zero. Therefore $\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2} \subseteq$ $T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)$.

As mentioned above it now suffices to show that $\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}$ and $T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)$ have the same Poincaré series. By Lemma 16

$$
\begin{aligned}
& P\left(\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}\right)=\left(1-s_{1}-\cdots-s_{n}\right)\left(P\left(T_{1}\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{2} \\
& \quad=\left(1-s_{1}-\cdots-s_{n}\right)\left(\frac{\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)-\left(1-s_{1}-\cdots-s_{n}\right)}{\left(1-s_{1}-\cdots-s_{n}\right)\left(1-s_{1}\right) \cdots\left(1-s_{n}\right)}\right)^{2} \\
& \quad=P\left(T_{2}^{U}\left(x_{1}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

References

1. E. Formanek, P. Halpin, W.-C. Li, The Poincare series of the ring of 2×2 generic matrices, J. Algebra, 69 (1981), 105-112.
2. Y. Razmyslov, On a problem of Kaplansky, Izv. A.N.S.S.S.R. Sec. Math., 37 (1973), 479-496 (Russian). Translation: Math. USSR-Izv., Vol. 7 (1973), No. 3.

Received August 24, 1981. This article is a portion of the author's Ph.D. thesis at The Pennsylvania State University.

SUNY

Oswego, NY 13126

