A GENERALIZATION OF THE GLEASON-KAHANE-ZELAZKO THEOREM

CHANG-PAO CHEN

In this paper, we consider two classes of commutative Banach algebras, which include $C^n(T)$, $\operatorname{Lip}_{\alpha}(T)$, BV(T), $L^1 \cap L^p(G)$, $A^p(G)$, $L^1 \cap C_0(G)$, l^p , c_0 , and $C_0(S)$. We characterize ideals of finite codimension in these two classes of algebras and thereby partially answer a question suggested by C. R. Warner and R. Whitley.

In [5] and [9], A. M. Gleason, J. P. Kahane and W. Zelazko gave independently the following characterization of maximal ideals: Let A be a commutative Banach algebra with unit element. Then a linear subspace M of codimension 1 in A is a maximal ideal in A if and only if it consists of noninvertible elements, or equivalently, each element of M belongs to some maximal ideal. This interesting result as first proved depended on the Hadamard Factorization Theorem.

This characterization of maximal ideals was extended in [15] and [16] to algebras without identity. In [16], C. R. Warner and R. Whitley also gave a characterization of ideals of finite codimension in $L^1(R)$ and C[0, 1]. They showed: Let A be any one of $L^1(R)$ and C(S), where S is a compact subset of R. If M is a closed subspace of codimension n in A with the property that each element in M belongs to at least n regular maximal ideals, then M is an ideal. In fact, M is the intersection of n regular maximal ideals. Also in [16], C. R. Warner and R. Whitley suggested the following question: For what locally compact abelian group G does $L^1(G)$ have the property of $L^1(R)$ described above?

In this paper, we partially answer this question and generalize the work of C. R. Warner and R. Whitley. In this paper, two methods are introduced; One uses the Baire category theorem and the other generalizes the ideas of Theorems 2 and 4 in [16].

THEOREM 1. Let A be a commutative Banach algebra with a countable maximal ideal space \mathfrak{M} . If M is a closed subspace of codimension n in A with the property that each element in M belongs to at least n regular maximal ideals, then M is an ideal, which is the intersection of n regular maximal ideals.

Proof. From the hypothesis, we know that $M \subset \bigcup I_{s_1s_2\cdots s_n'}$ where $I_{s_1s_2\cdots s_n}$ denotes the space $\{x\in A: \hat{x} \text{ vanishes at } s_1, s_2, \ldots, s_n\}$ and the union is taken over all sets of distinct elements s_1, s_2, \ldots, s_n in \mathfrak{M} . Since \mathfrak{M} is countable, the union is a countable union. By the Baire category theorem, $M \subset I_{s_1s_2\cdots s_n}$ for some set of distinct elements s_1, s_2, \ldots, s_n in \mathfrak{M} . If not, for any set of distinct elements s_1, s_2, \ldots, s_n in \mathfrak{M} , we have $M \cap I_{s_1s_2\cdots s_n} \subseteq M$. By the open mapping theorem, we find that $M \cap I_{s_1s_2\cdots s_n}$ is of first category in M and so the union $\bigcup (M \cap I_{s_1s_2\cdots s_n})$ is of first category in M. This implies that M is of first category in itself and contradicts the fact that M is a Banach space. Therefore $M \subset I_{s_1s_2\cdots s_n}$ for some set of distinct elements s_1, s_2, \ldots, s_n in \mathfrak{M} . Since M and $I_{s_1s_2\cdots s_n}$ are of codimension n in A, $M = I_{s_1s_2\cdots s_n}$. We have completed the proof.

EXAMPLE 2. Any of the following spaces has the property described in Theorem 1: $C^n(T)$; $\operatorname{Lip}_{\alpha}(T)$, $0 < \alpha \le 1$; BV(T); $L^p(G)$, $1 \le p \le \infty$, or $A^p(G)$ or C(G), or any normed ideal in $L^1(G)$, where G is a metrizable compact abelian group; l^p , $1 \le p < \infty$, and c_0 (cf. [1, 2, 4, 7, 8, 10, 11, 12, 14]).

REMARK 3. The structure of a metrizable compact abelian group can be found in [12, Theorem 2.2.6]. It is well-known that the maximal ideal space of l^{∞} coincides with the Stone-Čech compactification βZ^{+} , whose cardinal number is uncountable. (See [2, pp. 58] and [3, pp. 244].) Therefore Theorem 1 cannot be applied to this case. Theorem 1 answers the question suggested by C. R. Warner and R. Whitley for $L^{1}(G)$ in the case G is compact and metrizable.

The following theorem extends the results presented in Theorem 1 to another kind of algebra while not hypothesizing that M be closed. (Compare this with Theorem 1 and [16, Theorems 2 and 4].) This theorem generalizes Theorems 2 and 4 in [16].

THEOREM 4. Let A be a commutative Banach algebra with involution $x \to x^*$ satisfying $\hat{x}^* = \hat{x}^-$. Suppose that there is an element x_0 in A, with \hat{x}_0 never zero, and that there is a one-to-one real-valued function ϕ on the maximal ideal space \mathfrak{M} of A such that $\hat{x}_0\phi^j = \hat{x}_j$ for some x_j in A ($1 \le j \le n$). If M is a subspace (not a priori closed) of codimension n in A with the property that each element in M belongs to at least n regular maximal ideals, then M is an ideal which is the intersection of n regular maximal ideals.

Proof. Without loss of generality, we may assume that \hat{x}_0 is real-valued. Let $\bar{x}_0, \bar{x}_1, \dots, \bar{x}_{n-1}$ denote the cosets in the quotient space A/M corresponding to x_0, x_1, \dots, x_{n-1} . If $\lambda_0 \bar{x}_0 + \lambda_1 \bar{x}_1 + \dots + \lambda_{n-1} \bar{x}_{n-1} = \bar{0}$, then $\lambda_0 x_0 + \lambda_1 x_1 + \dots + \lambda_{n-1} x_{n-1} \in M$ and so the equation $\lambda_0 + \lambda_1 \phi(s) + \dots + \lambda_{n-1} \phi(s)^{n-1} = 0$ has n distinct solutions in s. This implies that the polynomial $\lambda_0 + \lambda_1 t + \dots + \lambda_{n-1} t^{n-1}$ has n distinct zeros, which occurs only if all λ_j 's are zero. Hence $\bar{x}_0, \bar{x}_1, \dots, \bar{x}_{n-1}$ form a basis for A/M.

There exist scalars $\lambda_0, \ldots, \lambda_{n-1}$ such that $x_n - \lambda_0 x_0 - \cdots - \lambda_{n-1} x_{n-1}$ is in M. Denote this element of M by m_0 . We claim that \hat{m}_0 is real-valued. By hypothesis and since $m_0 \in M$, we find that the equation $\lambda_0 + \lambda_1 \phi(s) + \cdots + \lambda_{n-1} \phi(s)^{n-1} = \phi(s)^n$ has n distinct solutions, say s_1, s_2, \ldots, s_n . We write down these relations as follows:

$$\lambda_0 + \lambda_1 \phi(s_1) + \dots + \lambda_{n-1} \phi(s_1)^{n-1} = \phi(s_1)^n,$$

$$\vdots$$

$$\lambda_0 + \lambda_1 \phi(s_n) + \dots + \lambda_{n-1} \phi(s_n)^{n-1} = \phi(s_n)^n.$$

By hypothesis, we know that $\phi(s_1)$, $\phi(s_2)$,..., $\phi(s_n)$ are n distinct real numbers. By Cramer's rule, we find that $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ are all real and so \hat{m}_0 is real-valued. As we saw above, \hat{m}_0 vanishes exactly at s_1, s_2, \ldots, s_n .

Let m be an element in M with \hat{m} real-valued. We have $m + im_0 \in M$ and so the equation $\hat{m}(s) + i\hat{m}_0(s) = 0$ has n distinct solutions in s. This implies that $\hat{m}(s_1) = \cdots = \hat{m}(s_n) = 0$, because \hat{m}_0 vanishes exactly at s_1, s_2, \ldots, s_n .

Fix m in M. There exist scalars $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ such that $m^* - \lambda_0 x_0 - \cdots - \lambda_{n-1} x_{n-1}$ is in M. We have $m + m^* - \lambda_0 x_0 - \cdots - \lambda_{n-1} x_{n-1} \in M$ and so the equation $2\operatorname{Re} \hat{m}(s) - \lambda_0 \hat{x}_0(s) - \cdots - \lambda_{n-1} \hat{x}_0(s) \phi(s)^{n-1} = 0$ has n distinct solutions in s. By Cramer's rule, we find that $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ are all real. On the other hand, we have $-m + m^* - \lambda_0 x_0 - \cdots - \lambda_{n-1} x_{n-1} \in M$ and so the equation $-2i\operatorname{Im} \hat{m}(s) - \lambda_0 \hat{x}_0(s) - \cdots - \lambda_{n-1} \hat{x}_0(s) \phi(s)^{n-1} = 0$ has n distinct solutions in s. By Cramer's rule, we find that $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ are all pure imaginary. Combining these two results we find that all λ_j 's are zero. This shows that m^* is in M.

We know that

$$m = 2^{-1}(m + m^*) + i[(2i)^{-1}(m - m^*)],$$

where the Fourier-Gelfand transforms of $m+m^*$ and $(2i)^{-1}(m-m^*)$ are real-valued. From the results presented in the preceding two paragraphs, we find that \hat{m} vanishes at s_1, s_2, \ldots, s_n for every m in M. This says that $M \subset I_{s_1s_2\cdots s_n}$, where $I_{s_1s_2\cdots s_n}$ denotes the space $\{x \in A : \hat{x} \text{ vanishes at } s_1, s_2, \ldots, s_n\}$. Since M and $I_{s_1s_2\cdots s_n}$ are of codimension n in A, $M = I_{s_1s_2\cdots s_n}$. We have completed the proof.

EXAMPLE 5. Any of the following spaces has the property described in Theorem 4: $C^n(T)$; $\operatorname{Lip}_{\alpha}(T)$, $0 < \alpha \le 1$; BV(T); $L^1 \cap L^p(G)$, $1 \le p \le \infty$, or $A^p(G)$ or $L^1 \cap C_0(G)$, or any normed ideal in $L^1(G)$ which is invariant under involution, where G is either a metrizable compact abelian group or the direct product of the real line R and a metrizable compact abelian group; I^p , $1 \le p < \infty$, and $C_0(S)$, where S is any closed subset of $R \times Z^\infty$.

Example 5 follows immediately from the following lemma:

LEMMA 6. The following two types of algebras have the property described in Theorem 4:

- (i) Any normed ideal in $L^1(G)$ which is invariant under involution, where G is a metrizable compact abelian group or the direct product of R and such a G.
 - (ii) $C_0(S)$, where S is any closed subset of $R \times Z^{\infty}$.

Proof. Let A be a normed ideal in $L^1(G)$ which is invariant under involution, where G is either a metrizable compact abelian group or the direct product of the real line R and a metrizable compact abelian group. From Theorems 2.2.2 and 2.2.6 in [12] we find that Γ is of the form $\Gamma_1 \times \Gamma_2$, where Γ_1 is $\{0\}$ or R and Γ_2 is countable. Write Γ_2 as $\{\gamma_1, \gamma_2, \ldots\}$. Define a function ϕ on Γ as follows:

$$\phi(\gamma_m) = m \text{ if } \Gamma_1 = \{0\},$$

$$\phi(x, \gamma_m) = \frac{x}{(1 + 4\pi^2 x^2)^{1/2}} + m \text{ if } \Gamma_1 = R,$$

then ϕ is a one-to-one real-valued function on Γ .

Choose an integrable function h_0 on G with the following property:

$$\hat{h}_0(\gamma_m) = e^{-m^2} \text{ if } \Gamma_1 = \{0\},$$
 $\hat{h}_0(x, \gamma_m) = e^{-(x^2 + m^2)} \text{ if } \Gamma_1 = R.$

It is well-known that Γ is sigma-compact, say $\Gamma = \bigcup_{j=1}^{\infty} K_j$, where K_j are compact subsets of Γ . There exists functions g_j in A such that $\hat{g}_j \ge 0$ on Γ and $\hat{g}_j = 1$ on K_j . Define

$$g_0 = \sum_{j=1}^{\infty} \frac{g_j}{j^2 \|g_j\|_A}$$
 and $f_0 = g_0 * h_0$,

then f_0 is in A and \hat{f}_0 is never zero. For the case $\Gamma_1 = R$ we have

$$\hat{f}_{0}(x, \gamma_{m})\phi(x, \gamma_{m})^{j} = \hat{g}_{0}(x, \gamma_{m})e^{-(x^{2}+m^{2})} \left[\frac{x}{(1+4\pi^{2}x^{2})^{1/2}} + m \right]^{j} \\
= \hat{g}_{0}(x, \gamma_{m})e^{-(x^{2}+m^{2})} \sum_{k=0}^{j} {j \choose k} x^{k} \hat{G}_{1}(x)^{k} m^{j-k} \\
= \hat{g}_{0}(x, \gamma_{m}) \sum_{k=0}^{j} {j \choose k} e^{-x^{2}} x^{k} \hat{G}_{1}(x)^{k} e^{-m^{2}} m^{j-k} \\
= \hat{g}_{0}(x, \gamma_{m}) \sum_{k=0}^{j} {j \choose k} \hat{H}_{k}(x) \hat{G}_{1}(x)^{k} e^{-m^{2}} m^{j-k} \\
= \hat{g}_{0}(x, \gamma_{m}) \hat{F}_{j}(x, \gamma_{m}) \\
= \hat{f}_{l}(x, \gamma_{m})$$

where

$$\begin{pmatrix} j \\ k \end{pmatrix} = \frac{j(j-1)(j-2)\cdots(j-k+1)}{k!}, \qquad \begin{pmatrix} j \\ 0 \end{pmatrix} = 1,$$

$$G_1(x) = \frac{1}{(4\pi)^{1/2}} \frac{1}{\Gamma(1/2)} \int_0^\infty e^{-\pi x^2/\delta} e^{-\delta/4\pi} \frac{d\delta}{\delta},$$

$$\hat{H}_k(x) = e^{-x^2} x^k,$$

$$F_j = \sum_{k=0}^j \binom{j}{k} \binom{j}{k} \binom{H_k * G_1 * \cdots * G_1}{k \text{ terms}} \binom{\sum_{m=1}^\infty e^{-m^2} m^{j-k} \gamma_m}{k \text{ terms}},$$

$$f_j = g_0 * F_j.$$

The definition of G_1 can be found in [13, pp. 132]. The existence of integrable functions H_k on R is based on the fact that the function e^{-x^2} is

rapidly decreasing. We have $G_1 \in L^1(R)$, $H_k \in L^1(R)$ and the functions

$$\sum_{m=1}^{\infty} e^{-m^2} m^{j-k} \gamma_m$$

are integrable. This implies that $F_j \in L^1(G)$ and so f_j is in A. This result is also true for the case $\Gamma_1 = \{0\}$; with minor modifications the preceding proof applies.

It remains to show (ii). Let S be any closed subset of the space $R \times Z^{\infty}$. From Theorem XI.6.5 in [3] we find that S is locally compact. It is well-known that $R \times Z^{\infty}$ is the dual group of $R \times T^{\omega}$. (See [12, §2.2].) Take $G = R \times T^{\omega}$ and define ϕ and h_0 as above. Denote the restriction of \hat{h}_0 on S by f_0 and the restriction of ϕ on S by itself, then $f_0 \in C_0(S)$, f_0 is never zero, ϕ is one-to-one and real-valued and $f_0\phi^J \in C_0(S)$ for all j. (Here we use the assumption that S is closed.) We have completed the proof.

The problem of characterizing the ideals of finite codimension for $L^1(\mathbb{R}^2)$ and C(D), D the closed unit disk, raised in [16] remains open.

Acknowledgement. I would like to thank the referee for his valuable suggestions.

REFERENCES

- [1] J. Cigler, Normed ideals in $L^1(G)$, Nederl. Akad. Wetensch. Indag. Math., 31 (1969), 273–282
- [2] R. G. Douglas, *Banach Algebra Techniques in Operator Theory*, Academic Press, New York and London, 1972.
- [3] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.
- [4] R. E. Edwards, Fourier Series, a Modern Introduction, 2 Vols. New York, N. Y.: Holt, Rinehart and Winston, Inc. 1967.
- [5] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math., 19 (1967), 171–172.
- [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Berlin, 1963.
- [7] _____, Abstract Harmonic Analysis, Vol. II, Springer-Verlag, Berlin, 1970.
- [8] E. Hewitt and K. Stromberg, *Real and Abstract Analysis*, Springer-Verlag, New York, 1965.
- [9] J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math., 29 (1968), 339-343.
- [10] Y. Katznelson, An Introduction to Harmonic Analysis, New York, 1968.
- [11] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford, 1968.
- [12] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
- [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.

- [14] H. C. Wang, Homogeneous Banach Algebras, Lecture Notes in Pure and Appl. Mathematics, Dekker, New York, 1977.
- [15] C. R. Warner and R. Whitley, A characterization of regular maximal ideals, Pacific J. Math., 30 (1969), 277–281.
- [16] _____, Ideals of finite codimension in C[0, 1] and $L^1(R)$, Proc. Amer. Math. Soc., 76 (1979), 263–267.

Received September 10, 1981 and in revised form January 20, 1982.

Institute of Mathematics National Tsing Hua University Hsinchu 300, Taiwan Republic of China