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FIXED POINT SETS OF HOMOTOPIES

HELGA SCHIRMER

In recent years it has been shown that many spaces have the
so-called complete invariance property, i.e. that every closed and non-
empty subset of them can be realized as the fixed point set of a
continuous selfmap. Here a related result is obtained for homotopies H:
I X / ^ I rather than self maps of a space X. The theorem proved here
states that if P is a compact and connected polyhedron without local cut
points and K C P X / a closed set which contains a continuum intersect-
ing both I X O a n d I X 1, then there exists a homotopy H: P X / -» P
with fixed point set K.

1. The result. In recent years several authors have been interested
in the realization of a subset A of a topological space X as the fixed point
set F i x / = (JC G X\f(x) = x) of a continuous selfmap of X under
minimal assumptions on A. If X is Hausdorff, then A is necessarily closed,
and in order to avoid questions concerning the fixed point property it has
also been assumed that A is non-empty. In many cases these assumptions
suffice. X is called a space with the complete invariance property (CIP) if
every closed and non-empty subset A of X is the fixed point set of a map
f: X -+ X, and it is known that the class of spaces with the CIP includes all
convex subsets of a normed linear space, compact topological manifolds,
locally finite simplicial complexes with the weak topology, locally com-
pact metrizable topological groups and 1-dimensional Peano continua. A
survey of these results, which are due to Boju Jiang (Po-Chu Chiang), J. R.
Martin, S. B. Nadler, Jr., H. Robbins, H. Schirmer, E. D. Tymchatyn and
L. E. Ward, Jr., and references can be found in [8].

In this paper a similar problem is considered for homotopies H:
X X I -* X, where / = [0,1] is the unit interval. The fixed point set of a
homotopy H is defined by

FixH= {(*,/) SXXI\H(x,t) =JC},

and hence we are interested in minimal assumptions on a set K C X X /
under which K can be realized as the fixed point set of a homotopy of X.
Again K is closed if X is Hausdorff, and we shall also assume that
K H (X X t) ^ 0 for every / G /. But in general this is not enough, as
the continuity of H implies conditions on the change of K (1 (XX t) with
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varying /. To clarify the situation, we say that a set A C I X O is joined to
B C X X 1 by a continuum (i.e. a compact and connected space) C C X X I
if C fl (X X 0) C A and C Pi (X X 1) C 5 , and use ind(/, X) to denote
the fixed point index of the map f: X -> X. Then the following proposition
is an easy consequence of a rather complex theorem by F. Browder (see
[1], Theorem 1).

PROPOSITION. Let X be a compact ANR and H: XX I -» X a homo-
topy from f=H\XX0 to g = H\XX 1. / / ind(/, X) ^ 0, then there
exists a continuum C in Fix H joining Fix f and Fix g.

(Browder's theorem only implies the existence of a connected set C1 in
Fix / / joining Fix / and Fix g. To obtain a continuum, simply take the
closure of Cx.)

The proposition shows that in order to realize the closed set K C X X I
as the fixed point set of a homotopy it is generally necessary to assume
that K contains a continuum joining X X 0 and X X I .

We show that these assumptions on K are sufficient for certain
polyhedra. Recall that a local cut point (or separating point) is a point x
which has a connected neighbourhood TV so that N — x is not connected.
The purpose of this paper is the proof of the following result.

THEOREM. Let P be a compact and connected polyhedron without local
cut points, and K C P X I a closed set which contains a continuum C joining
P X 0 and P X 1. Then there exists a homotopy H: P X I -> P with
Fix H = K.

The assumptions on P in the Theorem are e.g. satisfied by those
polyhedra for which it is presently known that the Nielsen number N(f)
of a selfmap / can be realized by a map homotopic to / (see [3], Main
Theorem; compare also [2], Ch. VIII D, Theorem 1, and [9], Theorem 2.4)
and by all compact triangulable manifolds of dimension > 2. It is easy to
check directly that the Theorem also holds for all 1-dimensional mani-
folds. Nevertheless the class of spaces for which we prove the Theorem is
more restrictive than the class of spaces which are known to have the CIP,
even if attention is confined to polyhedra. The reason is that we consider
only the case where H can be obtained via path fields, and hence
H | P X 0 is homotopic to the identity map of P. The path field method of
proof establishes the CIP for 2-dimensionally connected polyhedra [8], i.e.
for polyhera where every maximal simplex is of dimension > 2 and where
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every two maximal simplexes r, T ' E P are connected by a chain of
maximal simplexes rx — T, T2,. . . ,Tr — T' so that ii D f/+1 is of dimension
at least one for / = l ,2 , . . . , r — 1. (See §2 for the notation used.) A
polyhedron without local cut points is 2-dimensionally connected, but the
converse is not true. The condition that P has no local cut points can be
considered as a localization of 2-dimensional connectedness, and is needed
in the proof of the Theorem to ensure that certain subpolyhedra are
2-dimensionally connected.

There is little doubt that the Theorem holds for a much wider class of
spaces. Combining the techniques of this paper with those of [4] will likely
suffice to establish it for all locally finite simplicial complexes with the
weak topology. But while such a proof is very feasible, its length may
prevent it from being enjoyable.

2. Background: Proximity maps and path fields. We write (P , T)
for a polyhedron P with triangulation T. An open simplex of (P, T) is
denoted by r, the corresponding closed simplex by f, and its boundary by
f. Let K(X) stand for the carrier of the point x G P . The sets

s t r = U {yeP\r(=

and

V(x) = {yeP\K(x)nic(y)¥= 0}

are open neighbourhoods of T resp. x. Hence if X is a subspace of P, then

v(x)= U {v(x)\xex}

is an open neighbourhood of X. Note that V(K(X)) = V(x), and that
V(T) C V(O) if the simplex T is a face of the simplex a. A map f: X -* P
from a subspace X of P into P is called a proximity map [2], p. 124, if
f(x) E V{x) for all x G X. If several triangulations of P are used, then we
clarify our notation by writing T G ( ? , T) and by cal l ing/a T-proximity
map. Note that if Tx refines To, then a Tx-proximity map is a fortiori a
7^-proximity map.

Let P 7 be the path space of P with the compact-open topology. Then
dipath field on P is a map ft: P -* Pr so that /?(JC) is either a path/?: / -» P
with p(0) — x and p{s) T^ X for 0 < 5 < 1, or the constant path at x. If
j3(x) is the constant path at JC, then x is called a singularity of /?. A
proximity map f:P-*P determines a path field /? on P consisting of
broken line segments in such a way that the fixed points o f / a re precisely
the singularities of /?. (See [9], Lemma 1.1, [2], p. 124, or [5], Lemma 2.1.)
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A homotopy H: P X I -> P, or more generally its restriction H | Y:
Y -> P to a subspace 7 of P X / , is called a proximity map if H \ Y n
( P X r) is a proximity map for every / E / . A homotopy i / : P X I -* P
defines as usual a map H : P X / - > P X J given by H(x, t) = (H(x, t), t)
for all x E P and t E / , and hence if H is a proximity map, then it
determines a path field y: P X / -> (P X / / which is level-preserving in
the sense that y(x, *)(•*) C P X / for all (x, /) E P X / and 0 < J < 1.

The following three simple lemmas concerning extensions of proxim-
ity maps will be used in the proof of the Theorem. The symbols bd and
Bd denote the boundary in P and in P X / . Similarly we use cl, Cl, int and
Int for the closure and interior in P and P X / .

LEMMA 1. Let r E ( P , 7") have dimension at least one. Then every fixed

point free proximity map Go: ( f X 0 ) U ( f X J ) - » P has an extension G:

r X / -» P which is a fixed point free proximity map.

Proof. In the construction given in the proof of Lemma 2.1 in [3]
replace/0: X -> X by Go | f: f -» F ( T ) and 4̂ by f.

LEMMA 2. i>/ P! tf«d P2 Z?e (possibly empty) subpolyhedra of a compact
polyhedron (P, T) with P2 C P, C P. Gfoen Go: (P X 0) U (P2 X I)-+P
so that Go | ((Pj — P2) X 0) U (bd P2X I) is a fixed point free proximity
map, then there exists an extension G: (P X 0) U (P{ X / ) -> P o/ Go so
that G\(PX— P2) X / is a fixed point free proximity map.

Proof. For every vertex v of Pj — P2, let G(v,t) — Go(t>,0) for all
/ E / . Then use Lemma 1 to extend Go over all T X / , where r E Pj — P2

is of dimension one, then over all r X I where r E Px — P2 is of di-
mension two, and continue thus until G is obtained.

LEMMA 3. Let P, be a subpolyhedron of the compact polyhedron (P,T)
and Ix a closed subinterval of I. Then every proximity map Go: Bd(Pi X Ix)
-> P has an extension G: Px X Ix -> P w/̂ /cft w « proximity map.

Proof. Let ^ = [/0, r j , where 0 < f0 < f, < 1. As K(t?) is path-con-
nected for every vertex v E int P1? we can define G | v X / as any path in
K(t;) from G0(v, t0) to G0(t;, tx). Then we can define G on all T X Il9

where T E int Px is of dimension one, as any extension of the already
constructed map from Bd(T X / ,) into the contractible space V(r). Pro-
ceeding in this way over all simplexes of int P1 of increasing dimension we
obtain G.
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3. The proof of the theorem. We can assume that C ¥= P X I, as
the case C = P X / is trivial. The proof of the Theorem will then be
achieved in three steps. In the first we construct, for every n — 1,2,3,. . . ,
a piecewise linear arc Sn contained in the 22~"-neighbourhood U(C, 22~n)
of C, and in the second homotopies Fn: P X / -» P which are proximity
maps with Fix Fn C f/(C, 22~n). The arc Sn serves as a guide to ensure this
condition, as in fact Fix Fn is contained in a suitable neighbourhood of Sn.
In the final step the level-preserving path fields associated with the
proximity maps Fn are used to construct homotopies Hn: P X / -» P with
Fix Hn C K U U(C,22~n) and converging to a homotopy H with Fix H
= K.

Step 1. Let To be the given triangulation of the polyhedron P and dP

the barycentric metric of P with respect to To. Choose refinements Tn of
7;_1 so that m e s h / i ^ ) ^ and /i(rn) < i / i f T ^ ) for w = 2 ,3 ,4 , . . . ,
and let 7̂ ' be the triangulation of / which has the vertices v' = l/2n,
I — 0 , 1 , . . . ,2". Denote by stw t> the open star of the vertex v G (P,Tn), by
stw v' the open star of x>' E (/, 7 '̂), and define for n = 1,2,...

f4= U {st,v x s t B ^ | (stwv x stnv') nc^ 0 } .

Then t/w is an open and arc-connected neighbourhood of C. Let U(C9 e)
— {(x, /) 6 ? X / | J((x, /), C) < c}, where d is the product metric of dp

and the Euclidean metric of /. One can check that

for every n > 1. We also define f/0 = t/_j = P X I.
Now choose a maximal simplex rx E (P,T{) so that C n ( f , X 0 ) ^

0 , and for every « > 2 a maximal simplex rn E (P , Tw) so that TB C jj,_j.
Similarly choose a maximal simplex a, E (P, r}) so that C f l ( a , X 1) 7̂
0 , and for every « > 2 a maximal simplex on E (P,Tn) so that aw C aw_ ^
Select, for all w > 1, points /;„ E TW X 0 and ?„ E aw X 1. Then it is
possible to construct a piecewise linear arc Sn C Un with the following
properties (compare Figure 1, in which the non-maximal and maximal
simplexes of {P,Tn) are schematically represented by points and line
segments):

(i) SnH(PX 0) =pn and Sn n (P X 1) = <?„,
(ii) Sn is a step-polygon consisting of subarcs joined end-to-end. Each

subarc is either a vertical segment contained in p X / , where p is constant
and contained in a maximal simplex of (P, 7^), or it is a horizontal subarc
contained in P X (2/ - l ) /2" + 1 , where / (with 1 < / < 2") is an integer,
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(iii) no closed simplex of (P X (2/ - \)/2n+\Tn) intersects two
distinct horizontal subarcs of Sn.

The existence of Sn follows from the arc-connectedness of Un and a
general position argument. We orient each arc Sn so that its initial point is
pn and its endpoint is qn.

2"

21+ 1

2"

2 / - 1

2n

>

•

sn »

•

•

*

1

1

!
—>

f i

FIGURE 1. The oriented arc

Step 2. The aim of this step is to construct for all n > 0 homotopies
Fn: P X I ^ P which satisfy the following conditions if n > 1:

(FB, 2) Fn | Cl {/„_, is a 7;-proximity map,
(JP, 3) / ; I Cl t/n_2 is a rn_1-proximity map,
( f | ) 4)F , = F l . 1 o n P X / - I / , . 2 .

Using the fact that [/„+, C {/„ for all« > 0 and the assumption C ¥= P X I,
we can determine an integer JV > 0 so that

Uo = Ux = • • • = UN = P X / but
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According to [10], Satz 1, p. 568 (see also the proof of Ch. VIII E,
Theorem 1 in [2] or of Theorem 1.4 in [9]) there exists a TN+X -proximity
map / : P -> P with Fix / = {pN}. We define Fn ioxn<N by Fn{x, t) =
/ (x) for all (JC, t) E P X / . Then we proceed by induction. To derive Fn+X

from Fn for n>N we first change the homotopy Fn, which satisfies
conditions (Fn91) to (Fn, 4) if n > 1, to a homotopy Gn: P X / -> P which
satisfies the following conditions:

(Gn, 2) GJ Cl £/n is a 7;+ rproximity map,
(Gn, 3) GJ Cl £/„_, is a ^-proximity map,
( G n , 4 ) G ^ f n o n P X / - [ / w _ ,

To do so, choose for all n>N an ew > 0 so that a homotopy G:
P X / -> P with dP(x, G(x, t)) < en for all (x, f) G P X / is a ^-proxim-
ity map. The definition of Fn for n<N and the inductive conditions
(Fn9 2) to (Fw, 4) imply that each Fn: P X / -> P is a r , -proximity map and
thus determines a level-preserving path field y w : P X / - > ( P X / ) 7 . Let TT:
P X I -* P be the projection and select sn with 0 < sn < 1 so that
dP(x9 7T o yw(x, 0(^)) < ew+i for all j < sn and (x, 0 G P X / . Then de-
fine Gnforn = N,N + 1 and all (x, /) E P X / by

For « > Â  + 2 we have Cl [/n C Un_x ¥= P X I, hence there exists a map
wn:PXI-^ [Sn, 1] so that Cl f/n C V ( * J and P X I - Un_x C V ( l ) - I f

we define Gn for « > N + 2 by

then Gn is defined for all n > iV as a map which satisfies (Gw, 1) to (Gn, 4).
To construct iFn+1 from Gn for « > iV, we first use [2], Ch. VIII C,

Lemma 2 to obtain Fn+X | P X 0 from Gn | P X 0 by moving the fixed
point pn within its carrier Kn in (P X 0, Tn) to pn+x in such a way that
^ + i I *n x 0 is still a rw+1-proximity map and that Fn+X \ (P - Kn) X 0 =
Gw | (P - jcn) X 0. Then we construct Fn+X | P X [0,(/ + l) /2"+ 1] from
i w J P X [0,//2"+1] by induction on / = 0,1 2 n + 1 — 1. First we
extend Fn+X over (P X / - Un) n (P X /„+,,/), where

by

JFW+1(JC, 0 - GH(x91) for all (x, /) E (P X / - Un) n (P X
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The oriented arc Sn+l is now used to define Fn+X o n C l [ / w f l ( P X / w + 1 / )
so that Fix F n + 1 C Un+ x. To ensure that Fix Fn+X is a set near Sn + x C Un+l9

we shall in the induction on / assume that Fn+X satisfies not only (Fn+l9 1)
to (i^i+1,4), but also the further condition (F, / ) , in which x ( ^ ) denotes
the Euler characteristic of P. (Compare with Figure 2, in which S"
represents a component of Sn+X n (P X / r t + 1 ,) .)

(F, /) Fix Fn+X n(PX l/2n+x) = S B + 1 h ( P X / / 2 n + 1 ) , and each of
those finitely many fixed points have index x(P) (index -x(^P)) if the
/-coordinate of 5W+1 is increasing (decreasing) at this point.

Casei) Case ii) Case iii)

/+ 1

21 + 1

•1

}

\

1 • y*

1 /

5' 5f

z

S'

i \

0(5') 0(5') 0(5')

FIGURE 2. A part of P X

Clearly (FJ) holds for / = 0. We now proceed with the construction
of Fn+l on Cl UnH(PX Jn + l f /) . The set Sn+X n (P X In+XJ) consists of
one or more components which are subarcs of Sn+X. Let S' - S'n+X be one
of them, let s t ^ , T be the open star of the simplex T G ( ? , r B + 1 ) , and
define an open subset O(S') = On+u{Sr) of P by

o{s')= 1+1 T X
2 « H

Then5 n + I C Un+l implies that O(5r) X ( / /2"+ 1 , / + 1/2W+1) C t /n + I ,and
(F, /) implies that F n + 1 is fixed point free on bd O(S") X / / 2 " + 1 . Hence
we can use Lemma 2, with P2 = 0 and

^i = U {bd O(S') | Sr is a component of £„+, n ( P X /„+,,/)}

to extend Fn+X as a fixed point free 7^+1-proximity map over /^ X In+Xl.
Now select one component S' of 5^+, Pi (P X In+Ul). As P has no local
cut points, O{S') is 2-dimensionally connected. Note also that condition
(iii) in the construction of Sn implies that 0(5,') n 0(^2) = 0 if S[9 S2

are two distinct components of Sn+] (1 ( P X / w + 1 7 ) . Therefore
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Fn+i\bdO(S') X ( / + l ) / 2 " + 1 has an extension to FB'+1: c lO(5 ' )X
( / + l ) / 2 " + 1 -* P which is a 7 ,̂+ 1-proximity map with only one fixed
point which lies in a maximal simplex of (P X (/ + l ) /2" + 1 , Tn+X). (See
[10], Satz 1, or the proof of Theorem 1 in Ch. VIII E of [2].) The change of
Fn'+1 to a map Fn+] satisfying (F, I + 1) depends on the cardinality of
Sn+] n (O(S') X (/ + l ) /2" + 1 ) (compare Figure 2).

(i) Sn+l D (O(S') X (/ + l ) /2"+ 1 ) consists of two points. Then Sn+l

enters O(S') X In+Ul through one of them (sayj ,) and exits through the
other (say y2). Hence Sn+l D (cl<9(S") X / /2" + 1 ) = 0 , and so (F, I)
implies that

ind(F;+ 1 , cl O(S') X / /2" + 1 ) = ind(FB + 1 ,clO(S') X / /2" + 1 ) = 0.

As

F; + I |bdo(s") xi t t + i t l = Fn+}\bdo(sf) x/B+I>/

is fixed point free, it follows from the homotopy property of the index
that ind(/£+i> c l °(s') X (/ + 1)/2W+1) = 0. So we can use the proof of
Lemma 1 in [6] to split the fixed point of i^'+ j into two points, one of
them of index x ( ^ ) an<3 the other of index — x(^)> a n d then use [2], Ch.
VIII C, Lemmas 2 and 3, to move the fixed point of index - x ( ^ ) to yx

and the one of index x ( ^ ) t o JV Thus we change i^'+1 to a map
Fn+x\c\O{S') X ( / + l ) /2* + 1 which satisfies (Fn+l,l) to (Fn+l94) and

(^,/+l).
(ii) 5W+1 H (O(S") X (/ + l ) /2" + 1 ) consists of one point z. In this

case we change i^+ 1 to Fw+1 IclOC^) X ( / + 1)/2W+1 by moving the
fixed point of Fn '+, to z. An argument similar to the one in the first case
shows that it will have the index required by (7% / + 1).

(iii) S ^ fl (O(50 X (/ + l ) /2"+ 1 ) = 0 . This means that Sn+] both
enters and exits from O(S') X In+l t through O(S') X / /2 W + 1 , hence

( X ( / + 1)/2W+1) = ind(Fw + 1 ,clO(S0 X //2W+1) = 0.

Therefore we can use [2], Ch. VIII B, Theorem 4 to eliminate the fixed
point of F ; + 1 and thus obtain Fn+} | cl 0(5*0 x (I + 1)/2W+1 as desired.

Fn+l is now defined on Bd(0(5*0 X /„+!,/) as a Tn+1-proximity map.
We choose Fn+X | cl O(5'0 X In+U as any extension which is a Tn + 1 -prox-
imity map; it exists according to Lemma 3.

Proceeding thus we can define Fn+X on

#„+!,/ = U {cl 0(5*0 x In+Xl | 5" is a component of
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As i?w+1 j C Cl Un+l9 we can finally use Lemma 2, with P — Px and
Rn+u u' P X / - £/„) 0 (P X /n+1>/)] replacing P2 X I to obtain
i ^ + 1 | P X / r t + 1 / and hence Fn+l\[O9(l + \)/2n+x]. By induction on /
we construct a homotopy Fn+x:P X / -> P which satisfies (Fn+1,1) to
(Fn+XA).

Step 3. We shall construct a homotopy H: P X I -> P with given fixed
point set Â  where C C K C P X I, as the limit of homotopies Hn\
P X I -> P with Fix HnCKU Un. To obtain i/n from Fn, we use the fact
that each Fn: P X / -> P is a 7̂  -proximity map and hence determines a
level-preserving path field y ; P X / ^ ( P X I)1.

We change the product metric d (which was defined in Step 1) to the
bounded metric d — min(l, d), and parametrize all yn(x, t) by s E / so
that

p(yn(x, 0(0), yn(x, t)(s)) - sp(yn(x, 0(0), %,(*, 0(1)),

where p is the arc length with respect to the metric dp measured along the
piecewise linear path yn(x, t). Let homotopies Hn: P X I -> P be defined
by

Hn{x, t) = yw(x, 0(^((^» 0 , ^ ) ) ^ r all (x9t)ePXI and n > 0.

As the singularities of yn are at Fix Fn C Un9 we have Fix Hn C K U Un.
To see that the Hn converge, note that it follows from (Fn,4) that

Hn+x = Hn o n P X / - £ / „ _ ! .

If ( x , 0 £ l / H CC/(C?2
3-"), then </((*, r ) , ^ ) ^ ^((^ 0, C) < 23~«.

So if n > 3, then ^((JC, t\ K) = J((JC, /), # ) and therefore

dP{Hn+x{x, t)9 Hn(x91)) < dP{Hn+x{x, t)9 x) + dP(Hn(x, t)9 x)

< 2

T h u s w e h a v e fo r a l l « > 3

1(x, 0, ^n(̂ , 0) I (x, 0 e p x /} < 24~",
and {/fn} is a Cauchy sequence in the sup metric. This allows us to define
a homotopy H = limn_^O0Hn. It is easy to check that Fix Hn C K U Un C
AT U £/(C, 23~") implies that Fix H — K, so H is a homotopy as required
in the Theorem.

4. Remarks. We want to point out that the proof given here, which
is based on a technique developed in connection with problems concern-
ing the CIP, does not allow one to impose any conditions on the
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homotopy. We have obtained H so that H \ P X t is, for every t E /,
homotopic to the identity map of P. Hence many questions concerning
fixed point sets of homotopies remain unanswered. Here are some.

(i) What conditions does K have to satisfy so that it can be realized
as the fixed point set of a homotopy H: f ^ g if one or both of/and g are
prescribed? Even if the given maps / and g are homotopic to the identity
the method of our proof does not provide an answer.

(ii) What conditions does K have to satisfy so that it can be realized
as the fixed point set of a homotopy H: f — g if the homotopy class [/] of
/ is prescribed and differs from the identity class? It is known that then
the closed set K must contain at least N(f) continua joining P X O and
P X 1 (this fact can either be obtained as a consequence of recent work by
E. Fadell or as a fairly easy extension of [1], Theorem 1), but it is also
known that this condition is not sufficient. As even the corresponding
simpler problem for maps-i.e. the problem of realizing a closed set of a
self map f of P with prescribed homotopy class [/]-has not yet been
satisfactorily solved, this question may be premature.

(iii) If P admits a fixed point free map/, then obviously H(x, t) = f(x)
for all t £ / defines a homotopy H with Fix H = 0. But is it always
possible to obtain a fixed point free homotopy H: / — g if / and g are
prescribed fixed point free maps? A answer to this question is not even
known if/and g are small deformations of the identity.

(iv) Question (iii) concerns a special case of the problem of minimiz-
ing the fixed point set of a homotopy H: f — g if / and g have minimal
fixed point sets. A more general question is the following: If / and g are
two homotopic maps so that each has N(f) (= Nielsen number o f / )
fixed points, does there exist a homotopy H: / ^ g so that H \ P X t has
only N(f) fixed points for all t G /? It is only known that H can be
chosen so that H\P X t has a finite fixed point set for all t E / [7], which
is a much weaker result.
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