TOPOLOGICAL EXTENSIONS OF PRODUCT SPACES

FRANK KOST

The Stone-Čech compactification βX and the Hewitt real-compactification νX [6] of a completely regular T_1 -space X can be obtained as certain spaces of ultrafilters from the collection of zero sets of members of $C^*(X)$ [4]. With the appropriate structure βX is the space of all ultrafilters and νX those with the countable intersection property. In this framework we give a necessary and sufficient condition for $\beta X \times \beta Y \approx \beta (X \times Y)$.

Glicksberg [5], and then Frolik [3], established for infinite spaces X and Y that $\beta X \times \beta Y \approx \beta (X \times Y)$ if and only if $X \times Y$ is pseudocompact. Our condition is in terms of the zero sets of $X \times Y$ and we do not insist that X and Y be infinite. This result extends to arbitrary products. We give some sufficient conditions for $vX \times vY \approx v(X \times Y)$ and in case $vX \times vY$ (or $v(X \times Y)$) is Lindelöf give a condition that is both sufficient and necessary.

1. For Z a normal base [2] for the closed sets of X and $F \in Z$ define $F^* \equiv \{$ ultrafilters from Z that contain $F\}$. $\{F^*: F \in Z\}$ is a base for the closed sets of the ultrafilter space $\omega(Z)$ which is a Hausdorff compactification of X. The normality property of Z is not needed to construct the T_1 -compact space $\omega(Z)$. However, $\omega(Z)$ is a Hausdorff space if and only if Z is a normal family. If Z is the zero sets from X then $\omega(Z) \approx \beta X$. Extensions of this kind are called Wallman-type. Say a base Z_1 separates a base Z_2 if disjoint members of Z_2 are contained in disjoint members of Z_1 .

THEOREM 1.1. Let $Z_1 \subset Z_2$ be normal bases for X. Then $\omega(Z_1) \approx \omega(Z_2)$ if and only if Z_1 separates Z_2 .

Let Z_1 and Z_2 be normal bases for the closed sets of X and Y.

THEOREM 1.2. $\omega(Z_1) \times \omega(Z_2)$ is a Wallman-type compactification of $X \times Y$.

Proof (Sketch). Let $Z_1 \times Z_2 = \{F \times G: F \in Z_1, G \in Z_2\}$ and $Z_1 \times Z_{2_{\Sigma}}$ be all finite unions from $Z_1 \times Z_2$. $Z_1 \times Z_{2_{\Sigma}}$ is the needed normal base, i.e., $\omega(Z_1) \times \omega(Z_2) \approx \omega(Z_1 \times Z_{2_{\Sigma}})$. The mapping $(\mathcal{A}, \mathcal{B}) \to \mathcal{A} \times \mathcal{B}$

FRANK KOST

is one-one from $\omega(Z_1) \times \omega(Z_2)$ onto the ultrafilters from $Z_1 \times Z_2$ which are in one-one correspondence with those from $Z_1 \times Z_{2_{\Sigma}}$. We take $(\mathcal{Q}, \mathcal{B})$ \rightarrow the ultrafilter from $Z_1 \times Z_{2_{\Sigma}}$ that contains $\mathcal{Q} \times \mathcal{B}$. This is a homeomorphism. $\beta X \times \beta Y$ is, then, a Wallman-compactification of $X \times Y$.

Let Z_1 be the zero sets from X and Z_2 those from Y. Denote the zero sets from $X \times Y$ by $Z(X \times Y)$. It is evident that $Z_1 \times Z_{2_{\Sigma}} \subset Z(X \times Y)$.

Our main result is

THEOREM 1.3. $\beta X \times \beta Y \approx \beta (X \times Y)$ if and only if $Z_1 \times Z_{2_{\Sigma}}$ separates the zero sets of $X \times Y$.

Proof. Assume that $Z_1 \times Z_{2_{\Sigma}}$ separates $Z(X \times Y)$. By Theorem 1.1, $\omega(Z_1 \times Z_{2_{\Sigma}}) \approx \beta(X \times Y)$. Using Theorem 1.2 we have $\beta X \times \beta Y \approx \beta(X \times Y)$.

If $\beta X \times \beta Y \approx \beta (X \times Y)$ then Theorem 1.2 implies that $\omega(Z_1 \times Z_{2_{\Sigma}}) \approx \omega(Z(X \times Y))$ and by Theorem 1.1, $Z_1 \times Z_{2_{\Sigma}}$ separates $Z(X \times Y)$.

Let N be the positive integers with the discrete topology. In $N \times N$, F_1 = all points below the diagonal and F_2 = all points above the diagonal belong to $Z(N \times N)$ but cannot be separated by $Z_1 \times Z_{2_{\Sigma}}$. In $R \times R$, where R is the real line, $Z_1 \times Z_{2_{\Sigma}}$ fails to separate the y-axis and y = 1/x.

REMARK. From Theorem 1.3 and Theorem 1 of [5] it is seen that, for X and Y infinite spaces, $X \times Y$ is pseudocompact if and only if $Z_1 \times Z_{2_{\Sigma}}$ separates $Z(X \times Y)$.

Let $\{X_{\alpha}\}$ be a collection of completely regular T_1 -spaces and Z_{α} the zero sets from X_{α} .

THEOREM 1.4. $\prod \beta X_{\alpha}$ is a Wallman compactification of $\prod X_{\alpha}$.

Proof (Sketch). Let $\prod Z_{\alpha} \equiv \{\prod F_{\alpha} : F_{\alpha} \in Z_{\alpha}, F_{\alpha} = X_{\alpha} \text{ for all but finitely many } \alpha\}$ and Z be all finite unions from $\prod Z_{\alpha}$. Z has sufficient properties to construct the compact T_1 -space $\omega(Z)$. We show $\prod \beta X_{\alpha} \approx \omega(Z)$ and it follows that $\omega(Z)$ is a Hausdorff space and that Z is a normal base.

REMARK. The Tychonoff Product Theorem can be obtained as a corollary to Theorem 1.4. In this case $\beta X_{\alpha} \approx X_{\alpha}$ and the homeomorphism gives $\prod X_{\alpha}$ compact.

Let Z be as above. Using Theorems 1.1 and 1.4 we arrive at an extension of our main result.

130

THEOREM 1.5. $\prod \beta X_{\alpha} \approx \beta(\prod X_{\alpha})$ if and only if Z separates the zero sets of $\prod X_{\alpha}$.

2. For Z a normal base for X let p(Z) be the subspace of $\omega(Z)$ consisting of those points that have the countable intersection property (C.I.P.). p(Z) is called a *real*-extension of X. Again, if Z is the zero sets from X then $p(X) \approx vX$. If Z is a normal base, the family of countable intersections from Z, denoted Z_{\cap} , is a normal base and $p(Z) \approx p(Z_{\cap})$. Although Z_{\cap} may introduce "new" ultrafilters none of these will have the C.I.P. e.g. $Z = \{F \subset N: F \text{ or } N \setminus F \text{ is finite}\}$. Z_{\cap} is all subsets of N and $\omega(Z_{\cap}) \approx \beta N$. $\omega(Z)$ is the one-point compactification of N. Clearly $\omega(Z_{\cap}) \neq \omega(Z)$ yet $p(Z_{\cap}) \approx N \approx p(Z)$.

THEOREM 2.1. Let $Z_1 \subset Z_2$ be normal bases for X each closed under formation of countable intersections. In case $p(Z_2)$ (or $p(Z_1)$) is Lindelöf it follows that $p(Z_1) \approx p(Z_2)$ if and only if Z_1 separates Z_2 .

REMARK. We insist on the Lindelöf property to show the condition is necessary.

Let Z_1 and Z_2 be normal bases for X and Y.

THEOREM 2.2. $p(Z_1) \times p(Z_2)$ is a real extension of $X \times Y$.

Proof (Sketch). $\omega(Z_1) \times \omega(Z_2) \approx \omega(Z_1 \times Z_{2_{\Sigma}})$ by Theorem 1.2. Under the mapping the image of $(\mathcal{A}, \mathcal{B})$ has the C.I.P. if and only if both \mathcal{A} and \mathcal{B} do. Therefore $p(Z_1) \times p(Z_2) \approx p(Z_1 \times Z_{2_{\Sigma}})$.

Let Z_1 , Z_2 be the zero sets of X, Y.

THEOREM 2.3. If $Z_1 \times Z_{2_{\Sigma}}$ separates $Z(X \times Y)$ then $vX \times vY \approx v(X \times Y)$.

Proof. $\omega(Z_1 \times Z_{2_n}) \approx \omega(Z(X \times Y))$ by Theorem 1.1.

If follows that $p(Z_1 \times Z_{2_{\Sigma}}) \approx v(X \times Y)$. We have $vX \times vY \approx v(X \times Y)$ from Theorem 2.2.

THEOREM 2.4. Assume that $vX \times vY$ (or $v(X \times Y)$) is Lindelöf. Then $vX \times vY \approx v(X \times Y)$ if and only if $Z_1 \times Z_{2_{\Sigma_0}}$ separates $Z(X \times Y)$.

Proof. Note that $Z_1 \times Z_{2_{\Sigma_1}} \subset Z(X \times Y)$. Theorems 2.1 and 2.2 establish sufficiency.

FRANK KOST

If $vX \times vY \approx v(X \times Y)$ then $p(Z_1 \times Z_{2_{\Sigma_n}}) \approx p(Z(X \times Y))$ by Theorem 2.2 and the remarks preceding Theorem 2.1. From Theorem 2.1 we have $Z_1 \times Z_{2_{\Sigma_n}}$ separates $Z(X \times Y)$.

There certainly are spaces X, Y with $vX \times vY$ Lindelöf and $vX \times vY \approx (X \times Y)$. Take a pseudocompact space X [4] with $X \times X$ not pseudocompact. $vX \times vX$ is compact, hence Lindelöf. However $v(X \times X)$ is not compact.

References

- [1] E. Čech, On bicompact spaces, Ann. of Math., 38 (1937), 823-844.
- [2] O. Frink, Compactifications and semi-normal spaces, Amer. J. Math., 86 (1964), 602-607.
- Z. Frolik, *The topological product of two pseudocompact spaces*, Czechoslovak Math. J., 10 (1960), 339–349.
- [4] L. Gillman and M. Jerison, Rings of Continuous Functions, Princeton, 1960.
- [5] I. Glicksberg, Stone-Cech compactifications of products, Trans. Amer. Math. Soc., 90 (1959), 369–382.
- [6] E. Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc., 64 (1948), 45–99.
- [7] F. Kost, Finite products of Wallman spaces, Duke Math. J., (1971).
- [8] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., **41** (1937), 375–481.

Received February 8, 1982.

SUNY Oneonta, NY 13820