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A NOTE ON M,-SPACES
Kuvuo-SHiH KAo

A mapping f: X — Y is called quasi-open if the interior of f(U) is
non-void for any non-void open subsets U of X. The main result in this
paper is that the image of an M,-space under a quasi-open, countably
bi-quotient closed mapping is an M,-space; it follows that the locally
finite regular closed sum of M, -spaces is an M -space.

In 1961, J. Ceder [4] defined the M,-spaces (i = 1,2,3). From the
definitions, it is clear that M, - M, —» M;. Recently, G. Gruenhage [6]
and H. Junnila [8] independently proved that the stratifiable ( M;-) spaces
coincide with the M,-spaces. Whether stratifiable spaces are M,-spaces
still remains open. Moreover, it is still unknown if the closed image of an
M, -space is an M,-space. It is known that irreducible perfect mappings
preserve M,-spaces (Borges-Lutzer [2]). The main result in this paper is
that the quasi-open (Definition 1), countably bi-quotient closed mappings
preserve M,-spaces (Theorem 1), which improves the above result as well
as the result of R. F. Gittings [5], and from the main result it follows that
the locally finite regular closed sum of M,-spaces is an M,-space which
partially answers the problem posed by Ceder [4]. On the other hand, we
generalize the theorem of Gruenhage [7], which proves that o-discrete
stratifiable spaces are M,.-

In this paper, regular, normal spaces are assumed to be 7;, and all
mappings are continuous and surjective. Let QU be a collection of subsets
of X, the union U {U: U € AU} is denoted by AU*.

A collection QU of subsets of X is closure preserving if for any
QU C U, U* = U{U: U€EU'Y}. Uis hereditarily closure preserving if
for any choice of a subset S(U) C U, U € A, the resulting collection
{S(U): U € A} is closure preserving.

A space X is an M,-space if X is regular and has a o-closure
preserving base.

DEFINITION 1. A mapping f: X — Y is called quasi-open if the interior
of f(U) (denoted by Int f(U)) is non-void for any non-void open subsets
Uof X.

Clearly, open mappings are quasi-open and quasi-open mappings are
preserved by composition and cartesian products.
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DEFINITION 2. A mapping f: X — Y is called pseudo-open if for any
y € Y and any open subset U D f~!(y), y € Int f(U).
It is well known that every closed mapping is pseudo-open.

DEFINITION 3. A mapping f: X — Y is called irreducible if f maps no
proper closed subspace of X onto Y.

LEMMA 1. Irreducible pseudo-open mappings are quasi-open.

Proof. Let f: X - Y be an irreducible pseudo-open mapping. Let U be
any non-void open subset of X. Since fis irreducible, U D f~!( y) for some
y € Y, otherwise f(X — U) = Y would be contrary to the irreducibility of
the mapping f. Since f is pseudo-open, y € Int f(U). This shows that fis a
quasi-open mapping.

LEMMA 2. Let f: X - Y be a quasi-open closed mapping. Let B be a
closure preserving collection of open subsets of X. Then C= {Int f(U):
U € B} is a closure preserving collection of open subsets of Y.

Proof. Let®’ C B andlety € U {Int f(U): U € %'}. Since f(U) D
Int f(U), we have

f(B*) D f(%*) > U (Int f(U): U € %}.
Since fis a closed mapping, F(%®'*) is a closed set; therefore
f(®*) D> U {Int f(U): U € D}.

It follows f~'(y) N B'* # @. Because B’ is closure preserving, there
exists U’ € B’ such that f~(y) N U’ # @. Let V be any open neighbor-
hood of y. Then f~Y(V) N U’ # @&. Since f is quasi-open, the interior of
the image of the non-void open set f~ (V) N U’ is non-void. According to

Int /(£ '(V) N U') Cc nt[V N A(U)] =V NInt f(U),

V N Int f(U’) is non-void. It shows that any open neighborhood V of y
intersects Int f(U’). Therefore y € Int f(U’). Thus we have proved that ©
is a closure preserving collection of open subsets of Y.

DEFINITION 4. A mapping f: X — Y is called bi-quotient if, whenever
y € Y and Q is a collection of open subsets of X such that U* D f~!(y),
there exists finite subcollection U’ C QU such that y € Int f(AU'*). If U is
any countable collection of open subsets then the mapping f is called
countably bi-quotient.
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It is well known that

open — bi-quotient - countably bi-quotient — pseudo-open
0 1 1
perfect - quasi-perfect - closed

and all the implications cannot be reversed.

THEOREM 1. The image of an M,-space under a quasi-open, countably
bi-quotient closed mapping is an M,-space.

Proof. Let f be a quasi-open, countably bi-quotient closed mapping
from an M,-space X onto a topological space Y. Let B = U B, be a
o-closure preserving base for X. Note that if QL is a closure preserving
collection of sets and 9L is the collection of all unions of all subcollections
of L then 9 is also closure preserving. Therefore we may assume that the
union of any subcollection of GJ?), 1s a member of %i. Moreover, without
loss of generality, we also assume B, C %, , (i=1,2,...). Put C=
{Int f(B): B € ®}. According to Lemma 2, C is a o-closure preserving
collection of open subsets of Y.

For each y € Y, let ¥V be an open neighborhood of y. Since B is a
base for X, there exists B’ C % such that f'(y) C ®’* C f~ (V). Put
B =B NB, then B = U2, B, f(y) C U ®* Cf (V).
According to B, C B,,, (i = 1,2,...), the sequence {B’*} is increasing.
Since f is a countably bi-quotient mapping, there exists a natural number
n such that y € Int f(%B’}) C V. By hypothesis, there exists B € %B, C B
such that B = ®’*. Therefore Int f(B) € Cand y € Int f(B) C V. So Cis
a base for Y, which is o-closure preserving. Clearly, Y is regular (closed
mappings preserve 7, and normality). Therefore Y is an M,-space.

According to Lemma 1 and the fact that perfect mappings are
countably bi-quotient closed mappings, we obtain the following result.

COROLLARY 1 ( Borges-Lutzer [2]). The image of an M,-space under an
irreducible perfect mapping is an M,-space.

There exists an open (hence quasi-open, countably bi-quotient), closed
mapping which is neither irreducible nor perfect (let X be a countably
compact but non-compact space, Y be a space satisfying first axiom of
countability and f be the projection of the product space X X Y onto Y).
Therefore Theorem 1 improves Borges-Lutzer’s theorem.
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COROLLARY 2. The image of an M -space under an open, closed
mapping is an M-space.

A mapping f: X - Y is called k-to-one, if for each y € Y, £ ()
consists of exactly k£ points in X.

COROLLARY 3. (R. F. Gittings [5]). The image of an M\-space under a
k-to-one, open mapping is an M,-space.

Proof. Let f be a k-to-one, open mapping from an M,-space X onto a
space Y. According to Lemmas 1 and 2 of Arhangelskii [1], fis closed, and
hence by Corollary 2, Y is an M,-space.

D. Burke, R. Engelking and D. Lutzer [3] proved that a regular space
X is metrizable if and only if X has a o-hereditarily closure preserving
base. Using the above theorem we may easily obtain E. Michael’s elegant
theorem which effectively improved the famous theorem of Morita-
Hanai-Stone (see [10]).

COROLLARY 4 ( E. Michael [9]). The image of a metrizable space under
a countably bi-quotient closed mapping is a metrizable space.

Proof. By the same argument in the proof of Theorem 1 we need only
prove that if f: X - Y is a closed mapping, % is a hereditarily closure
preserving collection of open subsets of X, then C = {Int f(U): U € B} is
a hereditarily closure preserving collection of open subsets of Y.

Whenever S(U) C Int f(U) is chosen for each U € B, let R(U) =
U N fYSU)). Then R(U) C U and f(R(U)) = S(U). Since the collec-
tion {R(U): U € B} is closure preserving and f is a continuous closed
mapping, the collection {S(U): U € B} is also closure preserving. There-
fore € = {Int f(U): U € B} is a hereditarily closure preserving collection
of open subsets of Y.

THEOREM 2. Let X be a paracompact o-space. Let f: X - Y be a
quasi-open, closed mapping. If f~\(F) has a a-closure preserving neighbor-
hood base for each closed subset F of Y, then Y is an M -space.

Proof. Since f is closed, the space Y is a paracompact o-space. Let F
be an arbitrary closed subset of Y, let B be a o-closure preserving
neighborhood base of f~!(F). By the Lemma 2, € = {Int f(U): U € B}
is a o-closure preserving collection of open subsets of Y. For any open
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subset VD F, f~(F) C f V), there exists U € B such that f}(F) C U
C (V). Since f is closed, there exists an open subset U’ such that
f(y)CU CU and f(U’) is an open subset of Y. Hence f(U’) C
Int f(U) Cf(U) CV, and F C Int f(U) C V. Therefore © is a o-closure
preserving neighborhood base of the closed subset F.

Thus we have proved that every closed subset F of the paracompact
o-space Y has a o-closure preserving neighborhood base. According to
Borges-Lutzer’s result (Remark 2.7 of [2]), Y is an M,-space.

COROLLARY. Let X be an M,-space with every closed subset having a
o-closure preserving neighborhood base. Let f- X = Y be a quasi-open closed
mapping. Then Y is an M,-space.

This corollary improves a result of Borges-Lutzer (Remark 3.5 of [2]).

Ceder [4] proved the locally finite closed sum theorem for M, and M,
spaces (Theorem 2.8 of [4]), and asked if this theorem remained valid for
M, -spaces. In the following, we give two locally finite sum theorems for
M ,-spaces. Theorem 3 improves Ceder’s theorem for locally M,-spaces
(Theorem 2.6 of [4]). Theorem 4 gives a partial answer to Ceder’s question.

THEOREM 3. Let X be a normal space. Let U = {U,}, , be a locally
finite open covering of X. If each U, (a € A) be an M,-space then X is an
M,-space.

Proof. Let %% = U7, B be a o-closure preserving base for open
subspace U, (a € A). By the regularity of X, we may assume B C U, for
each B € %B°.

By the normality of X, there exists an open covering {V,},c4 of X
such that ¥V, C U, (a € A). Since the open subspace of an M,-space is an
M -space, V, (a € A) is an M,-space, and we may choose

er= e
i=1

as the base for subspace V,, where
Cr={B:BeB,BCYV,)

is closure preserving in subspace V,. We are going to prove C! is also
closure preserving in space X.
Let ©’ C CF, we need to prove

(1) U{B:Be}= U {(B:Be@).
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Since U, is an M,-space, ¥V, C U,, &' C C C B;, and B! is closure
preserving in subspace U,, therefore

U{B:BeeC})= U {B:BE@}NnU,.

According to U{B: BEC'}CV,, U {B:BEC'} CV,CU,. It fol-
lows

U{B:Beec)nu=U (B:BeC).

Hence (1) is proved. Since {V,},c, is locally finite, we can easily prove
C,= U_.,Cis a closure preserving collection of space X. Moreover, it
is easy to verify C = U2, €, is a base for X. Therefore X is an M-space.

COROLLARY (Ceder [4]). Let X be a paracompact and locally M,-space.
Then X is an M,-space.

THEOREM 4. Let AU = {U,},c 4 be a locally finite open covering of space
X. If each U, (a € A) be an M,-space, then X is an M,-space.

Proof. For each a € 4, let X, be a copy of Fa and f, be the

homeomorphism from X, onto U,. Let
x= 3 X,
a€A

be the (disjoint) topological sum of X ’s. Evidently X* is an M,-space. Let
f: X* - X be the mapping defined as follows: for each x € X*, f(x) =
f(x), if x € X,. By the local finiteness of {U,},c,, it can be easily
verified that fis a finite to one, closed continuous mapping. Moreover, f is
quasi-open, it is proved as follows. Because of the definition of topological
sum, we need only prove that the interior of the image of non-void subset
E (E C X,) which is relatively open in subspace X, is non-void. Since f, is
the homeomorphism from X, onto U,, f(E) is relatively open in U,.
There exists an open subset G such that f(E) = G N U.Letx €f(E) C
G. There exists an open neighborhood V(x) of x such that V(x) C G. On
the other hand, x € f(E) C U, V(x) N U, # @. Since V(x) N U, C
f.(E) and V(x) N U, is a non-void open set, therefore Int £ (E) #* &.

Thus f is a quasi-open, finite to one, closed continuous mapping from
X* onto X. According to Theorem 1, X is an M,-space.

Subset F of space X is called regular closed, if F =Int F. Evidently, F
is regular closed if and only if F is the closure of an open subset. By
means of this concept, above Theorem 4 may be stated as follows:
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“Let { F,},c 4 be a locally finite regular closed covering of space X. If
each F, (a € A) is an M,-space, then X is an M,-space.”

Whether every stratifiable space is an M,-space, the partial result in
this direction is due to G. Gruenhage [7].

THEOREM (Gruenhage). Every stratifiable space which has a countable
covering consisting of closed discrete subsets of X, is an M,-space.

Gruenhage’s theorem may be stated in a more general form as
follows.

THEOREM 5. Every stratifiable space, which has a o-hereditarily closure
preserving covering consisting of closed discrete subsets of X, is an M,-space.

The proof of Theorem 5 follows from the following lemmas.

LEMMA 3. Let F be a closed discrete subset of X. Then {{x}: x € F} is
a discrete collection of subsets of X. If the space X is T, the converse is also
true.

LeMMA 4. If X is T, space, the subset of a closed discrete subset of X is a
closed discrete subset. '

LEMMA 5. Let ¥ be a discrete collection of closed discrete subsets of X.
Then %* is a closed discrete subset of X.

The proofs of above lemmas are simple and direct.

LEMMA 6. Let X be a T, space which has a o-hereditarily closure
preserving covering ¥ consisting of closed discrete subsets of X. Then X has a
countable covering consisting of closed discrete subsets of X.

Proof. Let $= U%_| %, each ¥, (n = 1,2,...) being a hereditarily
closure preserving collection consisting of closed discrete subsets of X. Let
3, = {F, o }a,ca€ach F, . is closed discrete subset. For each n, put

H, = 6‘};1* - U?—'——_ll 6‘};*’ Hn,a,, = Hn N Et,a,, (an € An)

n

By well ordering the index set 4,,, put

}?r:,u,, = Hn,u,, - U H"»Bn'

B’!<a"
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Clearly F; , CF, ,. According to Lemma 4, F; , is a closed discrete
subset. 4, = (F, , }, <4, being closure preserving and pairwise disjoint is
a discrete collection of closed discrete subsets. Hence, by the Lemma 5,
%'* is a closed discrete subset of X. Furthermore

o 0 B ]
Us:=U(UE.,)=Unr=Usg=x
n=1

n=1 n=1 ‘a,€EA, n=1

Therefore {%’}} is a countable covering of X.

Proof of the Theorem 5. The proof follows from Lemma 6 and
Gruenhage’s theorem.
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