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FREE INTERPOLATION FOR
HOLOMORPHIC FUNCTIONS

REGULAR TO THE BOUNDARY

JOAQUIM BRUNA AND FRANCESC TUGORES

We consider the class Lip s of holomorphic functions in the unit
disc satisfying a Lipschitz condition of order s, 0 < s < 1 and the class
A1 of holomorphic functions / such that the derivatives / ' belong to the
disc algebra. In this paper we give the complete characterization of the
interpolation sets for these classes, thus completing the previous works of
J. Bruna, E. M. Dyn'kin and E. P. Kronstadt.

I. Introduction and statement of results. This paper deals with
interpolation problems in classes of holomorphic functions in the unit disc
D of the complex plane that have some regularity up to the boundary T.
We denote by A the disc algebra. We will consider the following classes
included in A

L i p 5 = {feA;\f(z) ~f(w) | < c o n s t \ z ~ w \ s
y z , w G D } ,

Al = {feA;f'EA}.

We could consider as well more regular classes Lip s for s > 1 or Ap with
p — 2,3, Our results and methods also apply to them with minor
changes. To simplify the development we confine ourselves to the cases
indicated.

For a given closed set E C D, we denote by \Aps{E) the space of
functions on E satisfying a Lipschitz condition of order s. For Cl(E) we
choose the Whitney definition. That is, C\E) consists of the 1-jets
<> = (<J>, <|>2, <f>-)9 where <£, $29 <f>- are continuous functions on E such that

|<J>(w) - $ ( * ) - $Z(Z)(W ~ Z) - *;{Z){W ~Z)\ - O(\W ~ Z\)

uniformly in w, z G E. By the Whitney extension theorem ([7], pg. 5) one
can think of 4> being the jet induced by a function >̂ in C\C) with
compact support (and then (j>z — d<j>/dz, <j>£ — d<j>/dz on E).

DEFINITIONS. E is called an interpolation set for Lip s if given any
<£> E Lip5(£) there exists / E Lip s such that / = <|> on E. Similarly, we
say that E is an interpolation set for A1 if given <f> E Cl(E) with <f>£ = 0
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there exists / E A1 such that f=<}>, ff — <(>z on E (that is, for A1 we
require as well the interpolation of the derivative).

It is immediate that an interpolation set for both classes is a zero set
(see [6]) and so E n D must be a sequence (an) such that

and EH T is a Carleson set (see [2]). From now on, all closed sets is will
be assumed to be of this type, and we write Ex = E H D, Eo = E D T.

In [4] the following theorem is proved:

THEOREM (Dyn'kin). E C D is an interpolation set for Lip s, 0 < s < 1
if and only if:

(a) Ex satisfies the Carleson condition

(C) inf [I | ^ " a J , ^ g > 0

(b) The distance function p(z, E) — infwe£ | z — w \ satisfies the condi-
tion

(K) " sup p(z , E) > const|/| for all intervals I C T "

where \ 11 stands for the length of I.

From now on we shall refer to sets satisfying conditions (C) and (K)
as (CK)-sets.

Dynidn's method does not apply to Lip 1 and A1. Concerning^1 it is
proved in [1] using a different method that the boundary interpolation sets
for A1 (i.e. E C T) are also characterized by the condition (K). In the case
of Lip 1, Kronstadt proved in [6] that if E is an interpolation set, then Ex

must be the union of two Carleson sequences. He found as well some
sufficient conditions in special cases which allowed him to give an
example of an interpolating sequence not satisfying (C). Thus, the char-
acterization of the interpolation sets or Lip 1 must be different from that
in Dyn'kin's theorem.

In this paper, we first obtain the characterization of the interpolation
sets for Lip 1 and A\ thus completing the previous works [1], [4] and [6]:

THEOREM 1. A closed set E C D is an interpolation set for Lip 1 if and
only if the condition (K) holds and Ex is the union of two Carleson sequences.
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THEOREM 2. A closed set E C D is an interpolation set for A1 if and only
if it is a (CK)-set.

Our method consists essentially in applying the procedure of [1] twice.
We note (see Remark 4.3.) that the first step can be adapted to obtain
another proof of Dyn'kin's theorem, so that the paper also contains the
characterization in the Lips-case, s < 1. We remark as well that the
crucial condition (K) first appeared in the article [5] of A. M. Kotocigov
and that we use metric properties of (CK)-sets obtained by Dyn'kin in [4].

The difference between Lip 1 and Ax is due to the fact that the
interpolation of the derivative is not required for Lipl. Note that
/ £ Lipl is equivalent to / ' E H00. So, it is natural to consider the
following definition:

DEFINITION. E is called an interpolation set for Lip 1 in the strong sense
if given <f> E Lip,(2?) and (Xn) E /°°, there exists / E Lip 1 such that
/ = <f> on E and f\an) = \n (here Ex = (an)).

Our last theorem illustrates this point:

THEOREM 3. A closed set E C D is an interpolation set for Lip 1 in the
strong sense if and only if it is a (CK)-set.

In §11 we have collected the properties of (CK)-sets used in the proofs
as well as other auxiliary results. Section III is devoted to explaining the
standard method used to construct the interpolating functions. In §IV, we
give the proof of Theorem 1. This section contains a constructive proof of
the Carleson H°°-interpolation theorem for (CK)-sets which gives control
on the derivative of the interpolating function (Lemma 4.2). Finally,
Theorems 2 and 3 are proved in §V. In fact, the proof of Theorem 3 is
quite similar to that of Theorem 2 and it is just sketched at the end.

II. Properties of (CK)-sets. Auxiliary results. First we introduce
some general notations. As above, p(z, E) denotes the Euclidean distance
between z and E and p(z, Eo) will denote the Euclidean distance between
z and Eo. The disc with center z and radius e will be written Z>(z, e). We
denote by \j/(z9 w) the pseudo-hyperbolic distance, i.e.,

^ 7
— zw\
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and we put ̂ (z, Ex) = infw \p(z, an). The pseudo-hyperbolic disc with
center z and radius e is written N(z9 e). For an interval /, | /1 denotes the
length of / and

R(I) = {z <ED;z/\z\<E I and 1 - | / | / 2 i r < |z |< 1}.

As usual, the notation x ~ y will mean that the two variables x9 y
satisfy m < x/y < M for some constants m, M > 0.

Obviously, condition (C) implies

(R) 4,(an,am)>89 n^m

that is, the points (an) are uniformly separated in the pseudo-hyperbolic
metric. Conversely, it is well known (see [10]) that (R) and the condition

2 (l-kJ)<const|/|
an(ER(I)

(that is, the measure with mass 1 — | an \ at an is a Carleson measure)
together imply (C).

An easy computation shows that \p(z9 w) — \z — w |/(1 — \z |) if
\p(z, w) < min(|z | , 1/2), i.e., the pseudo-hyperbolic metric is roughly
speaking (1 — I^D"1 times the Euclidean metric. In particular for all
8 > 0 sufficiently small one has

D{an, c,5(l -\an\))cN(an,8)cD{an,c28{\ -\an\))

for some positive absolute constants c1? c2. This means that condition
(R) is equivalent to the existence of 8 > 0 such that the discs Dn =
D(an, 8(1 — \an |)) do not meet. Hence

*( £) 1 ^ U /) *( £) G D

Replacing 8 by 8/2, we can assume as well that

\z - w\ > max(8(l - |aj) , fi(l - | f lJ)) , z 6 D n , w 6 i ) m ) n ^ m.

The following important concept and the lemma after it have been
given by Dyn'kin in [4]:

DEFINITION. E is called semi-Stolzian if for someX > 1
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Geometrically, this means that Ex is contained in a "star" made up with
Stolz sectors with vertex at the points at Eo and constant amplitude.

LEMMA 2.1. If E satisfies condition (K), a countable number of points
can be added to Eo so that the resulting set E is closed, semi-Stolzian and
verifies (K).

Hence, in proving the sufficiency of our three theorems, we may
assume without loss of generality the sets E are semi-Stolzian.

LEMMA 2.2. If E is semi-Stolzian and satisfies condition (R), then

p(z9E0)~p(z9E)9 zED\[J Dn,
n

p(z, E 0 ) ~ l - \an\9 p(z9 E) ~ | z - an\9 z E Dn.

Proof. If z E D\ Un Dn and p(z, E) is attained at an E El9 one has

p(z, Eo) <|z - an\ + p(an9 Eo) <|z - an\ + X(l -\an\)

< (1 + \8~x)\z - an\ = const p(z, £)•

If z E £>„, thenp(z, E0)<\z-an\ +p(an, Eo) < (5 + X)(l - | fl|i |).
Also p(z, £0) > (1 - | z |) > (1 - 5)(1 - | an |). In particular p(z, Eo) >
5~!(1 - 8) |z - fln| . Since for z G Dnp(z, Ex) =\z - an\ we find
p(z, E)> const | z — an \ . D

REMARK. The first relation in Lemma 2.2 is equivalent to the set E
being semi-Stolzian. We can now replace E by Eo in condition (K). This is
not always the case, as the following example shows. The set E —
{2W(2" + \)~xei/n, n > 1} U {1} satisfies the condition (C) (it satisfies
Newman's condition 1 — | an+x |< y(l — | an |), y < 1 which implies (C),
see [10]) and trivially condition (K) holds for Eo. But condition (K) fails
for / = {V, 0 < t < \/h). Hence, (CK)-sets cannot be described in terms
of Ex and EQ separately.

In conclusion we obtain the fundamental relation for the three dis-
tances involved for a semi-Stolzian (CK)-set

p(z9E)~p(z9E0)+(z9Ex)9 zGD.

Throughout the paper this relation and the ones above will be
systematically used without explicit mention.
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The following lemma is also proved in [4]:

LEMMA 2.3. If E is a semi-Stolzian {CK)-set, there exists a, 0 < a < 1,
such that for any I C T

(1) /
R(I)

(2) 2 (i-kl)1""-
an<ER(I)

Observe that (2) is the "discrete version" of (1). This lemma and the
observation made at the beginning of this section show that conditions
(K) and (R) taken together imply condition (C).

LEMMA 2.4. With the conditions stated above, one has

(3) / • dm\l) < const p(z, JB0) , z G D,
JD |f - z(

(4) 2 ( 1 , k l ) , ^ const p(z, E0)'
a, z${jDn,

(5) 2 ( 1 , ! ! J ) , ^ const p(z,£0)- t t, zEDn.
\z am\

Proof. (3) was obtained from (1) in [1]. The relations (4) and (5) will
follow from (2) in the same manner. If z & UnDn, then \z — an\>

, E) > cp(z, Eo). Writing Pk = {an: c2kp(z, Eo) < | z - an | <
* l z , EQ)} the sum in (4) is

< const p(z,E0)~
l 1 2-k 2 (1-kl)1""-

k = 0 an<EPk

But D n D(z, c2k+xp{z, Eo))9 if not empty, is contained in a R(I) with
| / | = clk+xp(z, Eo) + 1 - | z | < const2fcp(^ ^o)« T h e n (4) follows from
(2).

If z E /)„, then | z - am | > cp(z, 2s0) form^n and (5) is obtained in
the same way. •
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LEMMA 2.5. If s < 1 and a is the same as in Lemma 2.4,

37

L
s - \

\S-z\

ifs<\,

o(p(z,E0) "(const +1log4

Also, ifH(z) = {M f |< 1, | £ - z |< p(z,

(7)

Proof. The integrand in (6) is bounded by some constant times
p($,Eoy

l-a/\£- z\ for f in Z)\ U^Z)^ Hence, (3) shows that the
integral over D\ ^nDn satisfies the required estimate. The integral over
Un Dn is bounded by

,5-2

20-kl)1 ~ an

JDn \S-Z\

Now, a careful computation shows that

constlz — ^ f

const log
1 -

itzGDn,s<l,

if z GDn,s= 1.

If z $ Un J9n, the integral over Un Dn is then bounded by some constant
times the expression in (4) and so (6) is proved (recall that \p(z, Ex) ~ 1 in
D\ U Dn). If z G £>„, the same holds for the integral over U m ^ Dm, this
time using (5). Finally, the contribution of Dn for z 6 Dn is bounded by

const(l — \an\) \z — a

const(l-HP|log;Hz,

which are of the desired type.

, 5 - 1
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To obtain (7) it is enough to use the fact that p(£, E) ~ p(z, E),
p({, Eo) ~ p(z, EQ) for f in H(z). D

We denote by BE(z) the Blaschke product corresponding to Ex\

As proved in [9], the condition (C) is equivalent to

\BE{z)\~^z,Ex\ zED.

Also it is shown in [4] that if E is a semi-Stolzian (CK)-set, then

)| < const p(z, Eo)'\ z E l ) , f c > l .

Recall that BE is C00 in D\E0 and so the above estimate also holds for
z G T\E0.

The condition (K) implies (see [1], [4]) the existence, for each r > 0, of
an outer function Fr which is C°° in T\E0 and such that

) |< const p(z,EQy-k, z

Also, the above estimates on 5^ and Fr will be systematically used without
explicit mention.

For further reference we state a lemma proved in [1] that will be used
in several estimates.

LEMMA 2.6. Let qp be of class Cn+X in some arc J — [a, b] of T, let
c — {a + b)/2 be the middle point of J and let A(z) be defined by

Put q>° = (p and

d
<pw(elt) = e lt—(p(k }(elt), k — 1 , . . . ,n + 1.

Then, for z = r^zc, 0 < r < 1,

nC^V^ '^Mk = max{| <p(Ac)(e") | , a < f < Z>}.
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Finally the following lemma clarifies the structure of the union of two
Carleson sequences.

LEMMA 2.7. For a sequence Ex — (an) in D the following are equivalent:
(a) Ex is the union of two Carleson sequences.
(b) For each an, there exists am such that

II *{an,ak)8>0.
k¥=n,m

(c) The sequence (an) is either a Carleson sequence or it can be
rearranged Ex = (bn) U (cn), where (bn) and (cn) are Carleson sequences,
^{bn, cn) = ){bn9 E\bn) = on -> 0, and }(bn9 a) > 8 if a * cn, bn.

Proof, (b) => (c) is in fact proved in [6]. To see that (a) => (b), suppose
£, = F, U G, where Fx — (bn) and Gx — (cn) are Carleson sequences.
Given bn E Fx let c G Gx be such that \p(bn9 Gx) - \p(bn, c). Since

we have nC|ii#ci//(6w, cm) — const. Also, 11^^^ $(bn,bm)> const, because
Fx is a Carleson sequence and so (b) follows. •

III. The standard method of interpolation in regular classes. We
will systematically use the following procedure to obtain a holomorphic
function f in D which interpolates a given function $ on the set E. In all
cases (except in Lemma 4.2), <J> is a continuous function in D which is C00

outside E. If h is in the disc algebra, is C°° in D\ E, vanishes only on E
and is such that d$/h is integrable on D, we define

We claim that v(z) is a continuous function in D\E. This is because
| f — z I"1 is integrable and 3$//i is bounded near z (Cauchy transform of
a bounded function) and because near E where | f — z \ ~ * is bounded,
d<j)/h is integrable. Since 3D = d<j>/h, the function

/ = <f> - vh

is holomorphic in i), continuous in D\E.

The hypo-ellipticity of the 3-equation implies that v is C00 in D\E.
Now we wish to obtain a formula for_3t>(z) for z E ^Xi? and to show
that 3D has a continuous extension to D\E. Fix z E D\E. For | w |< 1,
\w — z\< p(z, E)/4 break the integral defining D(W) into two parts
corresponding to D\H(z) and H(z), and apply Stoke's theorem to the
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contribution of H(z). In the expression obtained one can differentiate
under the integral sign because the resulting integrals are still convergent.
Finally we obtain

H{S) MS)

z) h(£) S-w'

| w | < l , | w - z | < p ( z , £) /4 .

Putting w = zwe obtain the desired formula for 3t>(z), z E D\ E.

If z E T\E9 all terms have continuous extensions to the arc {w E T:
| w — z |< p(z, E)/4}. This is clear for the first and second terms by the
same argument used above for v(z). The fact that d<j>/h is C00 outside E
assures the same for the third one. Thus 3D extends continuously to T\ E.

In particular, if <f> is more regular, say C1 in D, then/'(z) = 3<£(z) —
d(vh)(z) also has a continuous extension to T\E.

We shall refer to / as the function obtained applying the standard
method of interpolation to the pair (<£, h) and w r i t e / = P(<J>, h).

IV. Proof of Theorem 1.

Proof of necessity. Suppose that E is an interpolation set for Lip 1.
Then Ex is an interpolation set for Lip 1 and so (see [6]) satisfies the
condition (b) in Lemma 2.7.

In order to prove condition (K), we can assume by Lemma 2.7, that
Ex is either a Carleson sequence or it can be rearranged as in (c) of that
lemma.

It is enough to prove condition (K) for | /1 small enough. We shall
show that if | / | is sufficiently small, there exists f E R{I) such that
p(f, E) > c | /1 and p(f, dR(lj) > c \ I \ . If £0 is the center of R(I) and
Ex H D(SQ91 / |/8TT) = 0 just choose £ = f0. If bn G Ex H D(f0, | / |/8TT)

then 1 — | 6n | — | /1 . So we can suppose that | /1 is so small that in case
some £„ exists in Ex d D(^09\I\/Sw) the corresponding cn is in
Z>(f0, | / |/6TT), say (this is only in case Ex is not a Carleson sequence), and
the other points of Ex are outside D(fo> I ^|/477)> say. Then just choose {
such that | f — f01 = | J |/5TT. Once the existence of such f is proved the
same argument as in [4] serves to prove condition (K).
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Proof of sufficiency. Suppose that E is a set for which condition (K)
holds and Ex is the union of two Carleson sequences. To see that E is an
interpolation set for Lip 1 we can assume by Lemma 2.1. that £ is a
semi-Stolzian set. The first step deals with the case that Ex is a Carleson
sequence.

LEMMA 4.1. Every semi-Stolzian (CK)-set E is an interpolation set for
Lipl.

Proof of Lemma 4.1. By a theorem of Whitney's type (see [8], pg. 174)
we can suppose that <t> G C°°(C\ E), <j> G Lip^C) and that

< const; |a*({)| < const, { <2 E,

| | < const p(£,E)~\ S&E.

Take h = BEFx+a where a is the same as in Lemmas 2.4 and 2.5 and
consider/ = P(<f>9 h). Suppose we prove:

(8) |t>(z)| = O{p{z, Eoy
a{c+\logxp(z, Ex)\))>

(9) \dv(z)\=o(p(z9Eoy
a-^(z,Eiy

]{c

z ED\E.

Then, since

p ( z , £ 0 ) 1 + ^ ( z , £ 1 ) and | h'{z) |< const p(z9 E0)
a

it follows that

\v(z)h(z)\ = O(p(z, E0)+(z, E})(c+\log^(z9 Ex)\)), z

)| = O(c +|log^(z, Ex)\), z G D\E.

The second implies that f' = d<t>- d(vh) is bounded in D\UnDn

hence bounded in D by the maximum modulus theorem. Therefore / is in
Lip 1 and now the first relation implies that / interpolates <£ on E. So to
prove the Lemma it is enough to show that (8) and (9) hold (in fact
observe that we just need (9) for z G D\ Un Dn). Here

|t?(z)|< const/
\S-z\
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and (8) follows from (6) in Lemma 2.5. For dv(z), z E D\ E we have

Jn\M.\n(r F \ 1 + a , f ^ J7 \ Is- I2

+ const

+ const

J TT( \

In D\H(z), | f — z |> p(z, 2s)/2 and (6) shows that the first term satis-
fies the estimate (9). So does the second one, by (7). Finally, let yx = {f E
D:\$-z\= p(z, E)/2) and y2 - (f G T: | f - z |< p(z, £ ) /2} be the
two possible parts of dH(z). Then

h(n s-
< c o n s t r 1i E , ) i r - * l

For f E yl9 p(f, Fo) — p(z, Fo), p(£, F) — p(z, F) and so
^(z, Fj). So the integral over y, is bounded by

At last, we can write the integral over y2 in the form

MO dl

To estimate it, we use Lemma 2.6 with <p(f) = 9<Hf)/f2^(O (reca11 t h a t

3̂> and A are C°° in D\E) and « = 0. With the notations of that lemma,
it is easily seen that Mo < cp(z, JE0)"1-a and MY < cp(z, JB'Q)"2"". Since
the length of y2 is less than const p(z, Eo), we finally obtain the bound
const p(z, ^ Q ) " 1 " " . D

Proof of the sufficiency continued. We now finish the proof in case E{

is not a Carleson set. By Lemma 2.7, we can assume in this case that
E\ ~ (K)n u (cn)n where (bn) and (cn) are Carleson sequences and
+(bn, cn) - 0. We put F = Eo U {(&„)}, G = £0 U {(cn)}. Then, F, G are
semi-Stolzian (CK)-sets and Fo = Go = £0 , £ = F U G.

Given (j> E Lip^is), by Lemma 4.1, there exists fx E Lip 1 such that
fx — cj> on F. Hence

(10) \<p{(z) - /,(z)|< const p(z,F), zGE.
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We look for the desired / in the form f = fx+ BFFxg with g G H(D),
because in this manner / = fx — <f> on F. In order that / — <J> on (cn) we
need g(cn) = Xn where Xn = * ( O - ^ ( O / ^ c J / ^ c , , ) if cw £ F, X, =
0 if cw G i7. To assure that / G Lip 1 we must impose that BFFlg has a
bounded derivative. This is true if g is bounded and | g ' ( z ) | =
O(p(z, F o ) - 1 ) . The relation (10) implies that (Xn) is a bounded sequence.
Since Go = FQ, the proof of Theorem 1 will thus be finished as soon as we
prove the following i/00-interpolation result for (semi-Stolzian) (CK)-sets
with control on the derivative.

LEMMA 4.2. Let G be a semi-Stolzian (CK)-set, Gx = (cn) and let (Xn)
be a bounded sequence. Then there exists g G H°° such that g(cn) = Xn and
\g'(z)\=O(p(z,G0)-').

Proof of Lemma 4.2. Let 8 > 0 be such that the discs Dn =
D(cn, 5(1 — \cn |)) are disjoint. We define

where x e C°°(R+) is such that x(0 = 1, t G [0,1/4], x (0 = 0, n
[ 1/2, oo), 0 < x ̂  1. <> is a bounded C00 function in D, $(cn) = Xn and

We define g = P(<j>, FaBG) where a is as in Lemmas 2.4 and 2.5 (for G).
In this case

Hence

~ z\

An easy computation shows that the last integral is bounded by
const(l — | cn | 2 ) / | z — cn | if z £ Dn and by const(l — | cn |) if z G Dn.
Then (4) and (5) lead to

Kz)|=o(p(z,Gor).



44 JOAQUIM BRUNA AND FRANCESC TUGORES

This gives \v(z)Fa(z)BG(z)\< const xP(z,Gx) and so g e #°°, g ( O =
<K<̂ ) = An. Now it remains to prove the estimate for g'. Since p(z, Go) ~
1 — | cn | in Dn it is enough to prove it for z & UnDn. In this case

and, just as before

MS)

v l - a

< const]?-^ , < const p(z,G) lp(z,G0) "

= const p(z,G0)
 a, z $ U Dn.

n

From this and the usual estimates on BG and Fa we find that | g'(z) | =
O( p( z, Go)""!), as required. •

This ends the proof of Theorem 1. •

REMARK 4.3. The method of proof of Lemma 4.1 also works in the
Lip ^-case, 0 < s < I, thus obtaining another proof of Dyn'kin's theorem.
The estimates for <£> would be changed to

^ const p(f, E)s-\ |8*(£)| < const p(f, £)5~1 ,

^ const

for f ^ £. With /z = BEFs+a, the corresponding t; in the standard method
of interpolation would satisfy

|D(Z)| - O{p(z, E0)~
at(z, Erf

\dv(z)\ = O(p(z, £0)" f l"V(^, ^i)5"2) . zGD\E.

This is proved in the same manner using the case s < 1 in Lemma 2.5.
With/ = P(4>, h), we obtain

|/ '(z)| < const p(z, E)s~\ z£ED\E.

If z & Un Dn this implies \f(z) |< const(l - | z I)5"1. Since 1 - | z |~ 1
- | an\ for z G Dw, we conclude that |/ '(z) |< const(l - | z I)5"1 for all z.
By the well-known Hardy-Littlewood theorem (see [3], pg. 74)/is in Lip s.
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But now

\h(z)v(z)\ = O{p(z9 E0)'+(z9 Ex)
s), zED\E,

so that f~<j>-~hv interpolates <j> on E.

V. Proof of Theorems 2 and 3. The estimates in the proof of
Theorem 2 involve a non-decreasing, concave, continuous function co:
[0, oo) -* R with o)(0) — 0. We shall call such a function a modulus of
continuity.

We begin with the analogues of Lemmas 2.4 and 2.5:

LEMMA 5.1. Let E be a semiStohian (CK)-set and let a be as in
Lemmas 2.3, 2.4 and 2.5. Then

(11) S k l ( l " k l ) , =o(p(z9E0)-)9

(12) 2 l M j ( l , ~ K I ) , - o(p(z9 Eoy% z S Dn

\z a \

(13)

(b) If co is a modulus of continuity,

«(p(f, E))

= o(p(z, E0)"
a{const

0, z ED\E.

Proof, (b) Break the integral into two parts corresponding to (f:
p(f, E) < p(z, E0)

a/^2+a)) (near E) and the complementary. In the first
region, OJ(P(£, E)) < const co(p(z, E0)

a/2(2+a)) and by (6) its contribution
satisfies (13). In the second region, p(^, Eo) > p(z, E0)

a^2+a) and
i//(f, Ex) < const p(z, E0)

a/2(2+c') and hence the integral over it is bounded
by

P(z. £o) / TT-H = const p(z, Eo)
JD |f - Z\

which is of type (13).
The proof of (a) follows the same pattern but using (4) and (5) instead

of (6). •
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Proof of the necessity. We just verify that (C) holds, the condition (K)
being then obtained as in the Lip 1-case. For n fixed, let's consider the jet
<i>n — (<f>n, <f>wz,0) where $n = 0 and <f>nz = 0 on E except on an where
$nz(an) ~ * ( ^ a t *s> $n *s ̂  induced jet by some function which equals
z — an in a neighbourhood of an and zero in a neighbourhood of E\an).
The norm of <£„ in C\E) is 1. By the open mapping theorem, there exists
fn E A1 interpolating </>„ and its derivative on E and such that Il/Jl^i ^
const. Then gn = f£ are uniformly bounded functions such that gn(am) —
Smn. From this point on, the classical argument for H°° applies to show
that (C) holds.

Proof of the sufficiency. Given <J> E C\C) with 9<J>/8z = 0 on a (CK)-set
E we define a new jet <$> on the semi-Stolzian (CK)-set given by Lemma 2.1
by putting <£ = ^ and ̂ z = (3^/3z) — z2d<j>/dz, <$>- — 0 on E. It is easily
seen that ^ is a Whitney jet on E which extends the jet <£> on E. Hence we
can also assume that E is a semi-Stolzian (CK)-set.

As in Theorem 1, the proof is obtained in two steps. The first one is
similar to Lemma 4.1.

LEMMA 5.2. Let E be a semi-Stolzian (CK)-set and let <j> E C\E) be
such that <J>f = 0. Then there exists fx^Ax such that fx~^>onE and
f[ = <j>z on Eo.

Proof. By Whitney's extension theorem ([7]) we can suppose here that
<f> E C°°(C\JE;) and that

^ const

< const «(P(f, ^))Pa, £)~\ f

Let h — BEFx+a and let fx — P(<̂ >, /z), so that fx and / / have continu-
ous extensions to T\ E. We claim that

(14) \v(z)\ = o(p(z, E0)'
a(const +|log^(z, Ex)\))

(15) |3t>(z)| - o(p(z, Eoy
a-lt(z, Exy'(const+\logt(z, Ex)\))

as p(z, Eo) -» 0, z ^ E (recall that v and dv are continuous functions on
D\E). From these we see that

\(vh)(z)\=o(p(z, E0)f(z9 Ex)(comt +

as p ( z , £ 0 ) - ^0 , z

|3(t>/0(z)| = ^(1) as p(z, Eo) -> 0, z E
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The growth estimate for vh implies that f{ interpolates <j> on E and
/j 6 ^ . The estimate for d(vh) proves that//(z) has a limit as z -> a G 2s0,
with z G r \ £ : 0 . This limit equals 8$(a). This implies that F(t) = /i(el7)
is a differentiable function of f, and hence/j G -41. So it only remains to
prove (14) and (15) (in fact (15) is just needed for z G T\ Eo). We have

and so (14) follows from (13) in Lemma 5.1. For dv(z) we have as in
Lemma 4.1

I 1

+ const

+ const!

Since | f — z |> p(z, E)/2 for £ $ H(z)9 the first integral on the right is
bounded by p(z, E)~l times the integral in (13), and so it satisfies the
estimate. For £ G H(z) one has u(p(£, E)) < const co(p(z, E)). Therefore
the integral over H(z) is bounded by co(p(z, E)) times the integral in (7)
with s — 1 and the estimate follows again. Finally, the integral over dH(z)
is estimated as in Lemma 4.1. •

Proof of the sufficiency continued. Let fx be the function obtained in
Lemma 5.2. Let ixn = 4>j(an) - f[(an). Since f[ interpolates <j>z on Eo,
| [in | = o(\) as 1 — j «„ | -^ 0. To finish the proof of the theorem we must
look for a g G A1 vanishing on E and such that g' = 0 on £ 0 , g'(flw) = /*„
and then p u t / = fx + g. We define

52(l-kl)2

where x is as in the proof of Lemma 4.2. Clearly, for z

\T{z)\<\nn\\z - an\, |ar(z)|<canst|/iB |, |3r(z) |<

Dn

Hence, I\ 3r and 3r are o(l) as | z
which is flat on T9 C°° outside E.

1. Therefore T is a C1 function in D
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With h = Fx+aBl we define g = P(F, h). Byjthe comments in §111 g
and g' are holomorphic functions, continuous in D\ E. In this case

The last integral is bounded by const(l — | an | ) 2 / | z — an\ ii z & Dn and
by const(l — | an |) if z G Dw. Then (a) of Lemma 5.1 gives

\v(z)\ = o(p(z, £ 0)-«) , z $ £ , a s p(z, £0) - 0.

This implies | /i(z)t;(z) |= o(p(z, £0)^(z, Ex)
2) as p(z, Eo) -> 0 and so

g G A, g interpolates F on E (and hence g = 0 on E) and gr(an) =
dT(an) = [xn. Therefore, all we must verify is that g G ^ 1 and g' = 0 on
Eo. As before, to see this it is enough to see that limz^Eo.zSTgf(z) — 0.
Since 9F = 0 on Eo this will follow from an estimate of type

\d(vh)(z)\ = 0(1) as p{z, Eo) -> 0, z G

which is turn will follow from

(16) \dv(z)\ - o{p(z, E Q y ° - l ) 9 z E D \ U
n

For these z,

|3t;(z)| < const2 ~2 ^ ^p(^? EQ)
| \« |z — an\ n \Z an\

and (16) follows from (a) in Lemma 5.1. Thus the proof of Theorem 2 is
completely finished. •

Sketch of the proof of Theorem 3. The necessity of condition (C) is
obvious. We indicate the proof of the sufficiency. Given <f> G Lip ,(2?) and
(\n) G /°° (E semi-Stolzian), let/ , be as in Lemma 4.1 and define F as
above, with jxn~Xn— f[(an\ which in this case is a bounded sequence. F
is continuous on Z>, C°° in D\ E and vanishes on E. Also,

cons t^(z ,aJ 2 , z G Dn.

As above, with h = Fl+aBE put g = P(T9 h). The corresponding v satis-
fies

\v{z)\=O{p{z,EQYtt), z£E,

\dv(z)\ = O{p(z, Eoy°-'), z £ i ) \ U Dn.
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From these we derive the relations

\h{z)v(z)\ = O{p(z, E0)4,{z, Eyf), z g E,

\d(vh)(z)\= O(l), zGD\UDn.
n

The second implies that g' = 3r — d(vh) is bounded in D\ UnDn, hence
bounded in D and so g E Lip 1. The first shows that vh vanishes once in
Eo and twice at each point in Ex so that g = T — 0 on E and g\an) —
df(an) = iin. Then/ = fx + g performs the desired interpolation. D
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