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AN INTERPOLATION THEOREM FOR Hf

KNUT OYMA

We prove a synthesis of Carleson’s interpolation theorem, the
Rudin-Carleson theorem and an interpolation theorem of S. A. Vinogra-
dov.

Let D be the open unit disc in C and let 7 be its boundary. By A(D)
we mean the set of functions continuous on D analytic on D. H® is the set
of bounded analytic functions on D, and if E is a subset of 7, Hy is the
set of functions continuous on D U E bounded and analytic on D.

The Rudin-Carleson theorem states that if K is a closed subset of 7 of
measure zero, then A(D)|K = C(K). This was proved independently by
W. Rudin and L. Carleson [8], [3].

A sequence {z,} C D is said to be uniformly separated if
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Carleson’s interpolation theorem states that H* |{z,} = [ if and only if
{z,} is uniformly separated. This was first proved in [2]. Other proofs can
be found in [S] and [10].

Let F C N U {0}. A function f(z) = 2a,z" € H' is said to be an F
function if a, = 0 for n & F. For a definition and properties of the H”
spaces see [4]. F is said to be of type A(s) if for every r <s there is a
constant K depending on F, r and s only such that || f||, = K| f]|, for every
F function. If F = {n,} satisfies n, ,,/n, > A > 1, then F is of type A(s)
for every s € (0, 00). Other sets of type A(s) exist. See [7]. Let {n,} be of
type A(2) and let R be the operator from A(D) — I* defined by R(Z a,z")
= {a, }. S. A. Vinogradov proved that R is onto. In fact he proved much
more. See [11].

These results do not live their own lives separate from each other. In
[6] E. A. Heard and J. H. Wells proved that if E is an open subset of T
and S is a relatively closed subset of D U E such that S N E has measure
zero and S N D is uniformly separated, then H¥ | S = C,(S), the space of
all bounded continuous functions on S. Vinogradov proved in [11] that if
K is a closed subset of T of measure zero, g € C(K) and {b,} € /%, then
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there is an f € A(D) such that f|K = g and R(f) = {b,}. We intend to
prove:

THEOREM. Let E be an open subset of T and assume that S is a
relatively closed subset of D U E such that S N E has measure zero, S N D
is uniformly separated and 0 & S. Assume F = {n,} is an increasing
sequence of integers of type A(2) such that lim,_ (n,, , —n,) = co. If
B(S) € C,(S) and {b,} € I?, there is a function f(z) = 2 a,z" € HP such
that f|S = B and a, = b, for all k.

REMARK. 0 & S represents no loss of generality since we may have
0€{n,].

Before proving the theorem, we are going to develop some back-
ground material. Let S N D = {z,} and let

inf H
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Then there exists a real number M with the following property: Given
{w,} € ball /*, we can find a real number « and a Blaschke product B(z)
such that Me'*B(z,) = w, for all n. The zeros {§,} of B(z) can be chosen
to satisfy Y(z,, ,) < 8 where Y(a, b) =|(a — b)/(1 — ab)] s the pseudo-
hyperbolic metric on D. This shows that B(z) has analytic continuation
across T\{z,}. The result is due to J. Earl [5]. We want to prove that the
mass of the Taylor coefficients of B(z) regarded as an element of H? is
concentrated on the first coefficients.

LEmMMA 1. Let B(z) = 2 a,z" be as above. If € > 0 then there is an
integer N = N(¢) independent of {£,} such that 3°_,|a, | <e.

Proof. ¢ is now fixed. Let

Bo(s) = i Mol &z

n=K gn 1 _énz.

Since Y(§,, z,) <, a calculation shows that

L—1§,1=(2/(1 =) —|z,).
Hence lim,_ , 22 (1 —|¢,)) = 0 uniformly in {£,}. This shows that
By (0) ~_1. Since [|Bgll, = 1, Bx(z) =37 a, xz" satisfies Sy la, kP
< e/2 for Ny = 1if K is chosen large.

B (2) = By(z) - ol e
- K—1
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We have
NK o0
By(z) = X a, xz"+ > a,xz"=p(z) + ep(z)
n=0 n=Ng+1

where ||e,||3 <e/2 and || p|l, =< 1.

|$K_l| : gk‘l‘_z = §bn(gl(—‘l)z"'

gl(—l 1 "‘$K_IZ n=0

Since Y(zx_,, x_,) <O this converges uniformly on D independent of
£x_,- Choose R such that

R ©
E bn(gK—l)z" + 2 bn(SK—-l)Z" = q(Z) + 8q(z)
n=0

n=R+1

satisfies [|e ||, <, llqll,, <1 + n where 7 is to be chosen below. We have
By = (p+ Ep)(q +e,) =pg+te,q+tpe,+ee,.

pq is a polynomial of degree Ny + R. It is not the (N, + R)-partial sum
of the Taylor series of By _,, but deleting coefficients decreases the || ||,
norm. For By (z) = 2 C,z" we therefore have

R+Ny

0 1/2
( > |C,,F) =|Bxk_(z) = X C,2"|l;
n=0

n=R+Ng+1
=lle, - qll, T llpe,ll, + e, 8,0l
=le,lly - 119l T PI - gl T HIgplln - el
<\Ve/2(1+n) +n+ e/2 -0 <3e/4

if m is chosen small. Continuing in the same way, the lemma is proved in a
finite number of steps.

We are now going to take a look at Vinogradov’s theorem. If
F = {n,} is of type A(2), the mapping R: A(D) - *: Za,z" - {a, } is
onto. The open mapping theorem gives that R(ball A(D)) D cball /* for
some ¢ > 0. To obtain an estimate for ¢ we need a result of Smirnov. Let
f(£) be integrable over the unit circle and let

h(z) :ziwfréi(_%dg.

Then h € H'/? and ||h||, ,, < K|| f]I,- For a proof see p. 35 of [4] or [11].
Since F'is of type A(2), we have || f||, = K,|| f]]; , for every F function in
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H?. Vinogradov proves his theorem by showing that the adjoint mapping
R*: (I*)* = [? - A(D)* satisfies

IR*(x)ll = (127K, K, )l|x].

This is proved more generally on the first seven pages of [11]. Using a
result of Banach, Lemma 4.13 of [9], we get R(ball A(D)) D
(1/27K,K,)ball [? if by ball we mean open ball. Our balls are open from
now on.

If F={n,}%-,, consider the set F' = {n, — ny}_x,,- F’' is also of
type A(2), and it is not difficult to see that the associated constant
K} < K,. If R’ is the operator from A(D) to /* associated with F’ we see
that R'(ball A(D)) D (1/27K,K,)ball [2.

The proof of the theorem will also make use of

LEMMA 2. Let T: X —» Y be a continuous linear mapping between
Banach spaces. Assume there are constants € <1 and M such that for all
y € ball B there is x € X such that ||x|| < M and ||[Tx — y|| <e&. Then T is
onto.

For a proof see [1]. We now prove the theorem. Assume first that
S N E = @. Choose an integer K such that fi,(z) = Bg(z)/Bx(0) =1 +
&( z) satisfies || fxll,, <2 and ||¢]|, < 1/47K K,. Let By - HY be the sub-
space of Hy consisting of the functions that vanish at z, for n = K. Given
{b,} € ball /%, choose g(z) = Za,z" € A(D) such that a, = b, for all k
and ||g(2)|l,, = 27K ,K,. Let

gK(Z) = g(z)fK(Z) = zcnz” E BKHZ?’
”gl((z)”oo =47K K,

and
by = e Sl =lle(2)g(2, = Nle(2)ll, - lg(2)ll, < 1/2.

Lemma 2 now proves that R( B, HY) = I2. Let {w,})*_, € [* and {b,} €
I? be given. Choose h(z) = 2d,z" € HY such that h(z,) = w, forn = K
and choose j(z) = 2/,z" € B H? such that [, = b, —d, for all k. The
function r(z) = h(z) +j(z) = Zt,z" satisfies r(z,) = w, for n = K and
t, = b, for all k. This proves the theorem for {z,}7, replaced by
{z,}5_x. The proof will be complete if we can prove that K can be
replaced by K — 1. To obtain this it is enough to find a function

f(z) = Za,z" € By - Hf such that a, =0 for all k¥ and f(zx_,) = 1.
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Such a function is likely to exist because it is easy to prove that there are
many functions in By HY with F coefficients zero. All these functions
could, however, vanish at z,_, (a black hole). In that case, then for every
f(z)=2a,z" € By - HY, f(zx_,) would be a function of {a, } alone.

Let f(z) = Sa,z" € ByHg. Look at f(zx_,) < f(z) >{a,} €I
{a, } = f(zx_,) is now seen to be a well-defined linear functional on / 2
since R is onto. This functional is continuous since every x € ball /2
comes from a function of norm < C as an application of the open
mapping theorem shows. Therefore there exists a unique {\,} € /* such
that

(*) f(ZK—l) = EanAAk for eVCryf(Z) = Eanzn S BK . HZ‘O
k

Infinitely many A, 5 0. If this were not so, let A,, be the largest. If
f(z) € ByHY. Then z"#+f(z) would vanish at z, ,. This is clearly
impossible. Since {A,} is unique, the relation (*) is impossible if we delete
some n, from F for which A, #+ 0. If we do so, K can be replaced by
K — 1. We may choose n, arbitrary large. Doing so we have pushed the
problem from {z,} to F. We now prove that n can be replaced.

Let {z¥} = {z,}°_x_, U {0}. Every sequence {w,} € ball /* can be
interpolated at {z¥} by a function of the form Me"B(z) = 2/,z" as
pointed out above. Choose an integer 0 independent of {w,} such that

© 1,2 1
() ( L, 2) <Toor R
EQ‘ | 107K, K,

This is possible by Lemma 1.
Choose n, such that Ay #0 and n,,, —ny>Q. Let F' =
{n, — ny}i-ys, and let

®={f(z)=a,z" €HF:a,=0forn € F}.

We want to prove that B |{z}} = /. Let {w,} € ball /* be given. Choose
a and B(z) as above such that Me*B(z*) = w, for all n. Choose h(z) =
2b,z" € A(D) such that b, =/, for n € F’ and such that ||h(z)|| < 1.
This is possible by (**) and the remark following Vinogradov’s theorem.
f(z) = Me™B(z) — h(z) has the following properties: f€ B, ||fl| =
M + 4, |f(z¥) — w,|< +. Lemma 2 now proves that B | {z}} = /. n, can
now be replaced: Let {w,} € [®, (b} € I%. Take f(z) = Za,z" € HY
such that f(z,) =w, for n=K—1 and a, = b, for n, € F\{ny}.
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Choose g(z) € B such that g(0) = 1, g(z*) =0 for z* # 0. Let r(z) =
z"vg(z) = 2t,z". We have: r(z,) =0 for n=K—1, ¢t,=0 for n €
F\{ny}, t, = 1. Our interpolation problem is now solved by the func-
tion f(z) + Ar(z) for a proper choice of A.

The proof is now complete except we assumed S N E = & . Using the
Heard and Wells result, we may assume 8|S = 0. Let E' = E\ S, C =
(fEHF: fIS=0), ¢ ={f€ Hg: f|S=0}. The proof will be com-
plete if we can prove R(C) = /2. By what we have just proved and the
open mapping theorem, R(k - ball €’) D ball /? for some constant k. Now
choose g € HY such that g=0on SN T, |gl|<1and g(z) =1+ &z)
satisfies ||e(z)||, < 1/2k. This is possible by Lemma 4 of [6]. Let {b,} €
ball /2. Take f(z) = 2 a,z" € C’ such that || f|| < k and a, = b, forall k.
h(z) = f(z)g(z) = 2 ¢,z" satisfies: h € C, ||h|| < k,

I{c,, = b} Il = Ne(2)lly - 1 (2], < 1/2.

Lemma 2 now proves R(C) = /? and the proof is complete.

REFERENCES

[1]  W. G. Bade and P. C. Curtis, Jr. Embedding theorems for commutative Banach
algebras, Pacific J. Math., 18 (1966), 391-409.

[2] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math.,
80 (1958), 921-930.

[3] , Representations of continuous functions, Math. Z., 66 (1957), 447-451.

[4]  P.L. Duren, Theory of H” Spaces, Academic Press.

[5] J. Earl, On the interpolation of bounded sequences by bounded functions, J. London
Math. Soc., 2 (1970), 544-548.

[6] E. A. Heard and J. H. Wells, An interpolation problem for subalgebras of H*, Pacific
J. Math., 28 No. 3 (1969), 543-553.

[71  W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228.

[8]  ____, Boundary values of continuous functions, P.AM.S., 7 (1956).

[9] , Functional Analysis, McGraw-Hill Book Company.

[10] H.S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions,
Amer. J. Math., 83 (1961), 513-532.

[11] S. A. Vinogradov, The Banach-Rudin-Carleson Theorems and Embedding Operators,
Seminars in Math. V. A. Steklov Math. Inst. Leningrad, Vol. 19, 1-28. Consultants
Bureau New York-London (1972).

Received February 25, 1981.

AGDER DISTRIKTSHOGSKOLE
4600 KRISTIANSAND, NORWAY





