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PERMANENCE PROPERTIES OF NORMAL
STRUCTURE

THOMAS LANDES

A new characterization of normal structure is given, which allows to
prove permanence properties of normal structure such as preservation
under finite direct-sum-operations — e.g., the /^-direct sums, 1 < / ? <
oo -as well as under certain infinite direct-sum-operations — e.g., the
/^-direct sums, 1 <p < oo.

Furthermore, it is shown that a normed space has isonormal struc-
ture — i.e., it is isomorphic to a normally structured space — if and only
if it can be mapped by a continuous linear one-to-one operator into some
normally structured space.

Finally, some problems are discussed, such as preservation of nor-
mal structure under the /f-direct-sum-operation. To solve the latter at
least partially, a sum-property is introduced which implies normal struc-
ture. This sum-property is implied by all known sufficient conditions for
normal structure, and it is preserved under all finite direct-sum-opera-
tions.

1. Introduction. The aim of this paper is to prove permanence
properties of normal structure such as: The /^-direct sum of two Banach
spaces X and Y—i.e., the direct sum of X and Y endowed with the norm
ll(*> y)\\ = (\\x\\p + ||j>IΠ1/;7 —has normal structure whenever X and Y
both do so.

The concept of normal structure has been first introduced by Brodskii
and Mil'man [5]:

DEFINITION 1. The subset A of the normed space X is said to have
normal structure (or to be normally structured) if every bounded convex
nonvoid subset C of A with positive diameter

d:= diamC:= sup{||* -j>|||jc,.y G C) > 0

is contained in some ball centered in C with radius smaller than d.
In the obvious fashion, the notion of normal structure can be carried

over to subsets of a locally convex topological vector space (lctvs, hereafter)
by replacing the norm by some continuous seminorm q (see [30], [31],
[33]). In this case, we speak of normal structure with respect to q. Normal
structure with respect to a system Q of continuous seminorms means
normal structure with respect to all q E Q.
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Normal structure is a fundamental tool in fixed point theory of
nonexpansive mappings. As an example, we mention the celebrated fixed
point theorem of Browder [6], Gόhde [22] and Kirk [27] (see also [7], [21],
[29]):

Every nonexpansive selfmapping of a weakly compact convex normally
structured nonvoid subset of a Banach space has a fixed point.

Several approaches to the Browder-Gόhde-Kirk-theorem are given in
[29]; generalizations may be found, for example, in [2], [3], [18], [30], [32],
[38], [39].

The very first examples of normally structured sets are the compact
sets and all subsets of uniformly convex spaces. A complete survey of
conditions presently known to be sufficient for normal structure is given
in [28] (see also the appendix). Spaces lacking normal structure are co( J),
h{!\ Li1)*I infinite, C(0,1), L1, L00, etc. More examples are given in [8].

In view of applications, one naturally is interested in finding the
system Qns(A) of all those continuous seminorms on the lctvs E with
respect to which the given subset A of E has normal structure. In [31], the
author has proved:

Every continuous seminorm belongs to Qns{A) if and only if every
bounded convex subset of A is precompact.

Generally, it is rather hopeless to determine Qns(A) even if one
considers only equivalent norms of Banach spaces. Establishing perma-
nence properties and finding sufficient conditions for normal structure
can be understood as a good approximation of Qns(A).

2. The notation. In order to make the notation simpler and for the
sake of clarity, we introduce the following notation:

(1) Given a product space or a space with a basis, we always denote
the ith component of an element x by x(i) and reserve the small letters i
and j for this purpose.

(2) In order to avoid confusion with indices, we always use bold face
letters such as x to denote the sequence x= {xn}. Sometimes, we also
denote the range of x, i.e. the set [xn\n GN), by x.

(3) We call a normed space Z a substitution space {with index set
I =£ 0, where I may have any cardinality) whenever Z has a (Schauder-)
basis (^ ), e/ (unconditional if / is uncountable) and the norm of Z is
monotone, i.e., ||z|| < ||£|| whenever 0 < z(i) < z(i) for all i E / (z, z E Z).

Examples of substitution spaces are:
(a) /,(/), 1 <p < oo, or co(7) for any set /, e.g. lp = lp(N)y c0 = co(N).
(b) R^ with any monotone norm, e.g. lp = lp({ 1,... ,N}), 1 < p < oo.
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Given a substitution space Z with index set / and given a family

/ of normed spaces, then the subadditive, positively homogeneous

operator S mapping all those x E UiBIXn for which Σ ί e / | |x(0lkι * s a n

element of Z, onto this sum is called the substitution operator. The

Z-direct-sum ( Σ l G / Θ Xt)z of the family (X ) is defined to be the domain

of S endowed with the norm ||JC|| : = | |SJC| | Z . We use the projections

Pjz = 2jGJz(j)ej and Psz = z - PjZ, J Cl,z G Z .

(4) Hereafter, X, Y, Z are normed spaces.

(5) Given a substitution space Z, a property P defined for normed

spaces is said to be preserved under the Z-direct-sum-operation, if the

Z-direct sum of the family (Xt) of normed spaces satisfies P whenever all

Xι do so.

(6) We denote the convex (closed convex, resp.) hull of A C X by

conv^4 (conv A, resp.). We write x Cc A if convx is contained in A.

(7) The distance of x E X from A C X is denoted by dist(x, A) —

inf{||jc - α| | |α EΛ} .

(8) The mean of n elements υl9... ,vn of a vector space is denoted by

— 1 Λ

3. Characterizations of normal structure. In order to check normal

structure for a given set one needs suitable equivalent conditions. There-

fore, we give a list of those conditions. We only formulate the norm-ver-

sion, the seminorm-version can be obtained in the obvious way.

PROPOSITION 1. Each of the following conditions is equivalent to the

statement that the given subset A of X has normal structure (abbreviated by

(NS)).

(NS1) There is no diametral sequence x CCA, where x is called di-

ametral if

0 < lim ||x^ — JC|| = diamx < oo for all x E convx.

(NS2) There is no sequence x C C J with

0 < lim \\xn —xk\\ = diamx < oc for all k E N.

(NS3) There is no sequence x C c i with

0 < lim dist(xw+1,conv{x^|/c < n}) = diamx < oc.
«-> oo
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(NS4) There is no bounded non-constant sequence x CCA such that

||JCΛ+i — xn\\ ^ diam x — cn for all n E N

for some sequence c of positive reals satisfying ncn -> 0.

(NS5) For every bounded non-constant sequence x CCA there is a c > 0

such that

IIJCΠ+i — x J| ^ diamx /or all n bigger than some m E N.

(NS6) There is no bounded non-constant sequence x CCA with

lim π (diamx — ||jcn+1 — xn\\) = 0.

(NS7) There is no sequence x Cc A such that l i m ^ ^ ΔΣrt x = 0,

n

1
k=l

kι+1 - χk\\ ~
n

2
k=\

\Λn+\ ΛkJ

and such thatO < limw_+00 | |xπ+1 — xk\\ = diamx < oo for all k E N.

Moreover, if the statement

(NS8, c) For every bounded non-constant sequence x C c A we have

\\xn+1 ~~ * Λ | — diam x — cn for some n E N.

holds true for some sequence c of positive reals satisfying ncn -> 0, then A has

normal structure and, hence, all the properties listed above are satisfied and,

in particular {by (NS4)), (NS8, c) holds for all c with ncn -> 0.

The following diagram illustrates the system of implications which

prove Proposition 1:

(3c)(NS8,c) i(NS8, {n~2}) i(NS3)

64 7 t 8 It 49

(NS5) => (NS6) => (Vc) (NS8, c) ^ (NSW) (NS2)
10 11 12

The implications 1,1, 8, 10, 11, 12 are easy to verify and left to the reader.

The equivalences 2, 3, 4 are due to Lim [32], [33] and Brodskii-MiΓman

[5]. The implications 9 and 5 are consequences of Remark 1.1 and Remark

1.2, respectively (see below). It remains to show 6.

Proof of 6. If (NS5) does not hold, then there is a bounded sequence

x CCA such that liminίm_O0m(d - \\xm+x ~xm\\) = 0, d' - diamx > 0.

We fix c with ncn -> 0. Then, there is an increasing sequence {m(n)} in N
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such that

*n(»)(d-\\xmW+ι -x^Jh)^™n

 f o r a l l « G N

We set m(0) = 0 and un = x w ( n _ 1 ) + 1 . Observation 1 below implies:

k = 0

129

Xm(n)+\ „ 2J Xm{k)+\

So, (NS8, c) cannot hold. •
In the proof of Proposition 1 as well as of Remark 1 the following is

used:

Observation. (1) Given a sequence x in X and scalars λ l 9 . . . ,λw > 0,

Σ2=i λj. = 1, we have (λ : =

2 ^A:X/

= Σ'
k=\

= diamx — λ«(diamx — |x π

>λ«||xπ +, -Xn\\- 2 ( λ ~ λ A

cπ + 1 - x j l - (λn - l)diamx

(2) Given a bounded sequence x in X there can be constructed a

subsequence u of x such that, for all k E N, ak — limΛ_>00||MΛ — uk\\ exists

and

I I " B + I - u k \ \ - a k
<n~2 for all n> k.

If, additionally, x is limit-affine, then u can be chosen so that, addition-

ally,

+i -^11 -<ά~n\^n~2 for all w E N .

DEFINITION 2. A sequence x in X is called limit-affine if

A(x) : = lim^ooll c,, — x|| exists for every x E convx and Λ is affine on

conv x.

Every diametral sequence is limit-affine, it is even limit-constant, i.e.,

it is limit-affine with the additional property that the above mapping Λ is

positive and constant on conv x.
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REMARK 1.(1) Let x be a sequence in X such that
(i) ak := lim^oJI.x^— xk\\ exists for all k E N.

Then \im'ιnίm^<J\xm — *J | <an whenever there is some x = Σλkxk S
conv{xk\k < n] for which limmtm^O0\\xm — x\\<Σλkak. Thus, x is
limit-affine if and only if

(ii) limm_00 | |xm -χn\\\=an for all π £ N .
Moreover, if x is limit-affine, then so is every subsequence of x and

(iii) limn_O0\\xn — JC|| = lim^^^ an whenever x is a weak cluster-point
of x and if the limit on the right hand side exists.

(2) If x is limit-affine, then there is a subsequence u of x such that

Vice versa, if x is any sequence with (i) and (iv), then x is limit-affine.
Thus, if x satisfies (iv), then it has a limit-affine subsequence.

(3) If x is limit-affine, then it has a subsequence v such that

(v)limm^0 0{Σ^1lim_0 0 | | t;w - υk\\ - | |Σ?= 1(tWi - t>*)ll) = °
(4) Every bounded sequence x has a subsequence v such that

liminfn_>00ΔΣnx > limsupn_00ΔΣπu for every subsequence u of v.

Proof. (1) By observation 1 we obtain for x = Σ£=i ^kxk a n ί * λ =

inf ||xw - x|| + Σ (λ - λk)\\xm ~ xk\

+

If x is a weak cluster-point of x, then x E Πn(ΞNcoΏv{xk\k > n). If x is
limit-affine and l im^^^dx^ — χ Λ | | = ak -> a as k -» oo, then

lim \\xn - x\\ E Π conv{tfjλ: > Λ} = {^}.
Λ->°° « G N

(2) Let x be limit-affine. Choose u according to observation 2. Then

n n 2 2

Vice versa, let x satisfy (i) and (iv). By observation 1, letting m -> oo, we
get:

k=\
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Now, consider vn — x m ( n ) , where m(n) is increasing. Set m = m(n + 1).

By observation 1, we obtain:

n

k=\

n

χ~ ~

k=l
~nX°

Σ K+l-ϋJ-Λ
k=\

n \

2
k=\

This proves the last assertion of 2.

(3) This can be shown exactly like the first assertion of 2.

(4) Choose m(n) so that L — liminf^^^ΔΣ^x = l i m r t ( )

Set un = xW(Π)+i Then, if /?(w) is increasing, we obtain as in the last step

of2ΐorvn = up

D

limsupΔΣ^v ^ l i

< l imsupΔΣ m ( ; , ( π + 1 ) ) x = L.

Remark 1 is a good tool for proving the next Theorem 1 and will also

be used later on (e.g. §7).

Statement (NSl) excludes the existence of a limit-constant sequence

such that, in addition, the corresponding constant is the diameter of the

sequence. We show that this additional condition can be dropped.

THEOREM 1. Given a subset A of X, the following are equivalent.

(NS) A has normal structure.

(NSl)* There is no limit-constant sequence with convex hull in A.

(NS2)* There is no bounded sequence x dcA such that

l im ||jtπ - xk\\ = l im ||JCΠ — | > 0 for all it,/GN.

(NS7)* There is no sequence x GCA such that l im^^^ΔΣ^x — 0 and

lim ||JCΠ — xk\\ = lim ||JCΛ — JC/|| > 0 for all k, I E N.

Proof. In view of Remark 1, we only have to show:

(NS2) => (NSl)*. Let x CCA be limit-constant with corresponding

constant a > 0. We choose a subsequence v of x such that \\vn+ι — vk\\ <

α(l + ε j , εn : = 1/π, for all /ι > fc. Setting an = (1 + ε j " 1 , βn=\-an

= εwαw and ŵ  = α / n + 1 + βnvx G convx, we obtain:
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Ik - «J = II«A+I - « Λ + I - (βk -

and

- V

as n -> oo.

Therefore, a = diam u and conv u C conv x C A which contradicts

(NS2). D

In view of fixed point theorems it is desirable to find conditions under

which every relatively weakly compact subset of a given normed space has

normal structure. Such a space is said to have weakly normal structure. Of

course, all Schur spaces (weak compactness coincides with strong com-

pactness) have weakly normal structure. Since every /j(/)-diτect sum of

finite dimensional spaces ("Schur spaces" suffices) is Schur, those spaces

have weakly normal structure. This is in contrast to a false remark in [31,
Remark 3]. In particular, /, has weakly normal structure but not normal

structure.

By restricting each of the statements (NS?), v < 7, (NS8,c), ( N S P ) * ,

v — 1,2,7, to sequences which converge weakly to 0, we obtain characteri-

zations for weakly normal structure. Moreover, looking at Remark 1, we

have:

PROPOSITION 2. A normed space X has weakly normal structure if and

only if there is no sequence x in X such that x converges weakly to 0,

1 = lim ||JCΛ — xk\\ = lim | | x j | for all k E N, and lim ΔΣwx = 0.

4. Finite direct sums. The first permanence result for normal struc-

ture is due to Belluce, Kirk and Steiner [4]:

PROPOSITION 3. The Indirect sum of N normally structured normed

spaces again has normal structure.

Of course, we can replace norms by seminorms. So, we obtain:

COROLLARY 1. Let the Ictvs E have normal structure with respect to the

system Q of continuous seminorms. Then, E has normal structure also with
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respect to the saturation of Q, that is the following system of seminorms:

VQ : = { msΛa9q9\a9 > 0, qv G β, v < N G N } .

COROLLARY 2. Lei ( £ z ) ί € Ξ / &e α /αmί/y 0/ Ictυs each of them having

normal structure with respect to a seminorm-system Qt which defines the

topology of Et. Let the topology of the locally convex product E = UiGIEibe

induced by the canonical system β 0 0 = {maxjΊΞJqj\qj G VQj, J finite C /},

(maxJfEJqj)(x) : = maxjGJqj(x(j)). Then, E has normal structure with

respect to Q°°.

Using our new characterization, we can improve Proposition 3. The

condition (*) used in the next theorem is satisfied in particular, if Z is

strictly convex, but also for Z = /£, yet not for Z = 1?.

THEOREM 2. Let Z be a substitution space with index set I — {1,..., N)

such that

(*) \\z + z|| < 2 whenever \\z\\ = | |£| | = 1, z(i) > 0, £(/) > 0 for all

i G /, and z(i) = £(*') only for those i G I for which z(i) = £(/) = 0.

Then, normal structure is preserved under the Z-direct-sum-operation.

Proof. Assume that x is diametral with diameter d. Passing to subse-

quences we may assume that:

(i) zk(i) := l i m ^ J I * ^ / ) - xk(i)\\ exists for all k G N and i G /.

(ii) \\zk\\ = dfoτ all * e N ^ = (zk(i)) = limn^S(xn - xk).
(ni)dn:= n{d-\\xn+λ - χ j | ) -̂  0 as w -> oo.
(iv) Given i G /, z(/) is either increasing, decreasing or constant.

We may clearly drop those components / for which z(/) = 0. Let / be the

set of those j G / for which z(j)= z(j) is constant. Using (NS7)* for Xj

(and Remark 1), we find an ε > 0 and an m G N such that

Δ \Λn-\
v=\

<c V II v
— Δ ||A«-f

v=\

For i G / \ / we have

n

ΔL VΛ« +

- £ f o r a 1 1 n ^
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Hence, using the monotony of the norm of Z and the definition of dn, we

obtain:

nd — dn — - χ

v) - χv) - ε Σ ej

k<EL
- * * ) - e . Σ .

n > m , L c N , | L | = /.

Subtracting (n — l)d and passing to the limit for n -+ oo, we obtain:

/CN, |L | = /.
ye/

1 k<EL

Using the monotony of the norm of Z, we conclude that

(v) \\ΣkeLPjZk\\ = ld, / C N, |L | - /.
Finally, (v) together with (iv) yields a contradiction to (*). D

COROLLARY 3. Normal structure is preserved under any finite direct-

sum-operation with strictly convex substitution space.

COROLLARY 4. Normal structure is preserved under the I^-direct-sum-

operations for any p with 1 <p < oo.

COROLLARY 5. //q λ 9 . . . ,qN all belong to Qns(A) and if\\\\ is a monotone

norm on RN satisfying (*), then the continuous seminorm q defined by

) W I I belongs to Qns(A)9 too.

5. Infinite direct sums. Since one crucial step in the proof of

Theorem 2, namely that ||JCΠ — xk\\ -» a and | |JCΠ(O — ^(011 ^ z * ( 0 f°Γ a ^

i E / together imply that | |zΛ | | = a, works no longer for infinite index sets,

we cannot expect that Theorem 2 holds in full generality for infinite index

sets, too. But, observing that finite dimensional strictly convex spaces are

uniformly convex, the following theorem is seen to generalize Corollary 3.

THEOREM 3. Normal structure is preserved under any direct-sum-opera-

tion with a uniformly convex substitution space.

Proof. Suppose that x is limit-constant with corresponding constant

a > 0. We may assume that zk(i) '= limw^00 | |jc l f(/) — xk(i)\\ exists for all

k E N and / E /. It suffices to show that lim,7_00||.x;,z(/) — xt{i)\\ — zk(i)
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for all k, I G N and i G /, since this together with (NS2)* for Xt implies
that, for all i G /, z(ί) = 0, and, hence, that x(ι) is constant contradicting
a > 0 .

We have \\S(xn ~ xk)\\ = | | ^ - x j -» α, ||5(xπ -J}\\ = \\xn -x,| | ->
a and ||i5(xr t - * Λ ) + ±S(xn - x}\\ > ||JCW - £xΛ - iχ,|| -> ̂ a s n -» oo.
From uniform convexity we obtain £(*„ — ĉ ) — 5(JCW — xj) -» 0 and,
hence, | |^(/) - ^ ( / ) | | - ||*π(/) - ^(7)| | -> 0 for all i. D

COROLLARY 6. Normal structure is preserved under the lp-direct-sum-
operations for allp with 1 <p < oo.

A short look at the proof of Theorem 3 also shows:

COROLLARY 7. If the family {qt)iGI in Qns{A) is equicontinuous, i.e.,
qt < q for all i G / α^J some continuous seminorm q, then, given any
ξ E / (/), 1 < p < oo, /Λe continuous seminorm q defined by

belongs to Qn£A), too.
Furthermore, the hypothesis "qi G Qns(A) for all i G / "

placed by the condition that, for some j G /, qj is a norm belonging to

The latter result will be used later on (§6).
The following example shows that one can (by application of Corollary

7) go round the condition of uniform convexity:

EXAMPLE. Let Z be the space c0 with the usual unit vector basis
(έ?f.)ιeN endowed with the norm ||z|| := (||z||2 + S ^ i ^ K O I 2 ) 1 / 2 . Then,
Z is not uniformly convex, Z is isomorphic to c0, and normal structure is
preserved under the Z-direct-sum-operation. The latter follows by applica-
tion of Corollary 7 first for / = N, p = 2, qt(x) = \\x(i)\\, and £ = (2""1'),
and then for / = {1,2}, p = 2, qλ{x) = supzGN||x(/)||, q2(x) =

Thus the co-direct sum of normally structured Banach spaces has
isonormal structure, i.e., it can be renormed so that it has normal
structure.
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Another condition, a slight generalization of a condition introduced
by Gossez and Lami Dozo [23], is also suitable for proving normal
structure of direct sums:

DEFINITION 3. Let Z be a normed space with basis (β /) / G / (uncondi-
tional if / is uncountable). The basis is said to satisfy the GLD-condition,
if there is a "final" (i.e., / finite C I =>J C J for some / G £) set £ of
finite subsets of / with the property that there is a c < 1 and some r > 1
such that

||z|| > r whenever ||P7z|| = 1 and \\PjZ\\ > c for some/ G %.

Gossez and Lami Dozo showed in [23] that a Banach space has
weakly normal structure whenever it has a basis (en)n(ΞN satisfying the
above condition for all c > 0 instead of for one c < 1 (see also [9]).

PROPOSITION 4. Let the basis of the substitution space Z satisfy the
GLD-condition. Then, the Z-direct sum of a family of Schur spaces has
weakly normal structure.

Proof. If x is diametral with limn_+00||jcΛ|| = diamx and xn -* 0 weakly,
then, since all Xt are Schur, ||JCΛ(I)|| -» 0 for all i G / as n -» oo. Thus, a
contradiction to the GLD-condition can be obtained in exactly the same
way as for Xt = R (see [23] or [4]). D

6. Isonormal structure. The normed space X is said to have isonor-
mal structure if it is isomorphic to a normally structured space, i.e. if
Qns{ X) contains an equivalent norm.

If every space isomorphic to X contains an isometric copy of /^ (or
merely cQ)9 then X clearly does not have isonormal structure. Examples of
such spaces are /«,(/) for any uncountable / (Partington [35]), mκ(I) —
{x G 1^(1) |card(suppx) < κ}9 Ko < K < card(/) (Partington [35]) and
/wAo (Partington [36]).

On the other hand, all superreflexive spaces do' have isonormal
structure because they are uniformly convexifiable (see [17]).

Zizler [41] has shown that, whenever X can be mapped by a continu-
ous linear one-to-one operator into some space whose norm is uniformly
convex in every direction (see [13]), then X can be given an equivalent
norm with the same property. Thus ([19], [41]), all such spaces have
isonormal structure. To this class belong, for example:

(1) All separable spaces, for example c0.
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(2) The space/^
(3) The spaces lp(I) for any index set / and any/7 with 1 <p < oo.
(4) The space CB(H) of all continuous bounded real valued functions

on the completely regular H, whenever H admits a σ-finite Baire measure
μ such that μ{A) > 0 if A has nonempty interior (CB(H) is endowed with
the topology of uniform convergence).

Using our permanence result, we obtain:

THEOREM 4. A normed space X has isonormal structure if {and only if)

there is a continuous linear one-to-one mapping T from X into some normally

structured space.

Proof Apply Corollary 7 for / = {1,2}, qx = || ||, q2 = ||Γ ||, £ =
(191),P = 2J = 2. D

Especially, we are interested in the space co(7), since every weakly
compactly generated Banach space can be mapped by a continuous linear
one-to-one operator into co(/) for some set / (see [15]). Theorem 4
implies:

Consequence 1. If co(I) always has isonormal structure, then so does

every weakly compactly generated Banach space.

For any positive measure μ, L\μ) can be written as an /1(/)-direct
sum of a family of L^φ^-spaces with finite measures φ,. Since the latter
are weakly compactly generated and the formal identity from the /1(/)-di-
rect sum into the corresponding /2(/)-direct sum is continuous (see also
[12]), we obtain:

Consequence 2. If co(I) always has isonormal structure, then so does

Lι(μ) for every positive measure μ.

The behaviour of co(I) is quite different from that of 1^(1), since
co(7) always can be endowed with a locally uniformly convex, hence
strictly convex, norm, namely Day's norm (see [11], [15], [37]).

Unfortunately, even co(N) does not have normal structure with re-
spect to Day's norm. In fact, it even does not have weakly normal
structure (see [24]).
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7. Open problems. From the preceding section, the following two

problems remain open:

Problem 1. Does co(I) have isonormal structure in case that I is

uncountable0!

Problem 2. Does Lι(μ) have isonormal structure for every μ?

One naturally is interested in a Corollary 2 like result for the locally

convex direct sum E = ®iGIEi with its canonical system Q} — {Σ ιe/#/!#,-

E VQi} related to systems Qt which define the topology of Ei9 where in

(Σ, £/#,-)(*) : — Σf G/#,•(*( i)) Λe sum on the right hand side ranges over

only finitely many non-zero summands.

We observe that every bounded subset B of E lies in some finite step,

i.e., there is a finite subset J oi I such that jc(ι') = 0 whenever x E B and

/ E / \ / . Thus, to prove that £ has normal structure with respect to Qλ

provided each Ei has normal structure with respect to Qi9 it suffices to

give an affirmative answer to the following:

Problem 3. Is normal structure preserved under the if-direct-sum-opera-

tionΊ

If X and Y both have normal structure but if X = ( I θ 7 ) ^ does not,

then there is a diametral sequence u = (v, w) in X such that v and w both

are limit-affine and { l i m ^ ^ ^ H ^ — vn\\}n is decreasing and

{ l i m ^ J I v ^ — wn\\}n is increasing (or vice versa). So, we require both X

and Y to have the property

(SP) There exists no growing (i.e., 0 < l im m _ 0 0 | | x w - xn\\ <

lim^oolljc^ — xn+\\\for all « 6 N ) limit-affine sequence x.

Then X has normal structure. Moreover, it can easily be seen that, in this

case, X even satisfies the property (SP) (sum-property, hereafter), too.

Clearly, the sum-property implies normal structure. Using Remark 1,

we easily deduce that the sum-property is equivalent to

(SP1) There is no sequence x such that, for all n E N,

0 < an : = lim \xm - xn\\ < an+{ and lim
m-*oo m-*oo

Similarly as in the case of weakly normal structure, X is said to have the

weak sum-property if (SP) holds when restricted to weakly convergent

sequences.
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We have seen that, for an affirmative solution of Problem 3, it is
sufficient to establish the following:

Conjecture. Normal structures implies the sum-property.

This conjecture is supported by the fact that all the conditions known
to be sufficient for (weakly) normal structure listed in [28] also imply the
(weak) sum-property. Sketches of the proofs of these implications may be
found in the appendix.

Finally, we remark that the sum-property is preserved under any
finite direct-sum-operation, so that we have:

Consequence 3. // normal structure implies the sum-property, then
normal structure is preserved under any finite direct-sum-operation.

Proof. We fix a substitution space Z with finite index set / and show
that the sum-property is preserved under the Z-direct-sum-operation.

Assume that x is a growing limit-affine sequence in X — (Σ/G/ ® ̂  )z
We choose a subsequence u of x such that:

(i) zn(i) : = limm_00||wm(/) - un(i)\\ exists for all n E N and i E /.
(ϋ) IKII = an := limm^J|wm - un\\ for all n E N.

(iii) 0 < zn(j) < zn+x(j) for all n E N and all elements j of some
J Cl.

(iv) zn(i) > zn+λ(i) for all n E N and i E / \ / .
(v) £„(/) := limm^00||wm(/) - un(i)\\ exists for all n E N and / E /.

Observe that we have dropped all components / for which x(/) is constant.
From an < anΛ_x, we know that / φ 0. Using Remark 1.1 and (SP1), we
find afcGN such that fn(y)_< zn(j) for sΛl_n > k andy E /. _

_Setting zn : = Pjζn + PjZn, we obtain an = lim^oollii,,, - un\\ < | | f j |

Using the monotony of the norm of Z, we obtain an = \\zn\\ — ||zj| =

\\PjZ~n\\ > WPj^ϊΊW = an+1 w h i c h contradicts am < am+x for all m. D

Consequence 3 again gives a motivation to check whether our conjec-
ture is true or not.

8. Appendix. In the appendix, we want to show that all sufficient
conditions for (weakly) normal structure listed in [28] are sufficient for the
(weak) sum-property, too. The following proofs all are indirect using (SP)
or the fact that, if X does not have the weak sum-property (WSP), then
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there is a growing limit-affine sequence x with xn -» 0 weakly and

limπ_>oolimm_+oo||xm - xn\\ = 1 = l i m ^ J I x J I

(1) Uniformly normal structure (see [20]) => (SP):

If x is limit-affine, then there is a subsequence u of x such that

Klimn^OQ\\un - u\\ > diamu for all u E C : = convu, 1 < K< N(X) =

normal structure coefficient (see [10]), contradicting the definition of

N(X).

(2) Uniform convexity =» εQ(X) = s u P ( ε — 0|δ^(β) = 0} < 1 =»

uniformly normal structure:

WehaveTV(^) > (1 - δx(l))'1 (see [10]) and δx(l) > 0 <=> εo(X) < 1.

(3) Uniform convexity in every direction (see also [19]) =>

ελ(X) : = sup{ε >: 0| there exists u E X with \\u\\ > ε and δ^w) = 0} < 1

Here,

X\\<:l9\\y\\<:l9χ-y = u\.

Let x be a growing limit-affine sequence. We may assume that an —

lim^oollx^ — jcj|-> α > 0. Choosing /: and m, k<m, so big that

II*A: - ^ m | | - (1 ~ a)\\xm- xλ\\>εak, ε](X)<ε<\, 0 < a < 1, and

(am- a\)a = ak-a\> a n d setting un = x n - ^ , wπ = Λ:Λ - α x m -

(1 - a ) * , , we obtain | | ϋ j | ^ α Λ , | |w j | -* Λ Λ , \\vn 4- w j | -^ 2 ^ , vn - wn = u

= axm + (1 — a)xλ — xk and \\u\\ > εα λ contradicting the definition of

(4) ^-uniform rotundity (k - UR) (see [40]) => (SP):

If X is A: — UR, then X is (super-)reflexive and there is δ > 0 such

that:

(I) det(xΓ ( x f ) 1 l ) ^ 1 - δ if ||x*|| < 1, r=l,...9k, \\\xs\\ - 1| < δ,

* = l , . . . , * + l , | | x Λ + 1 | | > l - δ .

Here, det is the determinant operation and (αΓ t J)
 : = (x*(xs), 1) is the

(k + I) X (k + l)-matrix defined by ar s = x?(xs) if r < fc and α Λ J = 1

otherwise. Using continuity arguments, we find an ε > 0 such that (if

K,J =£ 2):
(II) det(« r i ) > 1 - δ if o Λ + l j Λ + , = 1, K r - l | < ε , r = l , . . . , Λ ,

|α Γ i J | < ε , r<s< k+ 1.

If x,, -» 0 weakly, | |Λ;J| -> 1 = lim^o olimm^o o | |Λ:m - xn | | and ΔΣ n x -»

0, then we can pick integers «, < « 2 < < «A +, < « and x* G X* with

| | x * | | = l , r = 1 Λ, such that (II) holds for (ars) = (x*(ys), 1),

Λ : = xn - xn, and that | | | Λ | | - 11< 8, s = 1,.. .,k + I, and |lyΛ+,|| >

1 — δ contradicting (I).



NORMAL STRUCTURE 141

(5) Nearly uniform convexity (see [25]) => there is a δ < 1 such that
(i)||jc|| <δforsomex G convxif | |x j | < 1 andinf^w | |x r t - xm\\ > δ,

X is reflexive and there is a δ < 1 such that
(ii) ||JC|| < δ if *„ -* x weakly, ||xπ|| < 1 and mίn^m\\xn - xj\ > δ.

That (i) implies reflexivity of X is a direct consequence of a characteriza-
tion of reflexivity of James [26, Theorem 1]. That (i) implies (ii) and that
(ii) together with reflexivity implies (i) can be shown using the method of
Huff [25].

If xn -* 0 weakly and (iii) limm_0 0 | |xm - xn\\ = an -> 1 =
l i m ^ J I x J I , then \\xn - xk\\'\xn - xk) -> ~ak

ιxk weakly, and (ii) im-
plies ||JCΛ|| < 8ak for all sufficiently large k G N which contradicts (iii).

(6) 1 < BS(X) = bounded sequence coefficient (see [10]) =»(SP), or
1 < WCS(^) — weakly convergent sequence coefficient (see [10]) =>
(WSP),resp.:

If x is limit-affine and an := limm_^o0\\xm - xn\\ converges to
some a > 0, then we can choose a subsequence u of x such that
K\imn_O0\\un - u\\ > a - l i m ^ ^ diam{ww | m > ή) for all u G convu,

(WCSί-Y), resp.) which contradicts the definition of

, resp.).

(7) X has a basis with GLD-condition => Bynum's condition [9, The-
orem B] =» (WSP):

Bynum's proof [9, Theorem B] also works in our situation.
(8) Opial's condition (see [24]) => (WSP):
If xn -» 0 weakly and ||Λ:J| -> 1, then OpiaΓs condition implies

lim^Jlx,, — x,|| > 1, if this limit exists, so that x cannot be a growing
limit-affine sequence.

Added in Proof. If X has isonormal structure, then, for every ε > 0,
there is an equivalent norm ||| ||| on X, with respect to which X has normal
structure, with ||x|| < |||JC||| < (1 + ε)||jc|| for all x G X. Hence, the class of
normally structured spaces isomorphic to X is dense in the class of all
spaces isomorphic to X for the Banach-Mazur distance topology. Indeed,
choose £ = (1, /ε2 + 2ε | |7Ί|"1) in the proof of Theorem 4.
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