ON STRONGLY DECOMPOSABLE OPERATORS

I. Erdelyi and Wang Shengwang

Abstract

A strongly decomposable operator, as defined by C. Apostol, is a bounded linear operator T which, for every spectral maximal space Y, induces two decomposable operators: the restriction $T \mid Y$ and the coinduced T / Y on the quotient space X / Y. In this paper, we give some necessary and sufficient conditions for an operator to be strongly decomposable.

Throughout the paper, T is a bounded linear operator acting on an abstract Banach space X over the field \mathbf{C} of complex numbers. T^{*} denotes the conjugate of T on the dual space X^{*}. For a set S, S^{c} is the complement, \bar{S} is the closure, $\bar{S}^{\text {w }}$ is the weak ${ }^{*}$-closure in X^{*}, S^{\perp} is the annihilator of $S \subset X$ in $X^{*},{ }^{\perp} S$ is the annihilator of $S \subset X^{*}$ in X and Int S represents the interior of S. We write $\sigma(T)$ for the spectrum, $\rho(T)$ for the resolvent set of T and $R(\cdot ; T)$ for the resolvent operator. If T is endowed with the single valued extension property (SVEP), then for any $x \in X, \sigma_{T}(x)$ denotes the local spectrum. For $S \subset \mathbf{C}$, we shall extensively use the spectral manifold

$$
X_{T}(S)=\left\{x \in X: \sigma_{T}(x) \subset S\right\} .
$$

We say that T satisfies condition α, if
(a) T has the SVEP, and (b) $X_{T}(F)$ is closed for every closed $F \subset \mathbf{C}$.

Two special types of subspaces, invariant under the given operator T, enter the theory of decomposable operators: (1) spectral maximal spaces [7]; (2) analytically invariant subspaces [9].

1. Proposition. Let Y be a spectral maximal space of T.
(i) $[9$, Proposition 1] If T has the SVEP then, for any $x \in X$,

$$
\begin{equation*}
\sigma_{T}(x)=\left[\sigma_{T}(x) \cap \sigma(T \mid Y)\right] \cup \sigma_{\hat{T}}(\hat{x}), \quad \hat{x}=x+Y, \hat{T}=T / Y . \tag{1}
\end{equation*}
$$

(ii) $[\mathbf{2}$, Lemma 1.4]. If T is decomposable, then

$$
\begin{equation*}
\sigma(T / Y)=\overline{\sigma(T)-\sigma(T \mid Y)} . \tag{2}
\end{equation*}
$$

(iii) [7, Theorem 2.3]. If T satisfies condition α, then $Y=X_{T}[\sigma(T \mid Y)]$.
(iv) [3, Proposition I.3.2]. If $Z \subset Y$ is a spectral maximal space of T, then Y / Z is a spectral maximal space of T / Z.
(v) [7, Lemma 2.1]. If T is decomposable and $G \subset \mathbf{C}$ is open, then $\sigma(T) \cap G \neq \varnothing$ implies that $X_{T}(\bar{G}) \neq\{0\}$.
(vi) [7, Theorem 2.3]. If T satisfies condition α, then for every closed $F \subset \mathbf{C}, X_{T}(F)$ is a spectral maximal space of T and

$$
\begin{equation*}
\sigma\left[T \mid X_{T}(F)\right] \subset F \tag{3}
\end{equation*}
$$

(vii) [12, Corollary 1(c)]. For T decomposable and for any closed $F \subset \mathbf{C}$,

$$
\sigma\left[T / X_{T}(F)\right] \subset(\operatorname{Int} F)^{\mathrm{c}}
$$

(viii) [8, Theorem 1]. If T is decomposable then, for every closed $F \subset \mathbf{C}$, $X_{T}\left(F^{\mathrm{c}}\right)^{\perp}$ is a spectral maximal space of T^{*} and $X_{T}\left(F^{\mathrm{c}}\right)^{\perp}=X_{T^{*}}^{*}(F)$.
(ix) [9, Theorem 2]. If T has the SVEP, then Y is analytically invariant under T.

Remark. More generally than in the original versions, properties (iii) and (vi) hold without the restriction of T being decomposable.
2. Proposition. Let Y be an analytically invariant subspace under T. Then
(i) [9, Theorem 1]. T/Y has the SVEP (the converse property is also true).
(ii) [4, Lemma 3.4]. If T has the SVEP then, for every $y \in Y$,

$$
\sigma_{T Y}(y)=\sigma_{T}(y)
$$

(iii) [9, Theorem 3]. If T is decomposable then, for every open $G \subset \mathbf{C}$, $\overline{X_{T}(G)}$ is analytically invariant under T.
3. Theorem. The following assertions are equivalent:
(i) T is strongly decomposable;
(ii) (a) T satisfies condition α;
(b) for every spectral maximal space Y of T and any $x \in X$,

$$
\begin{equation*}
\sigma_{\hat{T}}(\hat{x})=\overline{\sigma_{T}(x)-\sigma(T \mid Y)}, \quad \hat{T}=T / Y, \hat{x}=x+Y \tag{4}
\end{equation*}
$$

(c) for every special maximal space Y of T and any open $G \subset \mathbf{C}$, $G \cap \sigma(T \mid Y) \neq \varnothing$ implies that $X_{T}[\bar{G} \cap \sigma(T \mid Y)] \neq\{0\}$.

Proof. (i) \Rightarrow (ii). (a) is evident. (b). (1) implies

$$
\sigma_{\hat{T}}(\hat{x}) \supset \sigma_{T}(x)-\left[\sigma_{T}(x) \cap \sigma(T \mid Y)\right]=\sigma_{T}(x)-\sigma(T \mid Y)
$$

and hence

$$
\sigma_{\hat{T}}(\hat{x}) \supset \overline{\sigma_{T}(x)-\sigma(T \mid Y)}
$$

To obtain the opposite inclusion, for $x \in X$, put

$$
\begin{equation*}
F=\sigma_{T}(x) \cup \sigma(T \mid Y) \tag{5}
\end{equation*}
$$

and for the decomposable $T \mid X_{T}(F)$ use (2) and (3) as follows:

$$
\begin{aligned}
\sigma\left[\hat{T} \mid X_{T}(F) / Y\right] & =\overline{\sigma\left[T \mid X_{T}(F)\right]-\sigma(T \mid Y)} \subset \overline{F-\sigma(T \mid Y)} \\
& =\overline{\sigma_{T}(x)-\sigma(T \mid Y)}
\end{aligned}
$$

By (5), $x \in X_{T}(F)$ and hence $\hat{x}=x+Y \in X_{T}(F) / Y$. Consequently,

$$
\sigma_{\hat{T}}(\hat{x}) \subset \sigma\left[\hat{T} \mid X_{T}(F) / Y\right] \subset \overline{\sigma_{T}(x)-\sigma(T \mid Y)}
$$

and this establishes (4).
Since $T \mid Y$ is decomposable, (c) is a consequence of Proposition 1 (v).
(ii) \Rightarrow (i): Let Y be a spectral maximal space of T. By (a) and Proposition 1 (iii), Y has a representation $Y=X_{T}[\sigma(T \mid Y)]$.

Let $G \subset \mathbf{C}$ be open and put $Z=X_{T}(\bar{G})$. We shall prove inclusion

$$
\begin{equation*}
\overline{G \cap \sigma(T \mid Y)} \subset \sigma(T \mid Y \cap Z) \tag{6}
\end{equation*}
$$

If $G \cap \sigma(T \mid Y)=\varnothing$, then (6) is evident. Therefore, assume

$$
G \cap \sigma(T \mid Y) \neq \varnothing
$$

Let $\lambda_{0} \in G \cap \sigma(T \mid Y)$ and let $\delta_{0} \subset G$ be a neighborhood of λ_{0}. Then, since $\delta_{0} \cap(T \mid Y) \neq \varnothing$, (c) implies that $X_{T}\left[\bar{\delta}_{0} \cap \sigma(T \mid Y)\right] \neq\{0\}$ and hence

$$
\sigma\left(T \mid X_{T}\left[\bar{\delta}_{0} \cap \sigma(T \mid Y)\right]\right) \neq \varnothing
$$

Let $\lambda_{1} \in \sigma\left(T \mid X_{T}\left[\overline{\delta_{0}} \cap \sigma(T \mid Y)\right]\right)$. Then $\lambda_{1} \in \bar{\delta}_{0}$ and it follows from

$$
X_{T}\left[\bar{\delta}_{0} \cap \sigma(T \mid Y)\right] \subset X_{T}[\bar{G} \cap \sigma(T \mid Y)]=X_{T}[\sigma(T \mid Y)] \cap Z=Y \cap Z
$$

that $\lambda_{1} \in \overline{\delta_{0}} \cap \sigma(T \mid Y \cap Z)$. Thus,

$$
\overline{\delta_{0}} \cap \sigma(T \mid Y \cap Z) \neq \varnothing
$$

and since δ_{0} is an arbitrary neighborhood of λ_{0}, we must have $\lambda_{0} \in$ $\sigma(T \mid Y \cap Z)$. By the definition of λ_{0}, inclusion (6) holds. Finally, we shall conclude the proof by showing that $T \mid Y$ is decomposable. The subspace $W=Y \cap Z$ is a spectral maximal space of T. By denoting $\tilde{T}=T / W$ and for $x \in Y, \tilde{x}=x+W$, with the help of condition (b) and inclusion (6),
we obtain successively

$$
\begin{align*}
\sigma_{\tilde{T}}(\tilde{x}) & =\overline{\sigma_{T}(x)-\sigma(T \mid W)} \subset \overline{\sigma_{T}(x)-[G \cap \sigma(T \mid Y)]} \tag{7}\\
& \subset \overline{\sigma(T \mid Y)-[G \cap \sigma(T \mid Y)]}=\overline{\sigma(T \mid Y)-G} \subset G^{\mathrm{c}}
\end{align*}
$$

Since Y is a spectral maximal space of T and W is a spectral maximal space of $T \mid Y$, Proposition 1 (iv) implies Y / W is a spectral maximal space of T / W. Then, with the help of (7) and [13, Theorem $1.1(\mathrm{~g})]$, we obtain

$$
\sigma[\hat{T} \mid(Y / W)]=\bigcup_{\tilde{x} \in Y / W} \sigma_{\tilde{T}}(\tilde{x}) \subset G^{\mathrm{c}}
$$

Consequently, $T \mid Y$ is decomposable by [5, Theorem 12] and [1] (or [11]), (see also [10]).

If one slightly strengthens condition (b) in Theorem 3, then (c) becomes redundant.
4. Theorem. The following assertions are equivalent:
(I) T is strongly decomposable;
(II) (A) T satisfies condition α;
(B) for every closed $F \subset \mathbf{C}$, and each $x \in X$,

$$
\begin{equation*}
\sigma_{\hat{T}}(\hat{x})=\overline{\sigma_{T}(x)-F} \tag{8}
\end{equation*}
$$

where $\hat{T}=T / X_{T}(F), \hat{x}=x+X_{T}(F)$.
(III) (A) T satisfies condition α;
(C) For every pair F_{1}, F_{2} of closed sets in \mathbf{C},

$$
\begin{equation*}
\sigma\left[\left(T / Y_{2}\right) \mid X_{T}\left(F_{1} \cup F_{2}\right) / Y_{2}\right] \subset F_{1}, \quad \text { where } Y_{2}=X_{T}\left(F_{2}\right) \tag{9}
\end{equation*}
$$

Proof. (I) \Rightarrow (III). Let F_{1}, F_{2} be closed in C. Since T is strongly decomposable, $T \mid X_{T}\left(F_{1} \cup F_{2}\right)$ is decomposable. Let G_{1}, G_{2} be open sets in \mathbf{C} such that $F_{1} \cup F_{2} \subset G_{1} \cup G_{2}, F_{1} \subset G_{1}$ and $\bar{G}_{2} \cap F_{1}=\varnothing$. For $x \in X_{T}\left(F_{1} \cup F_{2}\right)$, we have a representation

$$
x=x_{1}+x_{2} \quad \text { with } x_{t} \in X_{T}\left(F_{1} \cup F_{2}\right) \cap X_{T}\left(\bar{G}_{i}\right), i=1,2 .
$$

It follows from

$$
\sigma_{T}\left(x_{2}\right) \subset\left(F_{1} \cup F_{2}\right) \cap \bar{G}_{2}=F_{2} \cap \bar{G}_{2} \subset F_{2}
$$

that $x_{2} \in X_{T}\left(F_{2}\right)=Y_{2}$.
Let $\lambda_{0} \notin \bar{G}_{1}$. Then $\lambda_{0} \in \rho\left(T \mid X_{T}\left[\left(F_{1} \cup F_{2}\right) \cap \bar{G}_{1}\right]\right)$ and hence there is $y \in X_{T}\left[\left(F_{1} \cup F_{2}\right) \cap \bar{G}_{1}\right]$ verifying

$$
\left(\lambda_{0}-T\right) y=x_{1}
$$

By the natural homomorphism $X \rightarrow X / Y_{2}$, we obtain

$$
\left(\lambda_{0}-T / Y_{2}\right) \hat{y}=\hat{x}_{1}=\hat{x},
$$

and hence $\lambda_{0}-\left(\mathrm{T} / \mathrm{Y}_{2}\right) \mid X_{T}\left(F_{1} \cup F_{2}\right) / Y_{2}$ is surjective. Since T / Y_{2} has the SVEP by Proposition 1 (vi), (ix) and Proposition 2 (i), we have $\lambda_{0} \in$ $\rho\left[\left(T / Y_{2}\right) \mid X_{T}\left(F_{1} \cup F_{2}\right) / Y_{2}\right]$ by [6, Theorem 2]. By the definition of λ_{0},we have

$$
\sigma\left[\left(T / Y_{2}\right) \mid X_{T}\left(F_{1} \cup F_{2}\right) / Y_{2}\right] \subset \bar{G}_{1}
$$

and since $G_{1} \supset F_{1}$ is arbitrary, inclusion (9) holds.
(III) \Rightarrow (II): Let $x \in X$ and $F \subset \mathbf{C}$ be closed. For $F_{1}=\overline{\sigma_{T}(x)-F}$ and $Y=X_{T}(F),(9)$ implies

$$
\sigma\left[(T / Y) \mid X_{T}\left(F_{1} \cup F\right) / Y\right] \subset F_{1}=\overline{\sigma_{T}(x)-F} .
$$

It follows from the definition of F_{1} that $x \in X_{T}\left(F_{1} \cup F\right)$. Consequently, for $\hat{x}=x+Y$ and $\hat{T}=T / Y$, we have

$$
\sigma_{\hat{T}}(\hat{x}) \subset \sigma\left[\hat{T} \mid X_{T}\left(F_{1} \cup F\right) / Y\right] \subset \overline{\sigma_{T}(x)-F} .
$$

On the other hand, it follows from Proposition 1 (i) that

$$
\sigma_{\hat{T}}(\hat{x}) \supset \overline{\sigma_{T}(x)-\sigma(T \mid Y)} \supset \overline{\sigma_{T}(x)-F}
$$

and hence (8) holds.
(II) \Rightarrow (I). In view of Theorem 3, we only have to prove that, for every open G and spectral maximal space $Y=X_{T}[\sigma(T \mid Y)]$,

$$
\begin{equation*}
G \cap \sigma(T \mid Y) \neq \varnothing \tag{10}
\end{equation*}
$$

implies that $X_{T}[\bar{G} \cap \sigma(T \mid Y)] \neq\{0\}$. Choose an open G verifying (10), denote $Z=X_{T}[\bar{G} \cap \sigma(T \mid Y)]$ and for $x \in X$, let $\tilde{x}=x+Z$. If $Z=\{0\}$, then

$$
\begin{equation*}
\sigma_{\tilde{T}}(\tilde{x})=\sigma_{T}(x), \quad \tilde{T}=T / Z . \tag{11}
\end{equation*}
$$

In view of (11), by hypothesis, we have

$$
\begin{aligned}
\sigma_{T}(x) & =\sigma_{\tilde{T}}(\tilde{x})=\overline{\sigma_{T}(x)-[\bar{G} \cap \sigma(T \mid Y)]} \\
& =\overline{\left[\sigma_{T}(x)-\bar{G}\right]} \cup \overline{\left[\sigma_{T}(x)-\sigma(T \mid Y)\right]} .
\end{aligned}
$$

Let $x \in Y$. Since $\sigma_{T}(x) \subset \sigma(T \mid Y)$, we have

$$
\sigma_{T}(x)=\overline{\sigma_{T}(x)-\bar{G}}
$$

and hence

$$
\sigma_{T}(x) \cap G=\varnothing
$$

Now, with the help of [13, Theorem 1.1 (g)], Proposition 1 (v), (ix) and Proposition 2 (ii), we obtain

$$
\begin{aligned}
\sigma(T \mid Y) \cap G & =\left[\bigcup_{x \in Y} \sigma_{T Y}(x)\right] \cap G=\left[\bigcup_{x \in Y} \sigma_{T}(x)\right] \cap G \\
& =\bigcup_{x \in Y}\left[\sigma_{T}(x) \cap G\right]=\varnothing
\end{aligned}
$$

But this contradicts hypothesis (10). Therefore, $Z=X_{T}[\bar{G} \cap \sigma(T \mid Y)] \neq$ $\{0\}$.

Next, we shall obtain a characterization of a strongly decomposable operator in terms of the conjugate operator. First, we need some preparation.
5. Lemma. Given T, let Y and Z be invariant subspaces of X with $Z \subset Y$. Then

$$
\begin{equation*}
(T / Z)^{*}\left|(Y / Z)^{\perp} \cong T^{*}\right| Y^{\perp} \tag{12}
\end{equation*}
$$

Proof. The mapping $X / Z \rightarrow X / Y$ is a continuous surjective homomorphism with kernel Y / Z. Therefore, the quotient spaces $(X / Z) /(Y / Z)$ and X / Y are isomorphic. Given $x \in X$, we use the following notations for the equivalent classes containing x in the corresponding quotient spaces: $\hat{x} \in X / Y, \tilde{x} \in X / Z, \tilde{x} \in(X / Z) /(Y / Z)$. Note that $u \in \hat{x}$ iff $u-x \in Y$ iff $(u-x) \tilde{\tilde{c}} \in Y / Z$ iff $\tilde{u} \in \tilde{\tilde{x}}$. Since

$$
\inf _{v \in \tilde{u}}\|v\| \leq\|u\|,
$$

we have

$$
\begin{equation*}
\|\tilde{x}\|=\inf _{\tilde{u} \in \tilde{x}}\|\tilde{u}\|=\inf _{\tilde{u} \in \tilde{x}} \inf _{v \in \tilde{u}}\|v\| \leq \inf _{u \in \tilde{x}}\|u\|=\|\hat{x}\| . \tag{13}
\end{equation*}
$$

On the other hand, for every $u \in \hat{x}, \tilde{u}=u+Z \subset u+Y=\hat{x}$ and hence $\tilde{u} \subset \hat{x}$. Thus,

$$
\inf _{v \in \tilde{u}}\|v\| \geq\|\hat{x}\|
$$

and hence

$$
\begin{equation*}
\|\tilde{\tilde{x}}\|=\inf _{\tilde{u} \in \tilde{x}} \inf _{v \in \tilde{u}}\|v\| \geqq\|\hat{x}\| . \tag{14}
\end{equation*}
$$

Then, by (13) and (14), $\|\tilde{x}\|=\|\hat{x}\|$. Thus, it follows from the isometrical isomorphisms

$$
(X / Y)^{*} \cong Y^{\perp}, \quad\left[(X / Z) /(Y / Z)^{*} \cong(Y / Z)\right]^{\perp}
$$

that the unitary equivalence (12) holds.
6. Lemma. If T is decomposable then, for every open $G \subset C$,

$$
\begin{equation*}
X_{T}\left(G^{c}\right)^{\perp}={\overline{X_{T^{*}}^{*}(G)}}^{\mathrm{w}} \tag{15}
\end{equation*}
$$

Proof. Let T be decomposable. By [14], for every closed $F \subset \mathbf{C}$,

$$
\begin{equation*}
J X_{T}(F)=J X \cap X_{T * *}^{* *}(F) \tag{16}
\end{equation*}
$$

where J is the natural imbedding of X into $X^{* *}$. By Proposition 1 (viii) and the fact that T decomposable implies T^{*} decomposable,

$$
\begin{equation*}
X_{T^{* *}}^{* *}(F)=X_{T^{*}}^{*}\left(F^{c}\right)^{\perp} \tag{17}
\end{equation*}
$$

Relations (16) and (17) imply

$$
X_{T}(F)={ }^{\perp} X_{T^{*}}^{*}\left(F^{\mathrm{c}}\right)
$$

and hence, for $F=G^{\mathrm{c}}$, (15) follows.
7. Lemma. If T^{*} is decomposable then, for every open $G \subset \mathbf{C}, \overline{X_{T^{*}}^{*}(G)^{\mathrm{w}}}$ (i.e. the weak*-closure of $X_{T^{*}}^{*}(G)$) is analytically invariant under T^{*}.

Proof. Let $f^{*}: D \rightarrow X^{*}$ be analytic on an open $D \subset \mathbf{C}$ and verify condition

$$
\left(\lambda-T^{*}\right) f^{*}(\lambda) \in{\overline{X_{T^{*}}^{*}(G)}}^{\mathrm{w}} \quad \text { on } D
$$

We may assume D is connected. Put $F=G^{\mathrm{c}}, Y=X_{T}(F)$, use Lemma 6, Proposition 1 (vii) and obtain successively

$$
\sigma\left[T^{*} \mid{\overline{X_{T^{*}}^{*}(G)}}^{\mathrm{w}}\right]=\sigma\left(T \mid Y^{\perp}\right)=\sigma\left[(T / Y)^{*}\right]=\sigma(T / Y) \subset(\text { Int } F)^{\mathrm{c}}=\bar{G}
$$

First, assume $D \subset \bar{G}$. Then $D \subset G \subset \rho(T \mid Y)$ and, for every $x \in Y$, $\lambda \in D$, we have

$$
\begin{aligned}
\left\langle x, f^{*}(\lambda)\right\rangle & =\left\langle(\lambda-T) R(\lambda ; T \mid Y) x, f^{*}(\lambda)\right\rangle \\
& =\left\langle R(\lambda ; T \mid Y) x,\left(\lambda-T^{*}\right) f^{*}(\lambda)\right\rangle=0 .
\end{aligned}
$$

Next, assume $D \not \subset \bar{G}$. Then, for $\lambda \in D-\bar{G}$, the resolvent operator $R\left[\lambda ; T^{*} \mid \overline{X_{T^{*}}^{*}(G)^{\mathrm{w}}}\right]$ is defined, and for $h^{*}(\lambda)=\left(\lambda-T^{*}\right) f^{*}(\lambda)$ we have

$$
\left(\lambda-T^{*}\right)\left\{f^{*}(\lambda)-R\left[\lambda ; T^{*} \mid{\overline{X_{T^{*}}^{*}(G)}}^{\mathrm{w}}\right] h^{*}(\lambda)\right\}=0 .
$$

Since T^{*} has the SVEP,

$$
f^{*}(\lambda)=R\left[\lambda ; T^{*} \mid{\overline{X_{T^{*}}^{*}(G)}}^{\mathrm{w}}\right] h^{*}(\lambda) \in{\overline{X_{T^{*}}^{*}(G)}}^{\mathrm{w}}
$$

on $D-\bar{G}$, and $f^{*}(\lambda) \in{\overline{X_{T^{*}}(G)}}^{\text {w }}$ on D, by analytic continuation.
8. Theorem. The bounded operator T (resp. T^{*}) is strongly decomposable iff:
$\frac{(i) T}{}\left(\right.$ resp. $\left.T^{*}\right)$ has the SVEP and for open $G \subset \mathbf{C}, T^{*} \mid \overline{X_{T^{*}}^{*}(G)^{\mathrm{w}}}($ resp. $\left.T \mid \overline{X_{T}(G)}\right)$ is decomposable;
(ii) for every pair G, H of open sets in \mathbf{C},

$$
\begin{equation*}
{\overline{X_{T^{*}}^{*}(G \cap H)}}^{\mathrm{w}}={\overline{Y_{\left.T^{*}\right|^{*}}^{*}(H)}}^{\mathrm{w}} \quad\left(\operatorname{resp} \cdot \overline{X_{T}(G \cap H)}=\overline{Y_{T_{Y}}(H)}\right) \tag{18}
\end{equation*}
$$

where $Y^{*}=\overline{X_{T^{*}}^{*}(G)^{\mathrm{w}}}\left(\operatorname{resp} . Y=\overline{X_{T}(G)}\right)$.
Proof. We confine the proof to the operator T, the proof concerning T^{*} being similar.
(only if): Assume T is strongly decomposable. Let $G \subset \mathbf{C}$ be open, $F=G^{\mathrm{c}}$ and $Z=X_{T}(F)$. The operator $(T / Z) \mid(X / Z)$ is decomposable.

$$
\begin{equation*}
(X / Z)^{*} \cong{\overline{X_{T^{*}}^{*}(G)}}^{\mathrm{w}} \tag{19}
\end{equation*}
$$

By [8, Theorem 2] and [12], $T^{*} \mid \overline{X_{T^{*}}^{*}(G)^{\mathrm{w}}}$ is decomposable. Apply Lemma 5 to a closed $F_{1} \supset F$, and obtain

$$
\begin{equation*}
\left[X_{T}\left(F_{1}\right) / Z\right]^{\perp} \cong X_{T}\left(F_{1}\right)^{\perp} \tag{20}
\end{equation*}
$$

Denote $\tilde{T}=T / Z, \tilde{X}=X / Z$. Before embarking on the proof of (ii), we shall show that

$$
\begin{equation*}
\tilde{X}_{\tilde{T}}\left(\overline{F_{1}-F}\right)=X_{T}\left(F_{1}\right) / Z \tag{21}
\end{equation*}
$$

In fact, if $\tilde{x} \in \tilde{X}_{\tilde{T}}\left(\overline{F_{1}-F}\right)$, then $\sigma_{\tilde{T}}(\tilde{x}) \subset \overline{F_{1}-F}$ and hence, for every $x \in \tilde{x}$,

$$
\sigma_{T}(x) \subset\left(\overline{F_{1}-F}\right) \cup F=F_{1}
$$

Therefore, $\tilde{x} \in \tilde{X}_{\tilde{T}}\left(\overline{F_{1}-F}\right)$ implies $x \in X_{T}\left(F_{1}\right)$ and hence $\tilde{x} \in X_{T}\left(F_{1}\right) / Z$.
Conversely, if $\tilde{x} \in X_{T}\left(F_{1}\right) / Z=X_{T}\left(\overline{F_{1}-F} \cup F\right) / Z$, then Theorem 4 (III, C) implies

$$
\sigma_{\tilde{T}}(\tilde{x}) \subset \sigma\left[\tilde{T} \mid X_{T}\left(\overline{F_{1}-F} \cup F\right) / Z\right] \subset \overline{F_{1}-F}
$$

and hence $\tilde{x} \in \tilde{X}_{\tilde{T}}\left(\overline{F_{1}-F}\right)$. Thus (21) is proved.
Now we are in a position to prove (ii). To simplify notation, put $X^{*}=(\tilde{X})^{*}$ and $T^{*}=(\tilde{T})^{*}$. Let H be open and let $F_{1}=G^{c} \cup H^{c}$. Then $F_{1} \supset F$ and $\overline{F_{1}-F} \subset H^{c}$. By Lemma 6, Lemma 5, (20), (21) and (19), we obtain successively:

$$
\begin{aligned}
{\overline{X_{T^{*}}^{*}(G \cap H)}}^{\mathrm{w}} & =X_{T}\left(F_{1}\right)^{\perp} \cong\left[X_{T}\left(F_{1}\right) / Z\right]^{\perp}=\tilde{X}_{\tilde{T}}\left(\overline{F_{1}-F}\right)^{\perp} \supset\left[\tilde{X}_{\tilde{T}}\left(H^{\mathrm{c}}\right)\right]^{\perp} \\
& ={\overline{X_{T^{*}}^{*}(H)}}^{\mathrm{w}}={\overline{Y_{T^{*} \mid Y^{*}}^{*}(H)}}^{\mathrm{w}}
\end{aligned}
$$

For the last equality, we used the equivalence

$$
T^{\cdot}=\left[T / X_{T}(F)\right]^{*} \cong T^{*}\left|{\overline{X_{T^{*}}^{*}(G)}}^{\mathrm{w}}=T^{*}\right| Y^{*}
$$

To obtain the opposite inclusion, note that if $x^{*} \in X_{T^{*}}^{*}(G \cap H)$, then

$$
\sigma_{T^{*}}\left(x^{*}\right)=\subset G \cap H \subset G
$$

and hence $x^{*} \in X_{T^{*}}^{*}(G) \subset Y^{*}$. Since Y^{*} is analytically invariant under T^{*} (Lemma 7), in view of Proposition 2 (ii), we obtain

$$
\sigma_{T^{*} \mid Y^{*}}\left(x^{*}\right)=\sigma_{T^{*}}\left(x^{*}\right) \subset H
$$

and hence

$$
x^{*} \in Y_{T^{*} \mid Y^{*}}^{*}(H) \subset{\overline{Y_{T^{*} \mid Y^{*}}^{*}(H)}}^{\mathrm{w}}
$$

Thus

$$
{\overline{X_{T^{*}}^{*}(G \cap H)}}^{\mathrm{w}} \subset{\overline{Y_{T^{*} \mid Y^{*}}^{*}(H)}}^{\mathrm{w}}
$$

(if): Assume conditions (i) and (ii) are satisfied. Let $F, F_{1} \subset \mathbf{C}$ be closed. Since $X_{T^{*}}^{*}(\mathbf{C})=X^{*}$, we conclude that T^{*} is decomposable and hence T is decomposable by [14, Corollary 2.8]. Therefore, $Z=X_{T}(F)$ is closed. Also $T^{*} \mid{\overline{X^{*}}}_{*}^{*}\left(F^{\mathrm{c}}\right)^{\mathrm{w}}$ is decomposable. Then, by Lemma 6,
where $\tilde{T}=T / Z$ and $T^{*}=(\tilde{T})^{*}$. Thus T^{*} is decomposable and hence \tilde{T} is decomposable. Therefore, letting $\tilde{X}=X / Z, \tilde{X}_{\tilde{T}}\left(F_{1}\right)$ is closed and

$$
\begin{equation*}
\sigma\left[\tilde{T} \mid \tilde{X}_{\tilde{T}}\left(F_{1}\right)\right] \subset F_{1} \tag{22}
\end{equation*}
$$

$$
\begin{gathered}
T^{*}\left|X_{T}\left(F \cup F_{1}\right)^{\perp}=T^{*}\right|{\overline{X_{T^{*}}^{*}(G \cap H)^{\mathrm{w}}}}^{\mathrm{w}} \\
T\left|\tilde{X}_{\tilde{T}}\left(F_{1}\right)^{\perp} \cong T^{*}\right|{\overline{Y_{T^{*} \mid Y^{*}}^{*}(H)}}^{\mathrm{w}}
\end{gathered}
$$

Then (18) implies

$$
\begin{equation*}
T^{\cdot}\left|\tilde{X}_{\tilde{T}}\left(F_{1}\right)^{\perp} \cong T^{*}\right| X_{T}\left(F \cup F_{1}\right)^{\perp} \tag{23}
\end{equation*}
$$

By Lemma 5 we have

$$
\begin{equation*}
T^{\cdot}\left|\left[X_{T}\left(F \cup F_{1}\right) / Z\right]^{\perp} \cong T^{*}\right| X_{T}\left(F \cup F_{1}\right)^{\perp} \tag{24}
\end{equation*}
$$

Consequently, with the help of (24), (23) and (22), we obtain

$$
\begin{aligned}
\sigma\left[\tilde{T} \mid X_{T}\left(F \cup F_{1}\right) / Z\right] & =\sigma\left\{T^{\cdot} \mid\left[X_{T}\left(F \cup F_{1}\right) / Z\right]^{\perp}\right\}=\sigma\left[T \cdot \mid \tilde{X}_{\tilde{T}}\left(F_{1}\right)^{\perp}\right] \\
& =\sigma\left[\tilde{T} \mid \tilde{X}_{\tilde{T}}\left(F_{1}\right)\right] \subset F_{1}
\end{aligned}
$$

Thus, conditions (III) of Theorem 4 are satisfied and hence T is strongly decomposable.

Acknowledgement. The authors are indebted to the referee for the suggested improvements of Lemma 5 and Theorem 8.

References

[1] E. Albrecht, On decomposable operators. Integral Equations, 2 (1979), 1-10.
[2] C. Apostol, Restrictions and quotients of decomposable operators in a Banach space, Rev. Roumaine Math. Pures Appl., 13 (1968), 147-150.
[3] , Spectral decompositions and functional calculus, Rev. Roumaine Math. Pures Appl., 13 (1968), 1481-1528.
[4] R. G. Bartle and C. A. Kariotis, Some localizations of the spectral mapping theorem, Duke Math. J., 40 (1973), 651-660.
[5] I. Erdelyi and R. Lange, Operators with spectral decomposition properties. J. Math. Anal. Appl., 66 (1978), 1-19.
[6] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math., 58 (1975), 61-69.
[7] C. Foiaş, Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math., (Basel) 14 (1963), 341-349.
[8] S. Frunză, A duality theorem for decomposable operators, Rev. Roumaine Math. Pures Appl., 16 (1971), 1055-1058.
[9] , The single-valued extension property for coinduced operators, Rev. Roumaine Math. Pures Appl., 18 (1973), 1061-1065.
[10] A. A. Jafarian and F.-H. Vasilescu, A characterization of 2-decomposable operators, Rev. Roumaine Math. Pures Appl., 19 (1974), 769-771.
[11] B. Nagy, Operators with the spectral decomposition property are decomposable, to appear.
[12] M. Radjabalipour, Equivalence of decomposable and 2-decomposable operators, Pacific J. Math., 77 (1978), 243-247.
[13] R. C. Sine, Spectral decomposition of a class of operators, Pacific J. Math., 14 (1964), 333-352.
[14] Wang Shengwang and Liu Guangyu, On the duality theorems of S-decomposable operators, to appear.

Received June 4, 1982 and in revised form July 26, 1982.
Temple University
Philadelphia, Pa 19122
AND
Nanjing University
Nanjing, China

