ON STRONGLY DECOMPOSABLE OPERATORS

I. ERDELYI AND WANG SHENGWANG

A strongly decomposable operator, as defined by C. Apostol, is a bounded linear operator T which, for every spectral maximal space Y, induces two decomposable operators: the restriction $T \mid Y$ and the coinduced T/Y on the quotient space X/Y. In this paper, we give some necessary and sufficient conditions for an operator to be strongly decomposable.

Throughout the paper, T is a bounded linear operator acting on an abstract Banach space X over the field $\mathbb C$ of complex numbers. T^* denotes the conjugate of T on the dual space X^* . For a set S, S^c is the complement, $\overline S$ is the closure, $\overline S^w$ is the weak*-closure in X^* , S^\perp is the annihilator of $S \subset X$ in X^* , S^\perp is the annihilator of $S \subset X^*$ in S^\perp and Int S^\perp represents the interior of S^\perp . We write S^\perp for the spectrum, S^\perp for the resolvent set of S^\perp and S^\perp for the resolvent operator. If S^\perp is endowed with the single valued extension property (SVEP), then for any S^\perp for S^\perp denotes the local spectrum. For S^\perp constant extensively use the spectral manifold

$$X_T(S) = \{x \in X: \sigma_T(x) \subset S\}.$$

We say that T satisfies condition α , if

(a) T has the SVEP, and (b) $X_T(F)$ is closed for every closed $F \subset \mathbb{C}$.

Two special types of subspaces, invariant under the given operator T, enter the theory of decomposable operators: (1) spectral maximal spaces [7]; (2) analytically invariant subspaces [9].

- 1. Proposition. Let Y be a spectral maximal space of T.
 - (i) [9, Proposition 1] If T has the SVEP then, for any $x \in X$,

$$(1) \quad \sigma_T(x) = \left[\sigma_T(x) \cap \sigma(T|Y)\right] \cup \sigma_{\hat{T}}(\hat{x}), \quad \hat{x} = x + Y, \, \hat{T} = T/Y.$$

(ii) [2, Lemma 1.4]. If T is decomposable, then

(2)
$$\sigma(T/Y) = \overline{\sigma(T) - \sigma(T|Y)}.$$

(iii) [7, Theorem 2.3]. If T satisfies condition α , then $Y = X_T[\sigma(T|Y)]$.

(iv) [3, Proposition I.3.2]. If $Z \subset Y$ is a spectral maximal space of T, then Y/Z is a spectral maximal space of T/Z.

- (v) [7, Lemma 2.1]. If T is decomposable and $G \subset \mathbb{C}$ is open, then $\sigma(T) \cap G \neq \emptyset$ implies that $X_T(\overline{G}) \neq \{0\}$.
- (vi) [7, Theorem 2.3]. If T satisfies condition α , then for every closed $F \subset \mathbb{C}$, $X_T(F)$ is a spectral maximal space of T and

(3)
$$\sigma[T|X_T(F)] \subset F.$$

(vii) [12, Corollary 1(c)]. For T decomposable and for any closed $F \subset \mathbb{C}$,

$$\sigma[T/X_T(F)] \subset (\operatorname{Int} F)^{\operatorname{c}}.$$

- (viii) [8, Theorem 1]. If T is decomposable then, for every closed $F \subset \mathbb{C}$, $X_T(F^c)^{\perp}$ is a spectral maximal space of T^* and $X_T(F^c)^{\perp} = X_{T^*}^*(F)$.
- (ix) [9, Theorem 2]. If T has the SVEP, then Y is analytically invariant under T.

REMARK. More generally than in the original versions, properties (iii) and (vi) hold without the restriction of T being decomposable.

- 2. Proposition. Let Y be an analytically invariant subspace under T. Then
- (i) [9, Theorem 1]. T/Y has the SVEP (the converse property is also true).
 - (ii) [4, Lemma 3.4]. If T has the SVEP then, for every $y \in Y$,

$$\sigma_{T|Y}(y) = \sigma_T(y).$$

- (iii) [9, Theorem 3]. If T is decomposable then, for every open $G \subset \mathbb{C}$, $\overline{X_T(G)}$ is analytically invariant under T.
 - 3. THEOREM. The following assertions are equivalent:
 - (i) T is strongly decomposable;
 - (ii) (a) T satisfies condition α ;
 - (b) for every spectral maximal space Y of T and any $x \in X$,

(4)
$$\sigma_{\hat{T}}(\hat{x}) = \overline{\sigma_T(x) - \sigma(T|Y)}, \qquad \hat{T} = T/Y, \hat{x} = x + Y;$$

(c) for every special maximal space Y of T and any open $G \subset \mathbb{C}$, $G \cap \sigma(T|Y) \neq \emptyset$ implies that $X_T[\overline{G} \cap \sigma(T|Y)] \neq \{0\}$.

Proof. (i) \Rightarrow (ii). (a) is evident. (b). (1) implies

$$\sigma_{\hat{T}}(\hat{x}) \supset \sigma_{T}(x) - [\sigma_{T}(x) \cap \sigma(T|Y)] = \sigma_{T}(x) - \sigma(T|Y)$$

and hence

$$\sigma_{\hat{T}}(\hat{x}) \supset \overline{\sigma_{T}(x) - \sigma(T|Y)}.$$

To obtain the opposite inclusion, for $x \in X$, put

$$(5) F = \sigma_T(x) \cup \sigma(T|Y)$$

and for the decomposable $T \mid X_T(F)$ use (2) and (3) as follows:

$$\sigma[\hat{T}|X_T(F)/Y] = \overline{\sigma[T|X_T(F)] - \sigma(T|Y)} \subset \overline{F - \sigma(T|Y)}$$
$$= \overline{\sigma_T(x) - \sigma(T|Y)}.$$

By (5), $x \in X_T(F)$ and hence $\hat{x} = x + Y \in X_T(F)/Y$. Consequently,

$$\sigma_{\hat{T}}(\hat{x}) \subset \sigma[\hat{T}|X_T(F)/Y] \subset \overline{\sigma_T(x) - \sigma(T|Y)}$$

and this establishes (4).

Since $T \mid Y$ is decomposable, (c) is a consequence of Proposition 1 (v).

(ii) \Rightarrow (i): Let Y be a spectral maximal space of T. By (a) and Proposition 1 (iii), Y has a representation $Y = X_T[\sigma(T|Y)]$.

Let $G \subset \mathbb{C}$ be open and put $Z = X_T(\overline{G})$. We shall prove inclusion

(6)
$$\overline{G \cap \sigma(T|Y)} \subset \sigma(T|Y \cap Z).$$

If $G \cap \sigma(T|Y) = \emptyset$, then (6) is evident. Therefore, assume

$$G \cap \sigma(T|Y) \neq \emptyset$$
.

Let $\lambda_0 \in G \cap \sigma(T|Y)$ and let $\delta_0 \subset G$ be a neighborhood of λ_0 . Then, since $\delta_0 \cap (T|Y) \neq \emptyset$, (c) implies that $X_T[\bar{\delta_0} \cap \sigma(T|Y)] \neq \{0\}$ and hence

$$\sigma(T|X_T[\bar{\delta_0}\cap\sigma(T|Y)])\neq\varnothing$$
.

Let $\lambda_1 \in \sigma(T | X_T[\bar{\delta_0} \cap \sigma(T | Y)])$. Then $\lambda_1 \in \bar{\delta_0}$ and it follows from

$$X_Tig[ar{\delta_0}\cap\sigma(T\,|\,Y)ig]\subset X_Tig[ar{G}\cap\sigma(T\,|\,Y)ig]=X_Tig[\sigma(T\,|\,Y)ig]\cap Z=Y\cap Z$$
 that $\lambda_1\inar{\delta_0}\cap\sigma(T\,|\,Y\cap Z)$. Thus,

$$\bar{\delta_0} \cap \sigma(T|Y \cap Z) \neq \emptyset$$

and since δ_0 is an arbitrary neighborhood of λ_0 , we must have $\lambda_0 \in \sigma(T | Y \cap Z)$. By the definition of λ_0 , inclusion (6) holds. Finally, we shall conclude the proof by showing that T | Y is decomposable. The subspace $W = Y \cap Z$ is a spectral maximal space of T. By denoting $\tilde{T} = T/W$ and for $x \in Y$, $\tilde{x} = x + W$, with the help of condition (b) and inclusion (6),

we obtain successively

(7)
$$\sigma_{\tilde{T}}(\tilde{x}) = \overline{\sigma_{T}(x) - \sigma(T|W)} \subset \overline{\sigma_{T}(x) - [G \cap \sigma(T|Y)]}$$
$$\subset \overline{\sigma(T|Y) - [G \cap \sigma(T|Y)]} = \overline{\sigma(T|Y) - G} \subset G^{c}.$$

Since Y is a spectral maximal space of T and W is a spectral maximal space of $T \mid Y$, Proposition 1 (iv) implies Y/W is a spectral maximal space of T/W. Then, with the help of (7) and [13, Theorem 1.1 (g)], we obtain

$$\sigma[\hat{T}|(Y/W)] = \bigcup_{\tilde{x} \in Y/W} \sigma_{\tilde{T}}(\tilde{x}) \subset G^{c}.$$

Consequently, $T \mid Y$ is decomposable by [5, Theorem 12] and [1] (or [11]), (see also [10]).

If one slightly strengthens condition (b) in Theorem 3, then (c) becomes redundant.

- 4. Theorem. The following assertions are equivalent:
 - (I) T is strongly decomposable;
 - (II) (A) T satisfies condition α ;
 - (B) for every closed $F \subset \mathbb{C}$, and each $x \in X$,

(8)
$$\sigma_{\hat{T}}(\hat{x}) = \overline{\sigma_T(x) - F}$$

where $\hat{T} = T/X_T(F)$, $\hat{x} = x + X_T(F)$.

- (III) (A) T satisfies condition α ;
 - (C) For every pair F_1 , F_2 of closed sets in \mathbb{C} ,

(9)
$$\sigma[(T/Y_2)|X_T(F_1 \cup F_2)/Y_2] \subset F_1$$
, where $Y_2 = X_T(F_2)$.

Proof. (I) \Rightarrow (III). Let F_1 , F_2 be closed in C. Since T is strongly decomposable, $T \mid X_T(F_1 \cup F_2)$ is decomposable. Let G_1 , G_2 be open sets in C such that $F_1 \cup F_2 \subset G_1 \cup G_2$, $F_1 \subset G_1$ and $\overline{G_2} \cap F_1 = \emptyset$. For $x \in X_T(F_1 \cup F_2)$, we have a representation

$$x = x_1 + x_2$$
 with $x_i \in X_T(F_1 \cup F_2) \cap X_T(\overline{G}_i)$, $i = 1, 2$.

It follows from

$$\sigma_T(x_2) \subset (F_1 \cup F_2) \cap \overline{G}_2 = F_2 \cap \overline{G}_2 \subset F_2$$

that $x_2 \in X_T(\underline{F_2}) = Y_2$.

Let $\lambda_0 \notin \overline{G}_1$. Then $\lambda_0 \in \rho(T|X_T[(F_1 \cup F_2) \cap \overline{G}_1])$ and hence there is $y \in X_T[(F_1 \cup F_2) \cap \overline{G}_1]$ verifying

$$(\lambda_0 - T)y = x_1.$$

By the natural homomorphism $X \to X/Y_2$, we obtain

$$(\lambda_0 - T/Y_2)\hat{y} = \hat{x}_1 = \hat{x},$$

and hence $\lambda_0 - (T/Y_2) | X_T(F_1 \cup F_2)/Y_2$ is surjective. Since T/Y_2 has the SVEP by Proposition 1 (vi), (ix) and Proposition 2 (i), we have $\lambda_0 \in \rho[(T/Y_2) | X_T(F_1 \cup F_2)/Y_2]$ by [6, Theorem 2]. By the definition of λ_0 , we have

$$\sigma[(T/Y_2)|X_T(F_1\cup F_2)/Y_2]\subset \overline{G}_1$$

and since $G_1 \supset F_1$ is arbitrary, inclusion (9) holds.

(III) \Rightarrow (II): Let $x \in X$ and $F \subset \mathbb{C}$ be closed. For $F_1 = \overline{\sigma_T(x) - F}$ and $Y = X_T(F)$, (9) implies

$$\sigma[(T/Y)|X_T(F_1\cup F)/Y]\subset F_1=\overline{\sigma_T(x)-F}.$$

It follows from the definition of F_1 that $x \in X_T(F_1 \cup F)$. Consequently, for $\hat{x} = x + Y$ and $\hat{T} = T/Y$, we have

$$\sigma_{\hat{T}}(\hat{x}) \subset \sigma[\hat{T}|X_T(F_1 \cup F)/Y] \subset \overline{\sigma_T(x) - F}.$$

On the other hand, it follows from Proposition 1 (i) that

$$\sigma_{\hat{T}}(\hat{x}) \supset \overline{\sigma_T(x) - \sigma(T|Y)} \supset \overline{\sigma_T(x) - F}$$

and hence (8) holds.

(II) \Rightarrow (I). In view of Theorem 3, we only have to prove that, for every open G and spectral maximal space $Y = X_T[\sigma(T|Y)]$,

$$(10) G \cap \sigma(T|Y) \neq \emptyset$$

implies that $X_T[\overline{G} \cap \sigma(T|Y)] \neq \{0\}$. Choose an open G verifying (10), denote $Z = X_T[\overline{G} \cap \sigma(T|Y)]$ and for $x \in X$, let $\tilde{x} = x + Z$. If $Z = \{0\}$, then

(11)
$$\sigma_{\tilde{T}}(\tilde{x}) = \sigma_{T}(x), \qquad \tilde{T} = T/Z.$$

In view of (11), by hypothesis, we have

$$\begin{split} \sigma_T(x) &= \sigma_{\widetilde{T}}(\widetilde{x}) = \overline{\sigma_T(x) - \left[\overline{G} \cap \sigma(T|Y)\right]} \\ &= \overline{\left[\sigma_T(x) - \overline{G}\right]} \cup \overline{\left[\sigma_T(x) - \sigma(T|Y)\right]}. \end{split}$$

Let $x \in Y$. Since $\sigma_T(x) \subset \sigma(T | Y)$, we have

$$\sigma_T(x) = \overline{\sigma_T(x) - \overline{G}}$$

and hence

$$\sigma_T(x) \cap G = \varnothing$$
.

Now, with the help of [13, Theorem 1.1 (g)], Proposition 1 (v), (ix) and Proposition 2 (ii), we obtain

$$\sigma(T|Y) \cap G = \left[\bigcup_{x \in Y} \sigma_{T|Y}(x)\right] \cap G = \left[\bigcup_{x \in Y} \sigma_{T}(x)\right] \cap G$$
$$= \bigcup_{x \in Y} \left[\sigma_{T}(x) \cap G\right] = \varnothing.$$

But this contradicts hypothesis (10). Therefore, $Z = X_T[\overline{G} \cap \sigma(T | Y)] \neq \{0\}.$

Next, we shall obtain a characterization of a strongly decomposable operator in terms of the conjugate operator. First, we need some preparation.

5. LEMMA. Given T, let Y and Z be invariant subspaces of X with $Z \subset Y$. Then

$$(12) \qquad (T/Z)^* \mid (Y/Z)^{\perp} \cong T^* \mid Y^{\perp}.$$

Proof. The mapping $X/Z \to X/Y$ is a continuous surjective homomorphism with kernel Y/Z. Therefore, the quotient spaces (X/Z)/(Y/Z) and X/Y are isomorphic. Given $x \in X$, we use the following notations for the equivalent classes containing x in the corresponding quotient spaces: $\hat{x} \in X/Y$, $\tilde{x} \in X/Z$, $\tilde{x} \in (X/Z)/(Y/Z)$. Note that $u \in \hat{x}$ iff $u - x \in Y$ iff $(u - x) \in Y/Z$ iff $\tilde{u} \in \tilde{x}$. Since

$$\inf_{v\in\tilde{u}}\|v\|\leq\|u\|,$$

we have

(13)
$$\|\tilde{x}\| = \inf_{\tilde{u} \in \tilde{x}} \|\tilde{u}\| = \inf_{\tilde{u} \in \tilde{x}} \inf_{v \in \tilde{u}} \|v\| \le \inf_{u \in \hat{x}} \|u\| = \|\hat{x}\|.$$

On the other hand, for every $u \in \hat{x}$, $\tilde{u} = u + Z \subset u + Y = \hat{x}$ and hence $\tilde{u} \subset \hat{x}$. Thus,

$$\inf_{v \in \tilde{u}} \|v\| \ge \|\hat{x}\|$$

and hence

(14)
$$\|\tilde{x}\| = \inf_{\tilde{u} \in \tilde{x}} \inf_{v \in \tilde{u}} \|v\| \ge \|\hat{x}\|.$$

Then, by (13) and (14), $\|\tilde{x}\| = \|\hat{x}\|$. Thus, it follows from the isometrical isomorphisms

$$(X/Y)^* \cong Y^{\perp}, \qquad [(X/Z)/(Y/Z)^* \cong (Y/Z)]^{\perp}$$

that the unitary equivalence (12) holds.

6. Lemma. If T is decomposable then, for every open $G \subset \mathbb{C}$,

$$(15) X_T(G^c)^{\perp} = \overline{X_{T^*}^*(G)}^{\mathrm{w}}.$$

Proof. Let T be decomposable. By [14], for every closed $F \subset \mathbb{C}$,

$$(16) JX_T(F) = JX \cap X_{T^{**}}^{**}(F)$$

where J is the natural imbedding of X into X^{**} . By Proposition 1 (viii) and the fact that T decomposable implies T^* decomposable,

$$(17) X_{T^{**}}^{**}(F) = X_{T^{*}}^{*}(F^{c})^{\perp}.$$

Relations (16) and (17) imply

$$X_T(F) = {}^\perp X_{T^*}^*(F^c)$$

and hence, for $F = G^{c}$, (15) follows.

7. LEMMA. If T^* is decomposable then, for every open $G \subset \mathbb{C}$, $\overline{X_{T^*}^*(G)}^w$ (i.e. the weak*-closure of $X_{T^*}^*(G)$) is analytically invariant under T^* .

Proof. Let $f^*: D \to X^*$ be analytic on an open $D \subset \mathbb{C}$ and verify condition

$$(\lambda - T^*)f^*(\lambda) \in \overline{X_{T^*}^*(G)}^{\mathrm{w}}$$
 on D .

We may assume D is connected. Put $F = G^c$, $Y = X_T(F)$, use Lemma 6, Proposition 1 (vii) and obtain successively

$$\sigma\Big[T^*\,|\,\overline{X_{T^*}^*(G)}^{\mathrm{w}}\Big] = \sigma(T\,|\,Y^\perp) = \sigma[(T/Y)^*] = \sigma(T/Y) \subset (\mathrm{Int}\,F)^{\mathrm{c}} = \overline{G}.$$

First, assume $D \subset \overline{G}$. Then $D \subset G \subset \rho(T|Y)$ and, for every $x \in Y$, $\lambda \in D$, we have

$$\langle x, f^*(\lambda) \rangle = \langle (\lambda - T)R(\lambda; T | Y)x, f^*(\lambda) \rangle$$

= $\langle R(\lambda; T | Y)x, (\lambda - T^*)f^*(\lambda) \rangle = 0.$

Since $x \in Y$ is arbitrary, $f^*(\lambda) \in Y^{\perp} = \overline{X_{T^*}^*(G)}^{\text{w}}$ on D.

Next, assume $D \not\subset \overline{G}$. Then, for $\lambda \in D - \overline{G}$, the resolvent operator $R[\lambda; T^* | \overline{X_{T^*}^*(G)}^w]$ is defined, and for $h^*(\lambda) = (\lambda - T^*)f^*(\lambda)$ we have

$$(\lambda - T^*) \Big\{ f^*(\lambda) - R \Big[\lambda; T^* | \overline{X_{T^*}^*(G)}^{\mathsf{w}} \Big] h^*(\lambda) \Big\} = 0.$$

Since T^* has the SVEP.

$$f^*(\lambda) = R\left[\lambda; T^* | \overline{X_{T^*}^*(G)}^{\mathrm{w}}\right] h^*(\lambda) \in \overline{X_{T^*}^*(G)}^{\mathrm{w}}$$

on $D - \overline{G}$, and $f^*(\lambda) \in \overline{X_{T^*}^*(G)^{\mathsf{w}}}$ on D, by analytic continuation.

- 8. Theorem. The bounded operator T (resp. T^*) is strongly decomposable iff:
- (i) T (resp. T^*) has the SVEP and for open $G \subset \mathbb{C}$, $T^* \mid \overline{X_{T^*}^*(G)}^{w}$ (resp. $T \mid \overline{X_T(G)}$) is decomposable;
 - (ii) for every pair G, H of open sets in C,

(18)
$$\overline{X_{T^*}^*(G \cap H)}^{\mathrm{w}} = \overline{Y_{T^*|Y^*}^*(H)}^{\mathrm{w}} \quad \left(resp.\ \overline{X_T(G \cap H)} = \overline{Y_{T|Y}^*(H)}\right),$$
where $Y^* = \overline{X_{T^*}^*(G)}^{\mathrm{w}} \quad (resp.\ Y = \overline{X_T(G)}).$

Proof. We confine the proof to the operator T, the proof concerning T^* being similar.

(only if): Assume T is strongly decomposable. Let $G \subset \mathbb{C}$ be open, $F = G^c$ and $Z = X_T(F)$. The operator (T/Z) | (X/Z) is decomposable. Then, by Lemma 6, $X_T(F)^{\perp} = \overline{X_{T^*}^*(G)}^{\mathrm{w}}$ and hence

$$(19) (X/Z)^* \cong \overline{X_{T^*}^*(G)}^{\mathrm{w}}.$$

By [8, Theorem 2] and [12], $T^* | \overline{X_{T^*}^*(G)}^w$ is decomposable. Apply Lemma 5 to a closed $F_1 \supset F$, and obtain

$$\left[X_T(F_1)/Z\right]^{\perp} \cong X_T(F_1)^{\perp}.$$

Denote $\tilde{T} = T/Z$, $\tilde{X} = X/Z$. Before embarking on the proof of (ii), we shall show that

(21)
$$\tilde{X}_{\tilde{T}}(\overline{F_1 - F}) = X_T(F_1)/Z.$$

In fact, if $\tilde{x} \in \tilde{X}_{\tilde{T}}(\overline{F_1 - F})$, then $\sigma_{\tilde{T}}(\tilde{x}) \subset \overline{F_1 - F}$ and hence, for every $x \in \tilde{x}$,

$$\sigma_T(x) \subset (\overline{F_1 - F}) \cup F = F_1.$$

Therefore, $\tilde{x} \in \tilde{X}_{\tilde{T}}(\overline{F_1 - F})$ implies $x \in X_T(F_1)$ and hence $\tilde{x} \in X_T(F_1)/Z$. Conversely, if $\tilde{x} \in X_T(F_1)/Z = X_T(\overline{F_1 - F} \cup F)/Z$, then Theorem 4 (III, C) implies

$$\sigma_{\tilde{T}}(\tilde{x}) \subset \sigma[\tilde{T}|X_T(\overline{F_1-F}\cup F)/Z] \subset \overline{F_1-F}$$

and hence $\tilde{x} \in \tilde{X}_{\tilde{T}}(\overline{F_1 - F})$. Thus (21) is proved.

Now we are in a position to prove (ii). To simplify notation, put $X' = (\tilde{X})^*$ and $T' = (\tilde{T})^*$. Let H be open and let $F_1 = G^c \cup H^c$. Then $F_1 \supset F$ and $\overline{F_1 - F} \subset H^c$. By Lemma 6, Lemma 5, (20), (21) and (19), we obtain successively:

$$\overline{X_{T^*}^*(G \cap H)}^{\mathrm{w}} = X_T(F_1)^{\perp} \cong \left[X_T(F_1)/Z \right]^{\perp} = \tilde{X}_{\tilde{T}} \left(\overline{F_1 - F} \right)^{\perp} \supset \left[\tilde{X}_{\tilde{T}}(H^{\mathrm{c}}) \right]^{\perp} \\
= \overline{X_{T^*}^*(H)}^{\mathrm{w}} = \overline{Y_{T^*|Y^*}^*(H)}^{\mathrm{w}}.$$

For the last equality, we used the equivalence

$$T' = [T/X_T(F)]^* \cong T^* | \overline{X_{T^*}^*(G)}^w = T^* | Y^*.$$

To obtain the opposite inclusion, note that if $x^* \in X_{T^*}^*(G \cap H)$, then

$$\sigma_{T^*}(x^*) = \subset G \cap H \subset G$$

and hence $x^* \in X_{T^*}^*(G) \subset Y^*$. Since Y^* is analytically invariant under T^* (Lemma 7), in view of Proposition 2 (ii), we obtain

$$\sigma_{T^*|Y^*}(x^*) = \sigma_{T^*}(x^*) \subset H$$

and hence

$$x^* \in Y^*_{T^*|Y^*}(H) \subset \overline{Y^*_{T^*|Y^*}(H)}^{\mathrm{w}}.$$

Thus

$$\overline{X_{T^*}^*(G\cap H)}^{\mathrm{w}}\subset \overline{Y_{T^*|Y^*}^*(H)}^{\mathrm{w}}.$$

(if): Assume conditions (i) and (ii) are satisfied. Let F, $F_1 \subset \mathbb{C}$ be closed. Since $X_{T^*}^*(\mathbb{C}) = X^*$, we conclude that T^* is decomposable and hence T is decomposable by [14, Corollary 2.8]. Therefore, $Z = X_T(F)$ is closed. Also $T^* \mid \overline{X_{T^*}^*(F^c)}^{w}$ is decomposable. Then, by Lemma 6,

$$T^* \mid \overline{X_{T^*}^*(F^c)}^{\mathrm{w}} = T^* \mid X_T(F)^{\perp} \cong T^*,$$

where $\tilde{T} = T/Z$ and $T' = (\tilde{T})^*$. Thus T' is decomposable and hence \tilde{T} is decomposable. Therefore, letting $\tilde{X} = X/Z$, $\tilde{X}_{\tilde{T}}(F_1)$ is closed and

(22)
$$\sigma \big[\tilde{T} | \tilde{X}_{\tilde{T}}(F_1) \big] \subset F_1.$$

Put $G = F^c$, $H = F_1^c$ and $Y^* = \overline{X_{T^*}^*(G)}^w$. It follows from Lemma 6 that

$$T^* | X_T (F \cup F_1)^{\perp} = T^* | \overline{X_{T^*}^* (G \cap H)}^{\mathsf{w}},$$
$$T^* | \tilde{X}_{\tilde{T}}(F_1)^{\perp} \cong T^* | \overline{Y_{T^*|Y^*}^* (H)}^{\mathsf{w}}.$$

Then (18) implies

$$(23) T' | \tilde{X}_{\tilde{T}}(F_1)^{\perp} \cong T^* | X_T(F \cup F_1)^{\perp}.$$

By Lemma 5 we have

(24)
$$T' [X_T(F \cup F_1)/Z]^{\perp} \cong T^* |X_T(F \cup F_1)^{\perp}.$$

Consequently, with the help of (24), (23) and (22), we obtain

$$\sigma\big[\tilde{T}|X_T(F \cup F_1)/Z\big] = \sigma\big\{T^*|\big[X_T(F \cup F_1)/Z\big]^\perp\big\} = \sigma\big[T^*|\tilde{X}_{\tilde{T}}(F_1)^\perp\big]$$
$$= \sigma\big[\tilde{T}|\tilde{X}_{\tilde{T}}(F_1)\big] \subset F_1.$$

Thus, conditions (III) of Theorem 4 are satisfied and hence T is strongly decomposable.

Acknowledgement. The authors are indebted to the referee for the suggested improvements of Lemma 5 and Theorem 8.

REFERENCES

- [1] E. Albrecht, On decomposable operators. Integral Equations, 2 (1979), 1-10.
- [2] C. Apostol, Restrictions and quotients of decomposable operators in a Banach space, Rev. Roumaine Math. Pures Appl., 13 (1968), 147-150.
- [3] _____, Spectral decompositions and functional calculus, Rev. Roumaine Math. Pures Appl., 13 (1968), 1481-1528.
- [4] R. G. Bartle and C. A. Kariotis, Some localizations of the spectral mapping theorem, Duke Math. J., 40 (1973), 651-660.
- [5] I. Erdelyi and R. Lange, Operators with spectral decomposition properties. J. Math. Anal. Appl., 66 (1978), 1-19.
- [6] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math., 58 (1975), 61-69.
- [7] C. Foiaş, Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math., (Basel) 14 (1963), 341-349.
- [8] S. Frunză, A duality theorem for decomposable operators, Rev. Roumaine Math. Pures Appl., 16 (1971), 1055-1058.
- [9] _____, The single-valued extension property for coinduced operators, Rev. Roumaine Math. Pures Appl., 18 (1973), 1061-1065.
- [10] A. A. Jafarian and F.-H. Vasilescu, A characterization of 2-decomposable operators, Rev. Roumaine Math. Pures Appl., 19 (1974), 769-771.
- [11] B. Nagy, Operators with the spectral decomposition property are decomposable, to appear.
- [12] M. Radjabalipour, Equivalence of decomposable and 2-decomposable operators, Pacific J. Math., 77 (1978), 243-247.
- [13] R. C. Sine, Spectral decomposition of a class of operators, Pacific J. Math., 14 (1964), 333-352.
- [14] Wang Shengwang and Liu Guangyu, On the duality theorems of S-decomposable operators, to appear.

Received June 4, 1982 and in revised form July 26, 1982.

Temple University Philadelphia, Pa 19122 and Nanjing University Nanjing, China