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ON STRONGLY DECOMPOSABLE OPERATORS

I. ERDELYI AND WANG SHENGWANG

A strongly decomposable operator, as defined by C. Apostol, is a
bounded linear operator 7" which, for every spectral maximal space Y,
induces two decomposable operators: the restriction T| Y and the coin-
duced 7/Y on the quotient space X/Y. In this paper, we give some
necessary and sufficient conditions for an operator to be strongly decom-
posable.

Throughout the paper, T is a bounded linear operator acting on an
abstract Banach space X over the field C of complex numbers. 7* denotes
the conjugate of T on the dual space X*. For a set S, S¢ is the
complement, S is the closure, S"¥ is the weak*-closure in X*, S* is the
annihilator of S C X in X*, +S is the annihilator of S C X* in X and
Int S represents the interior of S. We write o(7T') for the spectrum, p(7')
for the resolvent set of 7 and R(-; T') for the resolvent operator. If T is
endowed with the single valued extension property (SVEP), then for any
x € X, o,(x) denotes the local spectrum. For § C C, we shall extensively
use the spectral manifold

X,(S) = {x € X: 0,(x) C S).

We say that T satisfies condition «, if

(a) T has the SVEP, and (b) X,( F) is closed for every closed F C C.

Two special types of subspaces, invariant under the given operator 7,
enter the theory of decomposable operators: (1) spectral maximal spaces
[7]; (2) analytically invariant subspaces [9].

1. PROPOSITION. Let Y be a spectral maximal space of T.
(1) [9, Proposition 1) If T has the SVEP then, for any x € X,
(1) op(x) =[o;(x) No(T|Y)]Uop(z), £=x+Y T=T/Y.
(ii) [2, Lemma 1.4]. If T is decomposable, then
) o(T/Y) =o(T) — o(T|Y).

(iii) [7, Theorem 2.3). If T satisfies condition a, then Y = X [o(T|Y)].
(iv) [3, Proposition 1.3.2]. If Z C Y is a spectral maximal space of T,
then Y /Z is a spectral maximal space of T/ Z.
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(v) [7, Lemma 2.1). If T is decomposable and G C C is open, then
o(T) N G # B implies that X;(G) # {0}.

(vi) [7, Theorem 2.3). If T satisfies condition a, then for every closed
F C C, X;(F) is a spectral maximal space of T and

(3) o[T| X,(F)] C F.

(vii) [12, Corollary 1(c)]. For T decomposable and for any closed
FCC(,

o[T/X,(F)] C (Int F)".

(viii) [8, Theorem 1]. If T is decomposable then, for every closed F C C,
X, (F°)™* is a spectral maximal space of T* and X (F°)* = X}.(F).
(ix) [9, Theorem 2. If T has the SVEP, then Y is analytically invariant
under T.

REMARK. More generally than in the original versions, properties (iii)
and (vi) hold without the restriction of 7" being decomposable.

2. PROPOSITION. Let Y be an analytically invariant subspace under T.

Then
(1) [9, Theorem 1]. T/Y has the SVEP (the converse property is also

true).
(i) [4, Lemma 3.4). If T has the SVEP then, for everyy € Y,

OT]Y(y) = or(y)-

(iii) [9, Theorem 3]. If T is decomposable then, for every open G C C,
X, (G) is analytically invariant under T.

3. THEOREM. The following assertions are equivalent:
(1) T is strongly decomposable;
(ii) (a) T satisfies condition a;
(b) for every spectral maximal space Y of T and any x € X,

(4) o7(%) =0.(x) —o(T|Y), T=T/Y,=x+7Y;

() for every special maximal space Y of T and any open G C C,
GNo(T|Y) # @ implies that X;[G Na(T|Y)] # {0}.

Proof. (1) = (ii). (a) is evident. (b). (1) implies

o7(%) D or(x) —[OT(x) No(T| Y)] =o7(x) —o(T|Y)
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and hence

of(®) Day(x) —o(T|Y).
To obtain the opposite inclusion, for x € X, put
(5) F=or(x)Ue(T|Y)
and for the decomposable T'| X;-( F) use (2) and (3) as follows:

o[ 7| X-(F)/Y] =o[T| X, (F)] = o(T|Y)CF — o(T|Y)

=or(x) — ?(Tl Y).
By (5), x € X;(F) and hence X = x + Y € X, (F)/Y. Consequently,
or(%) C G[TlXT(F)/Y] C"T(x) - °(T| Y)

and this establishes (4).
Since T'| Y is decomposable, (c) is a consequence of Proposition 1 (v).
(i) = (1): Let Y be a spectral maximal space of 7. By (a) and
Proposition 1 (iii), Y has a representation Y = X;[o(T'| Y)].
Let G C C be open and put Z = Xr(a). We shall prove inclusion

(6) GNo(T|Y)Co(T|Y N Z).
If G No(T|Y) = O, then (6) is evident. Therefore, assume

GNo(T|Y)# 2.

Let \¢cEGNo(T|Y) and let §, C G be -a neighborhood of A,. Then,
since§, N (T|Y) # &, (c) implies that X;.[8, N o(T| Y)] # {0} and hence
o(T| X, {8, N o(T|Y)]) # 2.

Let A, € o(T| X;[8, N o(T| Y)]). Then A, € §, and it follows from
X8 No(T|Y)] € X,[GNo(T|Y)] = X, [o(T|Y)]nZ=YNZ
that A, € §, N o(T| Y N Z). Thus,
&6Na(T|YNZ)# o

and since &, is an arbitrary neighborhood of A,, we must have A, €
o(T|Y N Z). By the definition of A, inclusion (6) holds. Finally, we shall
conclude the proof by showing that 7’| Y is decomposable. The subspace
W = Y N Z is a spectral maximal space of T. By denoting T = T/W and
for x € Y, X = x + W, with the help of condition (b) and inclusion (6),
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we obtain successively

(1) o7(%) =a,(x) — o(T| W) Cor(x) —[G N o(T|Y)]
co(T|Y)—[GNno(T|Y)]=0(T|Y) — GC G~

Since Y is a spectral maximal space of 7 and W is a spectral maximal
space of T'| Y, Proposition 1 (iv) implies Y/ W is a spectral maximal space
of T/W. Then, with the help of (7) and [13, Theorem 1.1 (g)], we obtain

o[f’[(Y/W)] = U op(x) CG-
ZEY/W

Consequently, T'| Y is decomposable by [S, Theorem 12] and [1] (or [11]),
(see also [10]). O

If one slightly strengthens condition (b) in Theorem 3, then (¢)
becomes redundant.

4. THEOREM. The following assertions are equivalent:
(I) T is strongly decomposable;
(IT) (A) T satisfies condition a;
(B) for every closed F C C, and each x € X,
(8) o7(%) =op(x) — F

where T = T/X(F), % = x + X (F).
(IIT) (A) T satisfies condition a;
(C) For every pair F,, F, of closed sets in C,

©) 0[(T/Y2)|XT(F| U Fz)/Yz] C Fy, where Y, = X;(F,).

Proof. (I) = (III). Let F,, F, be closed in C. Since T is strongly
decomposable, T| X,(F, U F,) is decomposable. Let G, G, be open sets
in C such that FFUF,CG,UG,, F,CG, and G,N F, = @. For
x € X, (F, U F,), we have a representation

x=x,+x, withx, € X,(F, UF) N X;(G,),i=1,2.
It follows from
o-(x,) C(FUE)NG,=FNG,CF,

that x, € X(F) = Y,. _
Let A & G,. Then A, € p(T | X7[(F, U F;) N G,]) and hence there is
y € X;[(F, U E)) N G,] verifying

(Ao —T)y= Xy-
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By the natural homomorphism X — X/Y,, we obtain

A —T/Y,)p =%, =%,
and hence A\; — (T/Y,) | X7(F, U F,)/Y, is surjective. Since T /Y, has the
SVEP by Proposition 1 (vi), (ix) and Proposition 2 (i), we have A, €

el(T/Y,)| X (F, U F,)/Y,] by [6, Theorem 2]. By the definition of A ;,we
have

0[(T/Yz)|XT(F1 U Fz)/Yz] - 51

and since G, D F, is arbitrary, inclusion (9) holds.
(IIT) = (II): Let x € X and F C C be closed. For F;, =0,(x) — F and
Y = X,(F), (9) implies

o[(T/Y)| X;(F, U F)/Y] CF, =a,(x) — F.

It follows from the definition of F, that x € X, (F, U F). Consequently,
fort=x+ Yand T = T/Y, we have

o7(%) Co[T| X (F, UF)/Y] Cor(x) — F.
On the other hand, it follows from Proposition 1 (i) that
o7(%) Day(x) —o(T|Y)Doy(x) — F

and hence (8) holds.
(IT) = (I). In view of Theorem 3, we only have to prove that, for every
open G and spectral maximal space ¥ = X [o(T| V)],

(10) GNo(T|Y)# o

implies that XT[_a Na(T|Y)] # {0}. Choose an open G verifying (10),
denote Z = X, [G No(T|Y)] and for x € X, let x = x + Z. If Z = {0},
then

(11) oi(x)=o0.(x), T=T/Z

In view of (11), by hypothesis, we have

or(x) = 07(%) =or(x) =[G Ne(T| V)]

=[or(x) = G]u[or(x) — o(T|Y)].
Let x € Y. Since 6,(x) C o(T| Y), we have

or(x) =07(x) — G
and hence
o (x)NG= 2.



292 1. ERDELYI AND WANG SHENGWANG

Now, with the help of [13, Theorem 1.1 (g)], Proposition 1 (v), (ix) and
Proposition 2 (ii), we obtain

o(T|Y) N G=[ U ony(x)| N Gz[ U oT(x)] NG

xXEY XEY

= U [or(x) nG] = 2.
XEY
But this contradicts hypothesis (10). Therefore, Z = X, [G No(T|Y)] #
{0}. O
Next, we shall obtain a characterization of a strongly decomposable
operator in terms of the conjugate operator. First, we need some prepara-
tion.

5. LEMMA. Given T, let Y and Z be invariant subspaces of X with
Z CY. Then

(12) (T/Z)*|(Y/Z) '=T*|Y*.

Proof. The mapping X/Z - X/Y is a continuous surjective homo-
morphism with kernel Y/Z. Therefore, the quotient spaces (X/Z)/(Y/Z)
and X/Y are isomorphic. Given x € X, we use the following notations for
the equivalent classes containing x in the corresponding quotient spaces:
XEX/Y, XEX/Z, X E(X/Z)/(Y/Z). Note that u E R iffu — x € ¥
iff (u — x) € Y/Ziff 4 € % Since

inf [lof| <lu],
vEU
we have
(13) IZ]l = inf |#] = inf inf jo]| < inf [ju =|%].
=4 aei vE€Eu uER

On the other hand, for everyu € £, i =u+ Z Cu+ Y = % and hence
1 C x. Thus,

inf Il = )12
and hence

(14) Il = inf inf [jo]] =[%].

uEX vE€U
Then, by (13) and (14), [[%]| = [[%]|. Thus, it follows from the isometrical
isomorphisms
(XY =y,  [(x/2)/(Y/2)* =(¥/Z)]*
that the unitary equivalence (12) holds. O
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6. LEMMA. If T is decomposable then, for every open G C C,
(15) X (G9) =X3.(G) .

Proof. Let T be decomposable. By [14], for every closed F C C,
(16) JX (F)=JXN X$x(F)

where J is the natural imbedding of X into X**. By Proposition 1 (viii)
and the fact that 7 decomposable implies 7* decomposable,

(17) X2x(F) = Xt (F)" .
Relations (16) and (17) imply
Xr(F) ="+ X$.(F°)
and hence, for F = G¢, (15) follows. O

7. LEMMA. If T* is decomposable then, for every open G C C, X:.(G)"
(i.e. the weak*-closure of X¥.(G)) is analytically invariant under T*.

Proof. Let f*: D - X* be analytic on an open D C C and verify
condition

(A = T*)f*(\) € X%(G) onD.

We may assume D is connected. Put F = G°, Y = X, (F), use Lemma 6,
Proposition 1 (vii) and obtain successively

o[ T*|X5.(G)"| = o(T| ¥*) = o[(T/Y)*] = o(T/Y) C (Int F)° = G.

First, assume D C G. Then D C G C p(T|Y) and, for every x € Y,
A € D, we have

(x, /*(A))= (A = T)R(A; T| Y)x, f*(A))
= (RO T Y)x, (A= T*)f*(N)) = 0.

Since x € Y is arbitrary, f*(A) € Y= = X}.(G)" on D.
Next, assume D & G. Then, for A € D — G, the resolvent operator
R[A; T*| X£.(G)"]is defined, and for A*(A) = (A — T*)f*(A) we have

(= 9{r*(\) = R[\; T4 XR(G) | * (V)] = 0.

Since T* has the SVEP,
+(A) = R[A; | X5(6) | i*(A) € X(G)

on D — G, and f*(A\) € X%(G)" on D, by analytic continuation. O
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8. THEOREM. The bounded operator T (resp. T*) is strongly decomposa-
ble iff:

(i) T (resp. T*) has the SVEP and for open G C C, T* | X%.(G)" (resp.
T| X;(G)) is decomposable;

(ii) for every pair G, H of open sets in C,

(18) X3(GNH) = Yiy(H) (resp. X,(G N H) = Y, (H)),
where Y* = X%(G)" (resp. Y = X(G)).

Proof. We confine the proof to the operator 7, the proof concerning
T* being similar.

(only if): Assume T is strongly decomposable. Let G C C be open,
F = G°and Z = X (F). The operator (T/Z)|(X/Z) is decomposable.
Then, by Lemma 6, X,(F)* = X%(G)" and hence

—_—W

(19) (X/Z2)* =X*.(G)

By [8, Theorem 2] and [12], 7* | X}.(G)" is decomposable. Apply Lemma
5 to aclosed F; D F, and obtain

(20) [Xr(F)/Z] = X;(F)".

Denote T = T/Z, X = X/Z. Before embarking on the proof of (ii), we
shall show that

(21) Xi(F, — F) = X (F)/Z.
In fact, if ¥ € X7(F, — F), then o7(%) C F, — F and hence, for every
X E X,
or(x) C (F]TF) UF=F,.
Therefore, ¥ € X;(F, — F) implies x € X,(F,) and hence X € X,(F,)/Z.

Conversely, if X € X (F,)/Z = X (F, — FU F)/Z, then Theorem 4 (111,
C) implies

o7(%) Co|T|X,(F,—FUF)/Z| CF, — F

and hence X € )?f(F, — F). Thus (21) is proved.

Now we are in a position to prove (ii). To simplify notation, put
X = (X)* and T"= (T)*. Let H be open and let F, = G° U H®. Then
F,D Fand F, — F C H°. By Lemma 6, Lemma 5, (20), (21) and (19), we
obtain successively:

XH(G N H)w . T(Fl)L;[XT(FI)/Z]l: Xf(F, - F)J_D[Xf(HC)]‘L

= X;-(H) = Yy(H) .
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For the last equality, we used the equivalence
T =[T/X,(F)]* = T*| X5(G) = T*|Y*.
To obtain the opposite inclusion, note that if x* € X%.(G N H), then
o(x*) =CGNHCG

and hence x* € X}.(G) C Y*. Since Y* is analytically invariant under 7*
(Lemma 7), in view of Proposition 2 (ii), we obtain

Orqy(x*) = op(x*) C H
and hence
X* € Yy H) C Yiopu(H) .
Thus

X:(GNH) CYy(H) .

(if): Assume conditions (i) and (ii) are satisfied. Let F, F, C C be
closed. Since X7.(C) = X*, we conclude that 7* is decomposable and
hence T is decomposable by [14, Corollary 2.8]. Therefore, Z = X (F) is

W

closed. Also T* | X}.(F¢) is decomposable. Then, by Lemma 6,

T*| X5(F°) = T*| X (F)'=T",

where T = T/Z and T" = (T')*. Thus T" is decomposable and hence T is
decomposable. Therefore, letting X = X/Z, X7( F)) is closed and

(22) o[ T| X7(F,)] C F,.
Put G = F, H = F{ and Y* = X2(G)". It follows from Lemma 6 that
T*|X(FU F) = T*|X(GN H) ,
T'| X3(F)) = T* | Y- (H) .
Then (18) implies
(23) T | X;(F) '=T*|X,(FU F)" .
By Lemma 5 we have
(24) T X (FUF,)/Z]*"=T*|X,(FU F)" .
Consequently, with the help of (24), (23) and (22), we obtain
o[T|X,(FU F,)/Z] = o{T|[X;(F U F,)/Z]"*} = o[ T"| X(F,)"]
=o|[T| X7(F)] C F.
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Thus, conditions (III) of Theorem 4 are satisfied and hence 7 is strongly
decomposable. O
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