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ON STRONGLY DECOMPOSABLE OPERATORS

I. ERDELYI AND WANG SHENGWANG

A strongly decomposable operator, as defined by C. Apostol, is a
bounded linear operator T which, for every spectral maximal space Y,
induces two decomposable operators: the restriction T \ Y and the coin-
duced T/Y on the quotient space X/Y. In this paper, we give some
necessary and sufficient conditions for an operator to be strongly decom-
posable.

Throughout the paper, T is a bounded linear operator acting on an

abstract Banach space X over the field C of complex numbers. Γ* denotes

the conjugate of T on the dual space X*. For a set S, Sc is the

complement, S is the closure, Sw is the weak*-closure in X*, S1- is the

annihilator of 5 C I in P , -1 S is the annihilator of S C X* in X and

Int S represents the interior of S. We write σ(Γ) for the spectrum, p(T)

for the resolvent set of T and /?(• T) for the resolvent operator. If T is

endowed with the single valued extension property (SVEP), then for any

x E l , oτ(x) denotes the local spectrum. For S C C, we shall extensively

use the spectral manifold

XT(S) = {x GX:στ(x) C S].

We say that T satisfies condition α, if

(a) Γhas the SVEP, and (b) XT(F) is closed for every closed F C C.

Two special types of subspaces, invariant under the given operator T,

enter the theory of decomposable operators: (1) spectral maximal spaces

[7]; (2) analytically invariant subspaces [9].

1. PROPOSITION. Let Y be a spectral maximal space of T.

(i) [9, Proposition I] If T has the SVEP then, for any x G X,

(1) στ(x) = [στ(x) Π σ(Γ| Y)] U σf(x), x = x + 7, f = T/Y.

(ii) [2, Lemma 1.4]. // T is decomposable, then

(2) σ(T/Y)=σ(T)-o(T\Y).

(iii) [7, Theorem 2.3]. If Tsatisfies condition α, then Y = Xτ[σ(T\ Y)].

(iv) [3, Proposition 1.3.2]. If Z C Y is a spectral maximal space of Γ,

then Y/Z is a spectral maximal space of T/Z.
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(v) [7, Lemma 2.1]. If T is decomposable and G C C is open, then
σ(T) Π GΦ 0 implies that XT(G) Φ {0}.

(vi) [7, Theorem 2.3]. If T satisfies condition a, then for every closed
F C C , Xτ( F) is a spectral maximal space of T and

(3) σ[T\Xτ(F)]cF.

(vii) [12, Corollary l(c)]. For T decomposable and for any closed
F C C ,

σ[T/Xτ(F)]c(lntF)c.

(viii) [8, Theorem \].IfT is decomposable then, for every closed F C C ,
Xτ{F0)1- is a spectral maximal space of T* and Xτ(F0)1- = X£.(F).

(ix) [9, Theorem 2]. If T has the SVEP, then Y is analytically invariant
under T.

REMARK. More generally than in the original versions, properties (iii)
and (vi) hold without the restriction of T being decomposable.

2. PROPOSITION. Let Y be an analytically invariant subspace under T.
Then

(i) [9, Theorem 1], T/Y has the SVEP {the converse property is also
true).

(ii) [4, Lemma 3.4]. If T has the SVEP then, for every y G Y,

(iii) [9, Theorem 3]. // T is decomposable then, for every open G C C ,
XT(G) is analytically invariant under T.

3. THEOREM. The following assertions are equivalent:
(i) T is strongly decomposable',

(ii) (a) Tsatisfies condition a;
(b) for every spectral maximal space YofT and any x E X,

(4) af (x) =στ(x) - σ(T\ Y), T = T/Y, X = X + Y;

(c) for every special maximal space Y of T and any open G C C,
G Π σ(T\ Y) φ 0 implies that XT[G Πσ(T\ Y)] Φ {0}.

Proof, (i) => (ii). (a) is evident, (b). (1) implies

of{x) D στ(x) -[στ(x) Π σ(T\ Y)] = στ(x) ~ σ(T\ Y)
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and hence

σf(X)Dστ(x)-σ(T\Y).

To obtain the opposite inclusion, for x G X, put

(5) F=oτ(x)Ua(T\Y)

and for the decomposable T\ XT(F) use (2) and (3) as follows:

σ[f\Xτ(F)/Y] =σ[T\Xτ(F)] ~ σ{T\ Y) CF-σ(T\ Y)

= στ(x)-σ{T\Y).

By (5), x G XT(F) and hence x = x + Y (Ξ XT(F)/Y. Consequently,

C σ[f\Xτ(F)/Y] Cστ(x) - σ{T\ Y)

and this establishes (4).

Since T\ 7 is decomposable, (c) is a consequence of Proposition 1 (v).

(ii)=»(i): Let 7 be a spectral maximal space of T. By (a) and

Proposition 1 (iii), 7has a representation 7 = Xτ[σ(T\ 7)].

Let G C C b e open and put Z = XT(G). We shall prove inclusion

(6) G Π σ(T\ 7) C σ(Γ| 7 Π Z) .

If G Π σ(T\ 7) = 0, then (6) is evident. Therefore, assume

Gil σ(T\Y) Φ 0.

Let λ 0 E G Π σ(Γ| 7) and let δ0 C G be a neighborhood of λ0. Then,

since δ0 Π (T\ 7) Φ 0 , (c) implies thatXτ[δ0 Π σ(Γ| 7)] ^ {0} and hence

σ(τ\XΊ[δonσ(T\Y)])*0.

Let λ, G σ(Γ | XΓ[δ 0 Π σ(Γ| 7)]). Then λx G δ 0 and it follows from

Xτ[δ0 Π σ(T\ 7 ) ] C ^ Γ [ G Π σ ( Γ | 7 ) ] = JΓΓ[σ(Γ| 7 ) ] ί Ί Z = 7 Π Z

that λ, G δ 0 Π σ(Γ| 7 Π Z). Thus,

Π Z ) ^ 0

and since δ0 is an arbitrary neighborhood of λ0, we must have λ 0 G

σ(T\ Y Π Z). By the definition of λ0, inclusion (6) holds. Finally, we shall

conclude the proof by showing that T\ 7 is decomposable. The subspace

W — 7 Π Z is a spectral maximal space of Γ. By denoting f — T/W and

for x G 7, x = x + W, with the help of condition (b) and inclusion (6),
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we obtain successively

(7) σf(x) =στ(x) - σ(T\ W) Cστ(x) -[C Π σ(T\ Y)]

Cσ(Γ|r) -[G Π σ(T\Y)]=σ(T\Y) - CCGC.

Since Y is a spectral maximal space of T and W is a spectral maximal

space of T\ Y, Proposition 1 (iv) implies Y/W is a spectral maximal space

of T/W. Then, with the help of (7) and [13, Theorem 1.1 (g)], we obtain

σ[f\(Y/W)]= U σf(x)CGc.

Consequently, T\ 7 is decomposable by [5, Theorem 12] and [1] (or [11]),

(see also [10]). D

If one slightly strengthens condition (b) in Theorem 3, then (c)

becomes redundant.

4. THEOREM. The following assertions are equivalent:

(I) T is strongly decomposable',

(II) (A) Tsatisfies condition a;

(B) for every closed F C C, and each x E X,

(8) σf{x)=στ(x)-F

where f = T/XT(F\ x = x + XT(F).

(Ill) (A) Tsatisfies condition a;

(C) For every pair Fv F2 of closed sets in C,

(9) σ[(T/Y2)\Xτ(FιUF2)/Y2]cFl9 where Y2 = XT(F2).

Proof. (I) => (III). Let Fl9 F2 be closed in C. Since T is strongly

decomposable, T\Xτ(Fλ U F2) is decomposable. Let Gj, G2 be open sets

in C such that F, U F 2 C G, U G2, Fλ C Gx and G2ΠFX= 0 . For

x E Xτ(Fι U JF2), we have a representation

c = ̂ ! + x2 withx, E ^ ( F , U F2) Π X Γ ( ^ ) , i = 1 , 2 .

It follows from

σ Γ (x 2 ) C (Fλ U F 2 ) Π G 2 - f 2 Π G 2 C F 2

that x2 E ^ί Γ (F 2 ) = y2. _

Let λ 0 ί (?,. Then λ 0 E p(Γ | XT[(FX U JF2) Π GJ) and hence there is

y E Xτ[{Fλ U F 2) Π Gλ) verifying

(λ0
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By the natural homomorphism X -» X/Y29 we obtain

( λ o - 7 / y 2 ) j > = * , = * ,

and hence λ0 - (T/Y2) | XT(FX U F2)/Y2 is surjective. Since T/Y2 has the

SVEP by Proposition 1 (vi), (ix) and Proposition 2 (i), we have λ0 e

p[(T/Y2)\ XT(
F\ u Fi)/Yi\ by [6, Theorem 2]. By the definition of λo,we

have

σ[(T/Y2)\Xτ(FxUF2)/Y2]cG,

and since G} D Fxis arbitrary, inclusion (9) holds.

(Ill) => (II): Let JC G Xand F C C be closed. For ̂  = στ(x) - F and

F = JSfΓ(F), (9) implies

o[(T/Y)\Xτ{Fλ U F)/Γ] C Fλ =στ(x) ~ F.

It follows from the definition of Fx that x E XT(FX U F). Consequently,

for x = JC + 7 and f = Γ/7, we have

C σ[f| ̂ ( ^ U / )/F] Cστ(x)-F.

On the other hand, it follows from Proposition 1 (i) that

σf(i) Dστ(x) - σ(T\ Y) Dστ(x) - F

and hence (8) holds.

(II) => (I). In view of Theorem 3, we only have to prove that, for every

open G and spectral maximal space Y = Xτ[σ(T\ Y)]9

(10) GΠσ(T\Y) φ 0

implies that XT[G Πσ(T\ Y)] φ {0}. Choose an open G verifying (10),

denote Z = Xτ[GΠσ(T\ Y)] and for x G X, let x = x + Z. If Z = {0},

then

(11) σf(i) = σr(x), f = Γ / Z .

In view of (11), by hypothesis, we have

στ(x) = σ f(x) =στ(x) ~[G Πσ(T\ Y)]

= [στ(x) - G]υ[στ(x) - σ(T\Y)].

Let x G 7. Since σΓ(;c) C σ(Γ| 7), we have

στ(x) =στ(x) - G

and hence

στ(x) Π G= 0.
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Now, with the help of [13, Theorem 1.1 (g)], Proposition 1 (v), (ix) and
Proposition 2 (ii), we obtain

o(T\ Y)ΠG=\\J σ η y ( x ) | Π G = \ \J στ(x)} Π G
LxfΞY J Ley J

= U [σΓ(x)ΠG] = 0.
xGY

But this contradicts hypothesis (10). Therefore, Z = XT[G Πσ(T\ Y)] φ
{0}. D

Next, we shall obtain a characterization of a strongly decomposable
operator in terms of the conjugate operator.,First, we need some prepara-
tion.

5. LEMMA. Given Γ, let Y and Z be invariant subspaces of X with
ZCY. Then

(12) (T/Z)* I (Y/Z^ss T* I Yx .

Proof. The mapping A/Z -» A/Y is a continuous surjective honκ>
morphism with kernel Y/Z. Therefore, the quotient spaces (X/Z)/(Y/Z)
and X/Y are isomorphic. Given x E l , w e use the following notations for
the equivalent classes containing x in the corresponding quotient spaces:
x e X/Y, x E X/Z, x e (X/Z)/(Y/Z). Note that ^ G x iff ft - x e Y
iff (fi - JC)~ E Y/Z iff M E JC. Since

we have

(13) Pll = inf ||u|| = inf inf ||i?|| ̂  inf ||u|| = ||jc||.

On the other hand, for every u £ x, ϋ = u + Z Cu+ Y' = Jc and hence
£ C Jc. Thus,

and hence

(14) p | | = inf inf |M|S ||je||.

Then, by (13) and (14), p | | = \\x\\. Thus, it follows from the isometrical
isomorphisms

(X/Y)* β Y"-, [(X/Z)/ (Y/Z)*

that the unitary equivalence (12) holds. D
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6. LEMMA. // T is decomposable then, for every open G C Q

(15) XT(GC)± = XUW

Proof. Let The decomposable. By [14], for every closed F C C9

(16) JXT{F) = JXΠ X***(F)

where / is the natural imbedding of X into X**. By Proposition 1 (viii)

and the fact that T decomposable implies T* decomposable,

(17) X***(F) = X^

Relations (16) and (17) imply

and hence, for F = Gc, (15) follows. D

7. LEMMA. // Γ* is decomposable then, for every open 6 C C , X

(i.e. the weak*-closure of X$*(G)) is analytically invariant under Γ*.

Proof. Let /*: D -» X* be analytic on an open D C C and verify
condition

(λ - Γ*)/*(λ) G X**(G) on D.

We may assume D is connected. Put F = Gc, 7 = XT(F), use Lemma 6,

Proposition 1 (vii) and obtain successively

=σ(Γ | r ± ) = σ[(T/Y)*] = σ(T/Y) C (Int F)c = G.

First, assume D C G. Then Z> C G C p(Γ| 7) and, for every x G 7,

λ G ΰ , we have

(x, /*(λ)) = ((λ - Γ)Λ(λ; Γ| Y)x,

= (/?(λ;Γ|y)x,(λ-Γ )/ (λ))=0.

Since x E Y is arbitrary,/*(λ) ε Y± = ^ , ( G ) w ^ n 2).

Next, assume D ζt G. Then, for λ G D — G, the resolvent operator

; Γ*|X*»((7)W] is defined, and for Λ*(λ) = (λ - Γ*)/*(λ) we have

(λ - Γ*){/*(λ) - /?[λ; T* |*^(G)W]Λ*(λ)} = 0.

Since Γ* has the SVEP,

/*(λ) = R[\; T*

onD - G, and/*(λ) G ̂ . ( G ) " on D, by analytic continuation. D
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8. THEOREM. The bounded operator T {resp. T*) is strongly decomposa-
ble iff:

(i) Tjresp. T*) has the SVEP and for open G C C , Γ | Z£*(G)W {resp.
T\XT(G)) is decomposable;

(ii) for every pair G, H of open sets in C,

(18) X**(GΠH)" = 7** |y*(i/)W (resp. XT(G Π H) = YΆY{H))>

where Y* = X**(G)W (ra/>. 7 = X^

Proof. We confine the proof to the operator Γ, the proof concerning
Γ* being similar.

(only if): Assume Γ is strongly decomposable. Let G C C be open,
F = Gc and Z = XT(F). The operator (Γ/Z) | (X/Z) is decomposable.
Then, by Lemma 6, ^ ( F ) 1 - = X**(G)W and hence

(19) (x/z)*«:

By [8, Theorem 2] and [12], Γ* | X**(G)W is decomposable. Apply Lemma
5 to a closed Fx D i% and obtain

(20) [^(FO/ZJ^^F,^.

Denote f — T/Z, X = ^f/Z. Before embarking on the proof of (ii), we
shall show that

(21) Xf(F~=~F) = XT(FX)/Z.

In fact, if x G Xf{Fλ — F), then σf(Jc) C Fλ — F and hence, for every
x G x,

σΓ(x) C (F, - F) U F = F , .

Therefore, Jc G Xf{Fλ - F) implies x_Gj^1(F1) and hence x G ZΓ(
Conversely, if jc G ^ Γ ( F , ) / Z = Xτ{Fλ - F U F)/Z, then Theorem 4 (III,
C) implies

of{x) C σ[f I XT(FX - F U F)/Z] C FX - F

and hence Jc G Xf{Fx ~ F). Thus (21) is proved.
Now we are in a position to prove (ii). To simplify notation, put

X' = (JO* and r = (f)*. Let 7/ be open and let F, = Gc U //c. Then
Fx D F and F, - F C i/c. By Lemma 6, Lemma 5, (20), (21) and (19), we
obtain successively:

x*.(G n
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For the last equality, we used the equivalence

To obtain the opposite inclusion, note that if x* E X**(G Γ\ H)9 then

σΓ*(x*) = C G Π H C G

and hence JC* E X$*{G) C Y*. Since 7* is analytically invariant under Γ*

(Lemma 7), in view of Proposition 2 (ii), we obtain

στ*]γ*(x*) = σΓ*(.x*) C 7/

and hence

Thus

X**(GΠH) C

(if): Assume conditions (i) and (ii) are satisfied. Let F, F} C C be

closed. Since X$*(C) = X*9 we conclude that T* is decomposable and

hence T is decomposable by [14, Corollary 2.8]. Therefore, Z = XT(F) is

closed. Also T* \ X%*(FC) is decomposable. Then, by Lemma 6,

T*\X**(Fcj" =

where f = Γ/Z and Γ' = ( f )*. Thus Γ' is decomposable and hence f is

decomposable. Therefore, letting X = -Y/Z, Xf(Fλ) is closed and

(22)

Put G = FC,H = Ff and 7* = X*,(G)W. It follows from Lemma 6 that

T* \XT(FU F^ = T* I X*.(G Π

Then (18) implies

(23) Γ | l

By Lemma 5 we have

(24) T'\[XT{F U F , ) / Z ] ± ^ Γ* \XT(F U F , ) x .

Consequently, with the help of (24), (23) and (22), we obtain
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Thus, conditions (III) of Theorem 4 are satisfied and hence T is strongly
decomposable. D

Acknowledgement. The authors are indebted to the referee for the
suggested improvements of Lemma 5 and Theorem 8.
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