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ITERATED AVERAGING FOR PERIODIC SYSTEMS
WITH HIDDEN MULTI-SCALE SLOW TIMES

STEPHEN C. PERSEK

General asymptotic methods on various time scales are developed
for periodic systems of ordinary differential equations in order to treat
global motion in multi-oscillatory systems. Moreover, we show that
bifurcations of an attractive and essentially nonperiodic nature can arise
in systems that also possess several (often unstable) Hopf bifurcations.
Such attractor bifurcations frequently dominate the long term system
behavior. In addition, the methods here can be used to determine the
flow on a center manifold in cases where center manifold theory indi-
cates an instability at the origin of that manifold and little else about the
flow. Finally, various examples of mixed scale motion are treated.

1. Introduction. A number of methods have been developed for
assessing the behavior of systems of ordinary differential equations. Hopf
bifurcation theory as illustrated in J. Marsden and M. McCracken [7] and
in A. Poore [13] is a well-known example. And additional results in the
treatment of bifurcations have been obtained by K. Landman and S.
Rosenblatt [5] and by W. Langford [6]. However, none of the foregoing
works comes to grips with bifurcations that either possess an exceptionally
large least period or else possess no period at all. This limitation becomes
particularly significant for systems possessing two or more characteristic
oscillatory frequencies. For instance, considering Example 1 in §2 of this
paper, Hopf bifurcation theory (see [7, p. 96]) shows the existence of two
different periodic bifurcations, the first having a period approximately
equal to 2ττ and the second a period approximately equal to 2ττ/α (where
1 and a are the angular frequencies of the system). However, using S.
Persek [11], both bifurcations can be shown to be unstable, and thus
neither of them characterizes the long term motion of the system. There-
fore, in Example 1, we arrange to locate still another bifurcation solution,
and as is typical in such cases, this solution is either nonperiodic or, if
periodic, has no period smaller in magnitude than order 1/ε3 (where ε > 0
is arbitrary and small). Now the fact that no period of this solution can be
as small as 2m or 2π/a rules out the posibility of the solution being a
Hopf bifurcation (or even of its being discoverable by that approach).
Nevertheless, this solution is a perfectly well-behaved bifurcation which,
because of its general characteristics as an attractor, describes the long
term motion of the system. In fact, the system will drift away from the
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Hopf bifurcations into the configuration specified by this solution. And
finally, using S. Persek [12], this configuration can be shown to be
asymptotically stable in an orbital sense. Consequently, the methods
developed in this paper will allow us to locate well-behaved (essentially
nonperiodic) bifurcations that characterize long term system behavior and
frequently coexist with sets of (unstable and therefore not particularly
interesting) Hopf bifurcations.

Now another approach often employed in treating systems of ordinary
differential equations (whether in a Banach space or a finite-dimensional
setting) is center manifold theory, which reduces system behavior to a
question of the flow on the center manifold itself, as may be seen in J.
Carr [3, pp. 4-5 and pp. 118-120]. If the equation of flow on the center
manifold is stable (unstable) at the origin, the original system is also
stable (unstable) at this point. However, when the equation of flow is
unstable, these results provide little else of a concrete nature as to the
ultimate system behavior on the center manifold itself. So at this point,
one can turn to Hopf bifurcation theory (whose limitations have already
been made clear) or else to Liapunov's direct method (as given by T.
Yoshizawa [16], or by N. Rouche, P. Habets, and M. Laloy [14]). The
latter method requires a search for an appropriate Liapunov function to
characterize the flow, but here it is the flow away from the origin that
must be characterized, since, supposedly, center manifold theory has
already been used to show the instability of the origin itself. Hence the
search may prove quite elusive. So as an alternative, the methods of this
paper can be employed to give a detailed description of the flow on the
center manifold when Hopf bifurcation theory and Liapunov's methods
yield unsatisfactory results — for example, typically in cases where two or
more complex conjugate pairs of eigenvalues of the flow equation drift
simultaneously across the imaginary axis into the right-hand plane, creat-
ing either oscillatory bifurcations or self-excited oscillations of an essen-
tially nonperiodic nature.

Now related to this, N. Bogoliubov and Yu. Mitropolskii [2] devel-
oped averaging methods to approximate solutions to periodic systems,
with further results by M. Balachandra and P. Sethna [1] and D. Gilsinn
[4]. These methods are particularly suited for systems that have an
essential nonautonomous structure. Nevertheless, such averaging tech-
niques frequently provide only trivial results, because the lowest order
time averages of many systems are zero. In such cases, we can usually
obtain far more substantial results.

This paper is a generalization of the method of iterated averaging,
introduced by S. Persek and F. Hoppensteadt [8] and extended by S.
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Persek [9] and J. Sanders [15]. The generalization applies to a wide variety
of systems, as will be shown in §2, and is especially useful for those
systems for which Hopf bifurcation theory, center manifold theory,
Liapunov's methods, and conventional averaging do not provide particu-
larly suitable or complete results. Finally, iterated averaging as developed
here forms the basis of the full and the conditional stability results given
in Persek [10], [11], and [12].

We focus on any problem which can be reduced to a system of
ordinary differential equations in the form:

dw
(la) - ^ = ε£7(w,z,ί,ε), 1 </</*,

where w = (wx, H>2,. ..,>*>,*) in Rι* and z in Rm are finite-dimensional
column vectors, and where H and the £/s have a common period P in /.
Each characteristic root of the constant square matrix A has a negative
real part.

With / = to(ε) some initial point, and with

integrating equations (la), (lb) leads to:

(2) W /(ί) = ft + ε Γ^(w(τ), z(τ), T, ε) dτ9 1 < i < /*,
Js

(3) z(t) = z<®(t) + e [>'-*H(w(τ)9 z(τ), r, ε) dτ9

where s is any point with t0 < s < t, and pz = wXs). Let p =
(Pj, p 2 ? . . ,P/*) By Taylor's theorem, we expand each £, and H about
(w, z, t, ε) = (p, 0, ί, 0). Then repeated iteration of (2) and (3) allows us to
write

n,

(4) eEt(w(t), z(t)9 t9ε)= Σ *%j{p> *> s, *o) + εRi,n,

for 1 < / < / * , where the EUj depend on the initial points s and tQ but not
on ε (other than through t0 and s) nor on z(0\t), and where eRin is the
remainder. The dependence of each EUj on (ρ,0, ί,0) and on the initial
points s and /0 has been indicated by writing EtJ = Et y(p, /, s, /0).

If the various «, are chosen properly, then for a given / and ally < «,.,
each Etj{p, t, s910) |r =_„ is periodic in ί with period P9 and for y < ni9

the average of jBf 7(p, f, ,y, ί0) |r =z_O0 with respect to ί is identically zero.
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We then define EiHι as the average of Eιn[ρ, t, s, t0) 1^=-^ with respect
to /. Having obtained the averages Ein(ρ) for 1 < / < /*, we now repeal
the assumption made earlier that the vector p was the initial value of w at
t — s, and we instead formulate the "iterated-average" system:

where the integers nι may (or may not) differ in value from one another
and where I lies in i?w. (Note that the Eιn(p) are usually independent
of s.)

Now in problems where angular variables appear, certain components
of p may represent angular shifts, say p / + 1, p / + 2 , . . . , p P . And so it
frequently happens that for / < /, the Eι n(ρ) are independent of these
p-components. If, further, it is true that all the Et(w9z9t9ε) and
H(w, z, /, ε) are uniformly bounded in the corresponding w-components
% i ) % 2 » >W/», we then define the vector ρ+ in Rι by p + =
(p l 9 p 2 , . . . ,pz), and consistent with this, rewrite the averages in the form
Ein = Et n(ρ+) for 1 < / < /. The iterated-average system (at least the
portion of it we are concerned with) then becomes:

(5b) § = M\

and system (5a) and (5b) is the system our results have been developed
for. (We could recover the full p-system by simply letting / = /* so that

P+ = P )
With w+ = (Wj,w2,...,w7), the main result of this paper is that a

solution of (p + , ζ) to system (5a), (5b) approximates the (w+ , z) compo-
nents of a solution to system (la), (lb) to order ε for any small ε > 0,
provided the values of (p + , ξ) and (w+ , z) chosen at / = t0 are equal.
The approximation is uniform on the interval t0 < t < t0 + O(ε~maxrίι), if
the (p + , ξ) solution on this interval remains in a fixed bounded region for
small ε > 0. Finally, the approximation is uniform on t0 < / < oo, if the
(p+ > f) system is exponentially asymptotically stable and if (vv+ , z) | r = / o

lies in the domain of stability of the (ρ + , ζ) system.
The complete results are given in §4, and the precise statement of the

conditions necessary for the results to apply is found earlier in §3.
Moreover, as will be seen in §2, application can be made to locating
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well-behaved periodic and nonperiodic bifurcations of nonautonomous

and autonomous systems. Lastly, we wish to point out that the reader may

find it easier to calculate the averages Ein from the equations

η(t) = pt + ε / £ f(r(τ), q(τ), τ, ε) dτ, 1 < i < /*,

q(t) = ε f eA<'-T>H(r(r), q(r), r, ε) dτ,
J — 00

with r — ( r l 9 r 2 , . . . ,/>) in i ? Λ and with q in /? w , than from equations (2)

and (3).

2. Applications. Without resorting to center manifold theory, we

first examine a well-behaved chaotic bifurcation (coexisting with two

unstable Hopf bifurcations, as seen from [7, p. 96] and [11]).

EXAMPLE 1. With a and e positive scalars (a rational) and with the

column vector x — (xx, x29 x3, JC4, x5), consider the system

dx _

dt

ε>

a

0

0

0

— a

ε3

0

0

0

0

0

ε3

1

0

0

0

- 1

ε3

0

0
0
0
0

1 I

X +

x2x5

0
0

2

—χ4x5

ti

where H* is linear in its variables. Employing the scaled transformations

x, = ε3 / 2w, cos(at + w3),

x2 — ε3/2wι sin(α/ + w3),

x3 — ε3 / 2w2cos(/ + >v4),

x4 = ε 3 / 2w 2sin(ί + vv4),

_ 1/2— ε z,

we have:
κ i _

ε3Wj + ε>v1z
2sin(αί + w3)cos(at

ε3w2 — εw2z
2sin2(t + vv4),

ί/W3 9 - 7 /

—r- — —εz zsin z(α/

r 4 _
= - ε z 2 s i n ( ί w4),
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where H = ε~3/2H*. With w = (w,, w2, vv3, w4), let the right-hand side of
the equation for each w, be εE^w, z, /, ε) and let p = (p,, p2, p3, p4). The
reader will then find that iterating equations (2) and (3) as outlined in §1
and then averaging to obtain the Ein{p) reduce (in this example) to
evaluating

1 f2μπ+t0

X [f e-(τ-σ)//(p,,p2,P3,p4,σ)</σ} dτ

where μ is the smallest positive integer such that μa is an integer. In
particular, with H*{xx, x2, x3, x4) — βxxχ + β2x2 + ^3^3 + β4x4 (the in-
constant), we obtain the iterated average system:

dt

1

provided α, which is rational, is not zero or one. Then from §1 or from the
Theorem of §4, it follows that for all small ε > 0 and any t0 > 0:

\z{t, e) - ξ(t, ε)\\ < K(M)ε,
J

where K{M) depends on M, but not on ε or t0 or on any initial value of
(w, z) selected from a fixed bounded region.
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Now concentrating instead on the (ρ l 9 ρ2, ξ) subsystem, we note that
it has an exponentially asymptotically stable rest point at

_2_(l + «!) 2 ^ — ^ , 0
]l(aβ2-βι)(β2 + aβι) {ft + hfiA +

provided a(β2 — β\) + (α2 — \)β\βi > 0. Consequently, in this case, we
have, for all small ε > 0,

sup [\wx(t, ε) - p 1 ( / , ε ) | + |w2(/,ε) - p2(/, ε)|

+ |z(/,e)-f(/,e) |}<£tf*e

where K* does not depend on ε or t0 or on the initial value of (w, z)9

provided the initial value of (wl9 vv2, z) is not selected from outside of a
fixed bounded domain of stability of the (p,, p2, ξ) subsystem.

Because of the foregoing analysis, the original x-system has a family
of solutions bifurcating from x — 0 for all small ε > 0, whenever
α(β2

2 - β?) + O 2 ~ ϊ)β\βi > 0, and βf + β4

2 > 0. The x-components of
the solution bifurcating from x = 0 for a particular value of ε satisfy

and it can be shown that x5 is the sum of two essentially oscillatory
functions, the first with the maximum amplitude

2 + βl {xf+xϊ/fί+a1 + O(ε5/2),

and the second with the maximum amplitude

{βξ+β2 fl+xϊ/fi + O{e^2).

Moreover, aside from a few special cases of no concern to us here, the
(P3> P4) equations show that the bifurcated solution either is nonperiodic
for small ε > 0, or its smallest possible period is O(l/ε3). Hence by [7, p.
96], this solution cannot be a Hopf bifurcation. And clearly, any trajectory
that approaches sufficiently near the orbit of our bifurcated solution
becomes trapped about that orbit. Moreover by [12], this bifurcation is
asymptotically stable in an orbital sense. And finally, note that the
preceding analysis is fully valid for any rational a > 0 with aφ\.
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EXAMPLE 2. (Multiple Frequency Quadratic Bifurcation). Quadratic

systems are used, among other things, to describe predator-prey interac-

tions in ecological settings. Here, we treat a well-behaved chaotic bifur-

cation, coexisting with two Hopf bifurcations — at least one of them

obviously unstable (see [7, p. 96] and [11]). Note that our approach would

apply just as well to a problem with an even larger number of oscillatory

degrees of freedom.

Let x = (jCj, JC2, x39 x4) be a column vector. Then with the ak and βk

constant, consider the system

dx _

dt

ε2

1

0

o

—
ε2

0

0

1 0

0

ε2

y

0
0

ε

x +

OLχx\ +

— aΊx

a3x
2

2^2

β2XχJ

— aAx
4x4

where γ is any fixed positive rational. Letting

t -t- w3),

x2 = εwx sin(t + w3),

x3 = εw2cos(yt + H>4),

x4 — εw2ήn(yt + w>4),

we obtain:

— ε2Wϊ + εα1w1

2cos(ί + w3)sin2(ί + w3) — εα2w2sin3(ί + w3)dt

dw>

dt

2 —

- w3)cos2(γ/ +

εα3w2

2 cos(γ/ + w4) sin

+ w 3)cos 2(γί

dw3 _

dt

dwά

w4) -

i cos(/ + w3) sin2(t + w3) — εaxwx sin3(/ + w3)

w4)

— ε- sin(ί + w 3)cos 2(γί + w4),

= —εa4w2 cos(γ/ + w4)sin2(γ/ — εα3w
sin3(γ/j %^\Λ ΛTVJ VVUV F ( I TVΛ I UΛ-X1 1 f ti I r v

 4 I K^KΛ.'lVV'J V

— εβ2wx cos(t + w3) sin(γ/ + w4) cos(γί + w4).

With w = (wl9 w29 >v3, w4), let εE^w, /, ε) be the right-hand side of each

Mλ-equation, and write p = (p 1 ? p 2 , p3, p 4). Then iterating equations (2)
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and (3) as outlined in §1 and averaging to obtain the Eiriι reduces in this
problem to evaluating

dr

dr,

where μ > 0 is the smallest integer such that γμ is an integer as well. We
therefore have the iterated average systems:

- ^ =

= ε 2 p 2

ΊΓ =

povided the rational value chosen for γ is not | , ^, 1, j , or 2.
Then from §1 or from the Theorem of §4, it follows that for any

t0 > 0 and for all small ε > 0

sup \Σ\wi(t,e)-pi(t,ε)\]<K(M)e,

where K(M) depends on the choice of M, but not on t0 or ε or on the
initial value of w (as long as the initial value choice is confined to some
fixed bounded region).

Now concentrating instead on the {px, p2) subsystem, we find an
exponentially asymptotically stable rest point located at

( p i > P 2 ) =
axa2a3a4 + 2ya\βλβ2 ' (f axa2a3a4 + 2ya\βxβ2

provided that both square roots are real and positive. Consequently, in
this case, we have for all small ε > 0,

sup [\wx(t9 e) ~ px(t9 e)| + K ( / , ε) ~ p2(/,
r0<r<oo
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where K* is independent of ε and t0 and does not depend on which initial
value of (wλ, w2) is chosen (as long as the choice is confined to a fixed
domain of stability of the (pl9 p2) subsystem).

By the preceding analysis then, the quadratic system for x has a
solution bifurcating from JC = 0 for all small ε > 0, as long as a rest point
(al9 a2) exists for the (p,, ρ2) subsystem and satisfies aλ > 0, a2 > 0. The
components of that solution satisfy:

X2 + X2 - 4<*3<*4 ~ *Ύ*2βl 2 , Q ( 3Λ
xx -r x2 — 2o o ^ *>

<xxa2a3a4 + 2yaz

2βxβ2

2 + 2 =

Moreover, from the (p3, ρ4) equations, we see that the solution bifurcating
from x = 0 is either nonperiodic or has a smallest possible period of
0(1/ε2) for small ε > 0 (aside from a few special cases which don't
interest us). Hence by [7, p. 96], this solution cannot be a Hopf bifur-
cation. And clearly, any trajectory that approaches sufficiently near the
orbit of our bifurcated solution becomes trapped about that orbit. More-
over by [12], this bifurcation is asymptotically stable in an orbital sense.
And finally, note that the preceding analysis is fully valid for any rational
γ > 0, provided γ Φ 3, \, \, 1, or 2. These latter γ-values can also be
treated, but we omit this.

EXAMPLE 3. (Bifurcation in a Nonautonomous System.) With al9 α2, α3,
a4 constants, consider the system:

-j- = s2xι + xjsint + {axx
2 + a2xxx2 + <x3

dx2 j

—j- = ε x2 + t

By the substitutions xλ = εwl9 x2 = εw2, we have:

—γ~ — ε2wx + εw2

2sin t + ε(α1w1

2 + a2wxw2 + a3w2) cos t,

dw2 Ί

—7^- — ε w2 + ε α ^ ^ c o s /.
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Following the iteration procedure for equations (2) and (3) indicated in §1
(in this example, z is a vacuous component), we obtain the iterated-aver-
age system:

=

The (p\, p2) equations have exponentially asymptotically stable rest points
at (α 2 /2/α 4 /(3α 4 — 2^), /2/α4 ) and at ( —α 2/2/α 4/(3α 4 — 2a,),
— /2/α 4) provided that 0 < α4 < 2α!/3. Therefore, in this case, §1 or the
Theorem of §4 shows that for all small ε > 0 and any tQ >: 0:

sup [\wx(t9 ε) - P l ( ί , ε)| + \w2(t, ε) - p2(t9 ε)|) < K*e

where K* is independent of ε, t09 and any initial value of (w,, w2) selected
from a fixed bounded domain of stability of the (Pi, p2) system. And if
the inequality 0 < α4 < 2α ι/3 does not hold, the approximation of (wl9 w2)
by (Pi, P2) still holds for small ε > 0 in the interval t0 < / <
ί0 + M/ε2 (M fixed but arbitrary).

Consequently, we see by the foregoing analysis that if 0 < α4 < 2α1/3,
then two different solutions bifurcate from the origin of the (xl9 x2)
system for all small ε > 0. Their periodicity is easily established by the
implicit function theorem, and their locations are given by

i 2 ] / ΰ ,

/- _ 9 x + ^(ε 2 ) , ± ε / 2 7 ^ + O(e2)
a Za)And although it is clearly clear that each bifurcated solution captures all

trajectories that get near it, the reader is referred to [10] for proof that
these bifurcations are stable.

EXAMPLE 4. (Coupled Second Order Equations,) With a > 0 a rational
constant and with u and x scalars, consider the system:

d2x . , i ί 2 i\dχ
 Λ— + a2x + ε(x2 - u2)-^ = 0,
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which can be rewritten as:

d
u
V
X

(0
1

0
y l o

Using

- 1

0

0

0

0

0

0
a

0

0

— a

0

u
0

ε2(β3u
2v2 + β2v

2 - βλuo)

0

ε(u2 — x2)y

u = λ (

v = w,sin(ί +

x = w2cos(α/

w 4 ) ,

we obtain:

w3) w3)

- j ^ - = ε>v2{w

-jΓ2- = ε2w1{jβ3w1

2cos2(/ + w3) + β2) sin2(t + w3)

— ε2βιwι cos2(t + w3) sin(t + w3),

w3)

— ε{w2cos2(/ + vv3) — w4)} sin(α/ + >v4)cos(α/ + w4).

Then following the iteration procedure indicated in §1 for equations (2)
and (3) (here the z-equation is vacuous), we obtained the iterated average
system:

= e%A(P) = - ^

where p = (p,, p2, p3, p4). Now restricting our attention to the p + -
subsystem where p + = (pi, p2), we find an exponentially asymptotically
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stable rest point at (p 1 ? ρ2) = ( / - 6β2/β3, / - \2β2/β3 ) provided βxβ2

> 0 and βλβ3 < 0. The reader can check that Hypothesis H4 in §3 is

satisfied. Consequently, if βλβ2 > 0 and βxβ3<0, then for any t0 > 0 and

for all small ε > 0,

sup { h ( / , ε) - p,(/, ε)| + \w2(t, ε) - p2(t9

where K* is independent of ε, /0, and any initial value of (w1? w2) selected

from a fixed bounded domain of stability of the (p l 5 p2) system. But when

βxβ2 < 0 or βxβ3 > 0, Hypothesis H5 holds (provided both px and p 2 are

both positive at / = t0) and the approximation is uniform on t0 < t < /0

+ M/ε 4 for any given M > 0.

EXAMPLE 5. With α, jβ, and γ constant, consider the system:

dwx . / ? ?\
-^— = εwx sin / + ε(αW| + βz2) cos2^,

<Λv2

— j - = εw2z2sin t + εyzx cos 2/,

dw3 ( 2 2\ . 7
— = ε ( w 2

2 - w 3

2 ) s m 2 / ,

-T^ = —z} + εw2

3cos2^,

dz,

dt
—r — — 2z2 + εwfsin t.

Using the iteration procedure outlined in §1, we obtain the iterated-aver-

age system:

ε2

k
dt

With p = (p,, p 2, p3), the p-system has two exponentially asymptotically

stable rest points located at

(p,, p 2 , p3) = (^2501/(6)8), ±]/25α/{-3βy),
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provided a > 0, β > 0, and γ < 0. In this case, Hypothesis H4 of §3 holds
for solutions to the p-system which start in the vicinity of either rest point.
Consequently, when a > 0, β > 0, and γ < 0, then

sup ί 2 k(/, ε) - p,(/, e)| + 2 M', «) " ϊι(

for all small ε > 0 and any t0 > 0. The constant # * does not depend on t0

or ε or on which point in a fixed neighborhood of the rest point is selected
for the value of p at t = tQ. Moreover, if γ < 0 but not both a > 0 and
β > 0, then the approximation is uniform on intervals t0 < / < f0 + M/ε3,
where the value of p at ί = ί0 and the fixed value of M (> 0) are chosen
such that Hypothesis H5 holds.

By the implicit function theorem, many of the rest points of the (p, ζ)
system correspond (approximately) to locations of periodic solutions for
the (vt>, z) system. The reader is referred to [11] to determine the stability
of these periodic solutions provided we have the condition γ < 0 and
αj8>0.

3. Hypotheses. With the integers /, /*, and m from §1, we recall
that w+ = (wx, w2,...,W/) and w — (H>1? W29. . .,W/*), where /< /*, and z
lies in Rm. Define /0 = /* — /. Next let D+ and A be bounded convex
open sets in Rι and i?m, respectively; let 5 + and Sz be open sets with,
closures contained in D+ and Dz, respectively; and let *S+ and »SZ be
respective subsets of 5 + and Sz. Then for some εD > 0 define the set D
consisting of points of the form (w, z, ί, ε) by D = (2)+ Xi?/o) X Z)2 X
[0, oo) X [0, εD]. Regarding (la), (lb), we assume

HYPOTHESIS HI (Periodicity, Smoothness). Each Et(w, z, /, ε), for
1 < i < /*, and i/(w, z, /, ε) are periodic in t with a fixed common period
P > 0. Moreover, each Et and if and several orders of their derivatives
with respect to (w, z, ε) are uniformly bounded on the set D, and for each
fixed t > 0, are smooth functions of (w, z, ε) on (D+ XRι°) X Dz X [0, εD].
Finally, constants δ > 0 and KA> 0 exist such that for all / > 0, the
constant matrix A satisfies ||e^'|| ^ KAe~St

9 where |||| is the matrix norm.

With t0 — to(ε) an initial point either depending on ε or simply
constant, assume system (la), (lb) satisfies the initial conditions:

(6a) ^UoM = bOι + ebM9 1 < / < / * ,

(6b) Z|

and let b0 = (fcOi, bO2,...,boι*) and 6,(c) = (6,,(ε), 612(ε),.. .,bu*(e)).
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HYPOTHESIS H2 (Initial Data). (bQ9 ξ0) Ues in ( 5 + Xi?/o) X S2, and

on 0 < ε < εD, | (bx(έ)9 ξx(ε)) | < Λ/Q for some fixed constant JV0.

Defining the iterated-averages Eέ (p) as indicated in §1, and setting s

equal to /0(ε) in them if they depend on s exphcitly, consider:

HYPOTHESIS H3 (The Iterated-Average System). Assume the Eiriι for

1 < / < / are independent of ( p / + 1 , P/+2> >P/*)> s o that we may write

Ein = Ein(ρ+), where p + = (Pi, P2,.-.,P/). Then formulating system

(5a), (5b), suppose further that

(7a) P,

(7b) U

is satisfied. Defining n = max^^/Π,-, assume, finally, that a constant

M > 0 exists (M may be oo) such that the solution ( p + , f ) =

(p+(ί, ε), f(ί, ε)), to the initial value problem (5a), (5b) and (7a), (7b),

exists and remains in S+ X Sz for to(ε) < t < to(e) + M/εn and 0 < ε < εD,

and for all choices of (fe01, 6 0 2 , . . . ,60/, | 0 ) in S + X5Z.

We now let the matrix U(t9 r) with scalar entries UtJ(t, τ) be the

fundamental solution to

for 1 < / < /, 1 < y < /, with ρ + (ί, ε) as described in Hypothesis H3 and

with δ/ 7 the Kronecker delta. This system will be required either to be

exponentially asympotically stable with respect to U — 0, or else to have a

limitation on the rate of growth of its solution.

HYPOTHESIS H4 (Stability of the Variational Systems). Assume M -

oo. Then constants KE, λ,, λ 2 , . . . ,λ7 (all > 0) are assumed to exist inde-

pendent of ε, /0(ε), T, and any ρ + (t, ε) chosen in Hypothesis H3 such that

for /0(ε) < T < t < oo, for 0 < ε < εD, and for all chosen p + ,

where 1 < i < / and 1 < y < /.

The above hypothesis has been formulated in very general fashion.

However, simplification takes place in a great many applications. For
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example, when all the nι for / < / are equal, with say, nι = n, then the
required variational inequality becomes

and determining whether this can be satisfied is routine.
And now we provide for systems that lack total stability.

H Y P O T H E S I S H 5 {Limitation of Growth). A s s u m e M < oo a n d nλ<n2

< < nc_λ < nc = nc+} = = **,_, = w, (= w) where c < /. Then
constants KE{M\ λ^M), λ2(Λf),...,λc_,(M), and N,(M) (all > 0) are
assumed to exist independent of ε, r, /0(ε), and any p + (ί, ε) chosen in
Hypothesis H3, such that for to(e) < T < t < ίo(e) + M/εΛ, for 0 < ε <
εD, and for all chosen p + ,

c - l

where 1 < i < / and 1 <y < /.
The preceding hypothesis is particularly simple to verify when all the

ni for / < / are equal (the case with c — 1), as our inequality becomes
merely

In other cases the reader may have to renumber his components in order
to be consistent with the format of Hypothesis H5 (see Example 4).

4. The main result.

THEOREM. Let (w(t, ε), z(t, ε)) be a solution to the initial value problem
(la), (lb), (6a), (6b), with to(ε) > 0 arbitrarily chosen, and let (p + (ί, ε),
f(/, ε)) be a solution to the multi-scale averaged system (5a), (5b), (7a), (7b),
forO<ε <εD.Let

w+(t, ε) = (wλ(t, ε),w2(t, ε ) , . . . , ^ , ε)).

Case A. Let Hypotheses H1-H4 hold (M — oo). Then constants K*,
ε* > 0 exist (with values independent of /0(ε), but depending on D, S+ ,
Sz9 5 + , Sz, and the bounds in H1-H4) such that for 0 < ε < ε* the
solutions (w(t, ε), z{t, ε)) and (p+(/, ε), ξ(t, ε)) exist on tQ(ε) < t < oo,
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and

sup ( K (/, ε) - p + (/, ε)| + \z(t, ε) - ξ(t9 ε)|} < K*ε
tQ(ε)<t<oo

uniformly for initial values (bQ, ξQ) in (5+ Xi?/ϋ) X Sz.

B. Let Hypothesis H1-H3 and H5 hold with M > 0 finite. Then
constants Kn(M), εn{M) > 0 exist (with values independent of ίo(ε), but
depending on £>, S+ , Sz, S+ , 5Z, and the bounds in H1-H3 and
H5) such that for 0 < ε < ε n ( M ) , the solutions (w(t, ε), z(ί, ε)) and
(p + (ί, ε), f(ί, ε)) exist on /0(ε) < / < /0(ε) + M/εn, and

sup (|w+ (ί, ε) - p + (ί, ε)| + |z(ί, ε) - f(ί, ε)|} < ^ π

uniformly for initial values (b0910) in (5+ Xi?/o) X 5Z.
Consequently, the theorem states that if E£w, z, t, ε) from (la), (lb)

is expanded in powers of ε, with coefficients in both / and the strobo-
scopic projection of w (the variable z is eventually set to zero), then Eι

may be replaced by its first nonzero average εn~λEx n in the expansion to
obtain the approximating system. This result applies to a greater variety of
systems than the theorem in [9], because here motion may be carried on
several characteristic scales at the same time, and the averages Eun are
allowed to depend on the choice of the initial point t = to(e).

5. Proof of the theorem. With (w, z) — (w(t, ε), z(t9 ε)) and (p + , ξ)
= (p+ (/, ε), ζ(t, ε)) the respective solutions to (la), (lb), (6a), (6b) and to
(5a), (5b), (7a), (7b), let w, = p, + eWi (1 < / < /) and z = ξ + εZ. Let d
be the distance between the boundaries of S+ XSZ and D+ X A , and let
Nλ majorize A, Et{w, z, /, ε) (for 1 < / < /*), H(w, z, /, ε),
and their appropriate derivatives on the set D, and majorize (6π(ε),
bn(ε)9... ,Z?u*(ε), |](ε)) on 0 < ε < ε^. We now can write

dW -
( 8 a ? b ) ^ i = £ | ( } V , z , / > e ) « e - - 1 £ l i l l | ( p + ) , ^ U 0 ( ε ) - ^ ( β ) ,

(9a,b) ^ = ^ Z + i/(w,z,ί,ε), Z ^ ^ ^ ) .

Now for any constant

a> sup
0<ε<εD
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there exists tx(ε) > φ)9 (tλ(ε) < to(ε) + M/en) such that (w(t9 ε), z(t9 ε))
exists on /0(ε) < / < tλ(ε) for 0 < ε < εD, and

sup { \ W ι ( t 9 e ) \ 9 \ W 2 ( t 9 e ) \ 9 . . . 9 \ W ι ( t 9 e ) \ 9 \ Z ( t 9 e ) \ } ^ a
( ) ( )

for 0 < ε < ε^. Choosing Cj = m i n ^ , d/(2a)9 l),then by Hypothesis H3,
(w(t9 ε), z(ί, ε)) lies in ( D + Xi?/o) X Dz for ίo(ε) < t < ^(ε), 0 < ε < ε}.
Now from (9a), (9b) we obtain

(10) Z(t) = V(t, φ))φ)

V(t,τ)H(w(τ),z(τ),τ,ε)dτ

where V{t, T) = eA(t~T\ w(t) = w(t, ε), z(t) = z(t, ε), etc. Then by Hy-
potheses HI and H2, \Z(t)\<Nx(l + KA/8) for to(ε) < t < ί,(ε) and
0 < ε < ε , , independent of ε, α, ίo(ε), ί,(ε) and not depending on the
chosen value of (κ>, z) | r = / {ε)

Expansion of the E^w, z, t, ε)

With to(ε) < s < t, consider the equations

(2) wl(t) = w,(s) + ε(Έi(w(τ),z{τ),τ,ε)dτ, 1 < / < / * ,

(3) z(0 = z<°>(*) + ε Γ F(ί, τ)i/(w(τ), z(τ), T, ε) dr
JtQ(ε)

obtained earlier. Using Taylor's theorem, we now expand each Eι and the
vector H about the point (w, z91, ε) = (w(s)9 0, /, 0). Then repeated itera-
tion of (2) and (3) leads to

(11) Et{w(t)9 z(t)9 t9 ε) - 2 ^EitJ(w(s)9 t9 5, φ))

for 1 < / < /*, where the Etj depend on the initial points s and /0(ε), but
not on ε (except through to(ε)) or on z(0\t). The terms involving z(0)(t)
have been merged into the remainder /?,-„. And from Hypothesis H2,

Moreover, for tQ(ε) < ̂  < ί < ^(ε) and 0 < ε < ε l 5 (w(ί)j
(Z)+ Xi?/o) X 2)z, and with Q representing any Eι or H or any of their
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d e r i v a t i v e s u s e d i n o b t a i n i n g t h e EtJ a n d t h e R i n , w e h a v e

(12) \Q(W(t),z(t),t,e)-Q(w(s),0,t,0)\

<^(H0-Mί)|+|z(/)| + e).

Moreover, for to(ε) < s < t < /,(ε),

(13) \w(t)~w(s)\ + \z(t)\ + ε

< Nλ0(l+\t - s\)(ε + e-*'-'^)

where JV10 is independent of ίo(ε), ί,(ε), ε, and a, provided 0 < ε < ε,.
Note that

as well. Therefore,

(14) {Mή

+\t- s\)μ(ε + e-^-ΌW))"

1)!

for any integers μ > l,y < μ (7 > 0). For ίo(e) < 5 < ί, we have:

(16) Γ
yίo(ε)

r0(ε)
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where Nu(μ) is constant. Therefore, employing (2), (3), (12)—(16), and the

bounds on z (0)(/) in deriving equation (11), we find that for to(ε) < s < t

< tλ(ε) andO < ε < ε l 9

<JV12(1 + | ί - j | f ( ε Λ ' + ^ ( J - ί o ( e ) ) )

where β and 7V12 are positive constants independent of ε, α, ίo(ε), ^(ε),

and /.

The Expanded W-Equations

Now letting Γ[] be the greatest integer function, define the step

function iby t = to(ε) + P X T[(t - /O(ε))/P], where P is the period in

Hypothesis HI. Since s in (11) was unspecified, let s = t so w(s) — w(t)

there. Writing w or w(t) for w(t) and substituting (11) into (8a), we obtain

dW "' —

tι{w9 z, /, ε, /, ί o(ε)), (1 < / < ι £ ) .

Moreover, since ^ = f and 0 < ί - f < P, then from (17) a constant

exists independent of ε, 0, /0(ε), /,(ε), and /, such that

(19)

provided /0(ε) < / < r,(ε) and 0 < ε < ε^

Since by §1, the averages of Ejj(ρ919 s9 t0(ε))\tQ=_oo are zero for

1 < / < /, 1 <y < Λ/ — 1, we can define 2sf y = 0 in these cases. Moreover,

for 1 < / < / and for w in Z)+ Xi?/o, ^ ^ (w) is well defined and equals

^ i , Λ | (
w + ) b y Hypothesis H3. With PΓ+ = (Wl9 W2,..., Wt) and w+ = p +

, equation (18) becomes

dW n'
-jf = Σ ^ " ' { ^ . / ^ ^ ^ /o(̂ )) " ^ , / ^ ί, /, - 00)}

7 = 1

, π (w, z, /, ε, t, tQ{ε)).
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Hence with ε2 = min(εl91/a2), we have

(20)
j=\

, = , 9wj
+ c,(w+, z, /, ε)

where a constant N3 exists independent of ε, a, to(ε), ^(ε), and / such that

\Ci(W+ (t), Z(t)9 /, ε)| <

for 0 < ε < ε2, /0(ε) < / < ^(e), 1 < / < /. Using [/(/, j) as defined pre-
ceding Hypothesis H4, (8b) and (20) may be written as

(21) Wv{t) = 2 U9i{t, Φ))bu(e)

+ Σ "i^f Uvi(t,τ)

X {^,y(vί-(τ), T, f, -oo)

+ Σ /' ία'>Ός(*Mτ),z(τ),τ,
ί=l%(ε)

with f and w(τ) defined like t and vv(ί). Noting that

U(t,τ)=U(t,φ))U->{τ,to(e))

and

(1 < » » < / ) ,
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we use integration by parts in equation (21) to obtain (for 1 < v < /)

= Σ Uvk(t,to(e))bxk(e)

y = i

ι,k = 1

{
t0(ε)

dτ

+=p(t, ε)

X
7 = 1

1 /" {EitJ(*(σ), σ, σ, -oo) - EhJ(w(o))} do dr

Σ / ' Uvk(t,r)Ck(W+(τ),Z(τ),τ,ε)dτ.

Now a constant N4 exists independent of ε, a, to(ε), t{(ε), i, j , k, that
majorizes ^Eknk(p+)/dpi on D + , and by Hypotheses HI and H3,
majorizes

{^ .(*(τ) , T, T, - oo) - Ei9j{*{r))} dτ

for 0 < ε < ε2, ίo(ε) < ί < ί,(ε), 1 < i < /, 1 <j < /if., 1 < /c < /. Then for
0 < ε < ε 2 , ί 0 ( e ) </</,(£),

(22) < 2 \\Ujt, φ
k=\ j=\

2/ I
k=\ ô(ε)

I n,

X \εn'Nf Σ 2
[

dτ

with 1 <
cases.

< /. The remainder of the proof will now be split into two

The rest of the proof of case A (M — oo). Now from Hypothesis H4,
constants KE, λz > 0 (for 1 < ι < /) exist such that

\\U¥k(t9 τ)\\<*KE

ι = l
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for all ΐQ(ε) < τ < t < oo, 0 < ε < εD, independent of ίo(ε) > 0, and
the chosen p + (/, ε). So for fo(ε) < ί < ίj(ε), 0 < ε < ε2 =
min(£z), d/(2fl), 1, \/a2\ 1 < ^ < /,

i Σ εmax("' π*' e~
i,k=\

εJ + KE 2J
 ι

= \ i,k=\

2
y=\j=\ J " i , Λ = l

+NAn 2N3) Σγ
Λ, = 1

where ίC^ is independent of ε, a, ίo(ε), /,(ε), and v. Let

Then choosing a = K* and ε* = min(εD, d/(2K*), 1, \/{K*f), and
choosing ί,(ε) such that (w(t, ε), z(ί, ε)) exists on to(ε) < t < r,(ε), 0 < ε
< ε*, and such that

sup
/O(ε)<ί</

for 0 < ε < ε*? it then follows that

sup
ίo(ε)s<<ί,(e)

for 0 < ε < ε*. Hence, the ί,(ε) picked may be chosen infinite. Conse-
quently, for 0 < ε < ε* and for all (Z>01, b02,... ,bor, £0) in (S+ XR'°) X Sz,
the solution (w(t, ε), z{t, ε)) exists on to(ξ) < t < oo and

sup
/0(ε)<

where JF + (0^(^,(0,

rest of the proof of Case B (M < oo). Now nx < «2 < < ΛC_ ,
^6 + i ~ •• = « / ( : : r « ) from Hypothesis H5. Moreover, positive
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constants KE(M), λ,(M) (for 1 < / < c — 1), and N,(M) exist such that

\\Uvk(t, τ)\\<KE{M)Σ

for all /0(ε) < T < /0(ε) + (M/ε"), 0 < ε < εD, independent of ίo(ε) > 0
and the chosen p+(t,ε). So for ίo(ε) < t < ί,(ε) (< ίo(ε) + (M/ε")),
0 < ε < ε2 = min(εD, rf/(2a), 1,1/α2), and 1 < i» < /, we have from (22):

/ c-\

k=\ ι=\

+ KE{M) 2 e'-^e'-W-'o^JV, + iV4 2 ε J"'
/t=l j=l

k=\ f=l

1

= l 1=1

pε
HN,(M)(t-t0(ε))

\Wv{t)\<KE{M)Nλl{c~

Σ
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where KW(M, n) is independent of ε, a, /0(ε), ί,(ε), and v. Let

Kn(M) = 2KW(M, n)l + 2NX{\ + (KA/δ))l.

Then choosing a = Kn(M) and

en(M) = min(eD,d/(2Kn(M)),h(l/{Kn(M)}2))

and choosing ί,(ε) (< to(e) + (M/εn)) such that {w(t9 ε), z(ί, ε)) exists on
/0(ε) < / < ̂ (ε), 0 < ε < επ(Af), and such that

sup

it then follows that

sup [I^UJM^Ujμ.^WJMA' ij ^77 \ = ~ΊΪ

for 0 < ε < ε w ( M ) . Hence, the ̂ (ε) chosen may be picked equal to
ίo(ε) + (M/εn). Consequently, for 0 < ε < εn(M) and for all
(Z?01, 60 2,..., V . fo) i n (^+ x i ? / °) x ^^ t h e solution (w(t9 ε), z(/, ε)) ex-
ists on ίo(ε) < t < ro(ε) + (M/επ) and

sup

This completes the proof of the theorem.
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