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GENERALIZED ORDERED SPACES
WITH CAPACITIES

H. R. BENNETT AND D. J. LUTZER

We show that any GO-space having a capacity in the sense of
Scepin has a G;-diagonal and is perfect. In addition, such a space has a
o-discrete dense subset and a dense metrizable subspace, and any GO-
space having a capacity and a point-countable base (or having a o-dis-
crete dense subset and a point-countable base) is metrizable.

1. Introduction. In [14] Stepin defined a capacity for a space X to
be a family of functions {e,|x € X} such that, for each closed F C X,

(C,)) &(F) is a non-negative real number with ¢ (F) >0 iff x €
Int( F),

(C,) if F| C F, are closed then ¢ (F)) < ¢ (F,),

(C,) for a fixed closed F, the function x — € (F') is continuous,

(C,) for a fixed x, if { F,|a <k} is a family of closed sets
satisfying F, D Fp whenever a < 8 <, then ¢,(M_ F,) = inf, &,( F,).

In that same paper Stepin announced without proof that a linearly
ordered topological space (LOTS) having a capacity is metrizable. The
purpose of this note is to prove a more general result from which Séepin’s
result follows immediately, namely, that any GO-space (= suborderable
space) with a capacity has a Gg-diagonal. (Recall that the class of
GO-spaces is precisely the class of subspaces of LOTS.) Along the way to
that result, we show that any GO-space with a capacity is perfect (i.e.,
closed sets are Gg). In §4 we will discuss two old questions about perfect
GO-spaces in the context of GO-spaces having a capacity, proving that a
GO-space with a capacity has a o-discrete dense subset and a GO-space
with a capacity and a point-countable base must be metrizable. Finally,
examples in §5 show that our results are sharp.

Terminology and notation not defined in this paper will follow [8, 11,
12].

2. Preliminary results and perfect normality. We proceed via a
sequence of lemmas.

2.1. LEMMA. Any GO-space having a capacity is a first-countable space.
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Proof. Fix a non-isolated point p of X. If [ p, =) is not open then
¢,[ p, =) = 0 and there is a well-ordered, strictly increasing net {x, | & < k}
whose supremum is p. Let F, =[x, —). According to (C,), 0=
e ([ p, ) = inf{e,(F,)|a <«k}. For each n, choose a, <k such that
a,_ <a, and g,(F, ) <1/n. If some point y of X has x, <y <p for
each n, then for each n we have 0 <e,([y, =) <eg,(x,, ) <1/n,
which is impossible. Hence p is the hrmt of a sequence z, = x, from
(<, p). If («, plisopen, then {(z,, p]ln=1}1sa nelghborhood base
at p. If («, p] is not open, we can obtain a sequence w; >w, > ---
having p as its limit, and then {(z,, w,)|n = 1} is a local base at p. Other
cases are handled analogously. O

2.2. PROPOSITION. Any GO-space with a capacity is perfect.

Proof. Let U be any open set and let V= {V,|a € A} be the family
of all convex components of U. For each a € 4 choose p, € V,. Then
e,(V,) >0. Let P, = {p,|e,(V,) = 1/n}. We claim that P, is a closed,
discrete subspace of X. Obviously P, is discrete-in-itself. We show P, is
closed. Let g be a limit point of P,. Since X is first-countable, there is a
strictly monotonic sequence g, ) from P, whose limit is g, say g, = p,,.
Let F={q} U (U{V, |k=1}). Then F is a closed set and, by (C,),
e (F)=lim,_ e, (F)=1/nbecause e, (F)=¢, ( azk) =1/n. Hence
g € Int(F). But the sequence {q,,,,|k = 1} also converges to ¢ and no
term of that sequence lies in F, contradicting ¢ € Int( F). Hence P, is
closed and discrete.

Since X is first countable, each set ¥, € Vis an F,-set so we may find
closed convex sets D(a, k) having p, € D(a,1) C D(«a,2) C --- and
U{D(a, k)|k =1} = V,. Let E(n, k) = U{D(a, k)|p, € P,}. Since P,
is closed and discrete, each E(n, k) is closed, and U= UV =
U{E(n,k)In=1,k=1)}. a

ReMARK. Corollary 4.3 below provides an even stronger conclusion
than does Proposition 2.2.

2.3. LEMMA. Suppose (< , p] is not open. Let 6 > 0. Then there is a
point q > p such that for each t € [p, q], £, p, q]) <.

Proof. Since p is a limit point of ( p, —) there is a sequence b, > b, >

- whose limit is p. Then 0 = ¢,((«< , p]) = inf{e,((< , b,]) [n =1} so
that for some ng, ,((< , b, ]) < 8 Then ¢,([ p, b, ]) < 8. Now assume no
point g, as described in the Lemma, exists. Let ¢, = b, . Then there is a
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point ¢, € [p,c,] with ¢ ([p, co]) = 8. Necessarily, p <t,. Let ¢, =
min{b, ., f,} and find 7, € [p, ¢;] with ¢, ([ p, ¢,]) = 4. In general, find a
point ., € [p, ¢4yl Wwith g ([p, ¢1]) = 8, where ¢\ =
min{b, 41, 4} I mis fixed and k > m, p < ¢, <c, and s0 ¢,([ p, ¢,,])
=¢,([p, ¢,]) = 0. Letting k — oo, we obtain ¢,([ p, ¢,,]) = lim, ¢,([ p, c,,])
=4. Butc, <b, ., <b,, 50 we obtain d=e/lp,c,) =¢lp, b)) < 4,
a contradiction. (]

REMARK. There is an obvious analogue of (2.3) in case [ p, =) is not
open.

2.4. LEMMA. Suppose neither (< , p] nor [ p, =) is open (i.e., p is a
two-sided limit point of X). Let § > 0. Then there are points q and r with
q < p < r having the property that for every t € [q, r], ¢((q, r]) <8.

Proof. The proof is analogous to the proof of (2.3). (N

2.5. NOTATION. Let (X, &, <) be a GO-space. Let
R = {x € X|[x, =) is open},

L ={x € X|(«, x]is open},

I={x € X|{x} 1s open},

R* =R —1, and

L*=L—-1.

2.6. LEMMA. Assume X is a GO-space having a capacity. Each of the
sets defined in (2.5) is an F-set.

Proof. In the light of (2.2), I is an F -set since I is open. If we can
show that R is an F-set, then so is R* because R* = R — I.

To show that R is an F,-set, observe that for each x € R, ¢, ([ x, —=))
>0. Let R, = {x € R|e,([x, »)) = 1/n}. Suppose p is a limit point of
R,. Choose a strictly monotonic sequence { x, ) from R, whose limit is p.
There are two cases.

Case 1. Suppose x; <x, < ---. Then [p, =) = N{[x,, =) |k =1}
so that &,([ p, »)) = inf{e,([x;, =)) |k = 1}. If k is fixed and m > k then
X, <X, so that g ([x,, »)) = ¢, ([x,, >)) = 1/n. Letting m - oo, we
obtain ¢,([x,, »)) = lime, ([x;, »)) = 1/n. Hence ¢,[p,~)) =1/n.
But then p must be an interior point of [ p, =) so that the increasing
sequence ( x, ) could not have converged to p.
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Case 2. Suppose x, > x, > ---. According to (C,), elp,—) =
lim, ¢, ([ p, —)). Since p <x,, e, p,~)) =&, ([x,, »)) =1/n. Hence
&,([ p, —)) = 1/n. But then p must be an interior point of [ p, —) so that
p € R. Hence p € R, as required.

Analogously, L and L* are F, sets. O

3. Gj-diagonals. Ceder [6] observed that the diagonal of space X is
a Ggsubset of X X X if there are open coverings §(n) of X (for n = 1)
such that given x # y in X, St(x, §(n)) C X — {y} for some n. In perfect
spaces, a weaker condition suffices. The proof of the next lemma is easy.

3.1. LEMMA. Suppose X is perfect. Then X has a Gs-diagonal if there is a
countable family ¥ such that

(a) each § € ¥ is a collection of open subsets of X, and,

(b) given x #y in X, some § € ¥ has x € St(x,8) C X — {y}.

3.2. LEMMA. Suppose X is a GO-space with a capacity. Then there is a
countable family Yy such that

(a) each § € Yy is a collection of open subsets of X, and,

(b) given x € Randy # x, some§ € ¥y has x € St(x,§) C X — {y}.

Proof. Let §;, = {{x} |x € I'}. For n = 1 and for p € R*, use Lemma
(2.3) to find a point g( p, n) > p such that for every ¢ € [ p, q( p, n)],
e(p,a(p, WD) < 1/n. Let 8(n) = ([p, q(p,n))|p € R*}. Next, use
Lemma (2.6) to write L = U{L,|k = 1} where each L, is closed in X,
and notice that R* N L = @. Now define, forn = 1,9(—n) = {X — L,}.
We let ¥, = {§(n)|n is any integer}.

Fix x € R and y # x. If x € I, then St(x, §(0)) = {x} C X — {y} as
required, so assume x € R — I = R*. Let J be the convex hull of the
two-point set {x, y}. There are two cases.

Case 1. If there is some point ¢ having ¢,(J) >0, find a positive
integer n having ¢,(J) > 1/n. Since x € R*, [x, q(x, n)) € §(n) so that
x € St(x, §(n)). Suppose some member [ p, q( p, n)) of §(n) contains
both x and y. By convexity, J C[p, g(p, n)] so we have g(J) =<

&([p,q(p,n)D). But ¢t €[p,q(p,n)] so that 1/n>e(lp,q(p,n)) =
¢,(J) > 1/n, which is impossible. Hence y & St(x, 8(n)).

Case 2. If there is no point ¢ in X such that ¢,(J) > 0, then y < x,
because if x <y we would have [ x, y) =[x, =) N («, »), so x would be
an interior point of J, whence ¢ (J) > 0. Since y < x and since no point ¢
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of X lies strictly between x and y, we conclude that (« , y] = (<, x) is
open. Thus y € L. Choose n so that y € L,. Because R* N L, = &,
x € St(x, §(—n)) = X — L, C X — {y}, as required. O

3.3. REMARK. Suppose X is a GO-space with a capacity. There is an
analogue of (3.2) which constructs a countable family ¥, of open collec-
tions such that if x € L and y € X — {x}, then some § € ¥, has x €
St(x,8) C X — {y}.

3.4. LEMMA. Suppose X is a GO-space with a capacity. Let E = X —
(R U L U I). Then there is a countable family Y such that

(a) each § € Y is a collection of open subsets of X, and,

(b) if x EE and if y € X — {x}, then for some § € ¥, x € St(x, 9)
CX—{»}

Proof. For each p € E, use Lemma (2.4) to select points a( p, n) <p
< b( p, n) such that for each ¢ € [a( p, n), b( p, n)}, ¢,({a( p, n), b(p, n)])
< 1/n. For n = 1, let §(n) = {(a(p, n), b(p, n))|p € E}, and let ¥ =
{§(n)|n = 1}. The proof that ¥ satisfies (b) above is similar to, but even
easier than, the proof that ¥, satisfies (b) of (3.2). O

3.5. THEOREM. Any GO-space with a capacity has a Gg-diagonal.

Proof. Using the collections found in (3.2)-(3.4) let ¥ = ¥, U ¥, U
V. Then V¥ satisfies the hypotheses of (3.1) so that, since X is perfect in
the light of (2.2), X has a Gz-diagonal. O

3.6. COROLLARY (Scepin). Any LOTS with a capacity is metrizable.

Proof. Any LOTS with a Gs-diagonal is metrizable [10]. [

4. Some results on perfect spaces. There are two old questions
which concern perfect GO-spaces. The first is due to R. W. Heath, and the
second was posed by M. Maurice and J. van Wouwe.

(H) Find a real example of a perfect GO-space which has a point-
countable base and yet is not metrizable.

(MvW) Find a real example of a perfect GO-space which does not
have a o-discrete dense subset.

(These questions ask for “real examples”, i.e., examples in ZFC, since if
there is a Souslin line, then there is a counterexample to each [2], [13],

(15})
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In this section we show that no counterexample to (H) or to (MvW)
can have a capacity.

It is known that any GO-space having a o-discrete dense subset is
perfect [15). We begin this section by proving the converse for GO-spaces
having a capacity, thereby strengthening (2.2). We need the following
result, due to Przymusinski [1].

4.1. PROPOSITION. Let (X, J, <) be a GO-space having a Gs-diagonal.
Then there is a topology N on X such that:

(a) (X, ON) is metrizable;

(b) M C T,

() (X, 9, <) is a GO-space.

4.2. THEOREM. Suppose X is a perfect GO-space having a Gy-diagonal.
Then X has a o-discrete dense subset.

Proof. Let 9 and < be, respectively, the topology and ordering of X.
Use (4.1) to find a metrizable GO-topology 9N C 9. Let D be a o-discrete
dense subset of the metric space (X, IN) and let I = {x|{x} € T — M }.
Then D is also o-discrete in (X, J ) and 7 is an F, in (X, 9 ), whence I is
also o-discretein (X, ). Let E=D U I.

Now let Wbe any nonvoid openset. f WN 1+ @ then WN E # @,
so assume W contains no isolated points. Then there are points a < b in
W such that @ # (a, b) C W. But then (a, b) € 9 so (a,b) N D # @.
Hence W N E # &, as required. a

4.3. COROLLARY. Any GO-space with a capacity has a o-discrete dense
set.

Proof. Combine (2.2), (3.5) and (4.2). a

4.4. COROLLARY. Any GO-space with a capacity has a dense metrizable
subspace.

Proof. The o-discrete dense set D found in (4.3) is, in its relative
topology, semistratifiable in the sense of Creede [7] and any semistratifia-
ble GO-space is metrizable [11]. O
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To show that no counterexample to (MvW) can have a capacity we
prove a bit more, namely:

4.5. THEOREM. Let X be a GO-space having a o-discrete dense set and a
point-countable base. Then X is metrizable.

Proof. Since any GO-space having a o-discrete dense set is perfect and
paracompact [15], it will be enough to show that a space X which satisfies
the hypotheses of (4.5) has a o-disjoint base. Then X is quasi-developable
[3] and perfect, so X is developable [3]. But a developable paracompact
space is metrizable.

Let D= U{D(n)|n=1} be a o-discrete dense subset of X. A
standard argument [Prop. 3.4, 5] provides a o-disjoint base for points of
D. Let I be the set of isolated points of X (so / C D). Let R* and L* be as
in (2.5) and let E= X — (R* U L* U ). A standard argument shows
that the collection V= U{% |n =1}, where <V is the collection of
convex components of X — D(n), contains a o-disjoint base for all points
of E. Therefore it suffices to find o-disjoint collections C and €’ which
contain neighborhood bases for all points of R* — D and L* — D,
respectively. We show how to find €.

Let B be a point-countable base for X, and let V= U {V |n =1} be
as above. For n=1and V€, let (V)= {BN V|B €% and for
somep ER*NV, (p,=>)NV)CBC|[p,~)}. LetP = U(P (V)|
veV}and P = U{P, |n=1}. Then we have

1. ¢ is point-countable, and

2. 9 contains a neighborhood base at each point of R* — D.

Fix n and ¥V € V. For each P € @ (V) there is a unique y, EP NV
having P =[yp, ») N V. Let C(n, V)= {yp|P € P(V)} and choose
S(n, V)= {x(V,a)|a <x(V)}, a cofinal strictly increasing subset of
C(n, V). Because ¥ (V) is point-countable, we have

3. If a <w(V) then |C(n, V) N (<, x(V, @) |= w,.

Foreachy € C(n, V), let a(n, V, y) be the first index 8 < (V') such that
y < x(V, B) and define

C(n,V,a) = {[y,x(V,a)) |y € C(n,V) and a(n,V, y) = a}.

If ¥V # W belong to V(n) or if V=W and a # 8, then C(n,V, a) N
C(n, W, B) = &. Furthermore,
4. each C(n, V, a) is countable.



18 H. R. BENNETT AND D. J. LUTZER

Index C(n,V,a) as {C(n,V,a k)|k =1} and let C'(n, k) =
{(C(n,V,a,k)|VETN,a<wk(V)}. Then we have

5. the family C= U(C(n,V,a)|n=1, V€V, and a < «(V)} has
C= U{C(n,k)|n =1,k =1}, so that Cis o-disjoint.

It remains only to show that € contains a neighborhood base at each
point of R* — D. Fixp € R* — D and r > p. Find B € B withp € B C
[p, r[. Because p & I we may find ¢ >p with [p,q) CB C|[p,r) and
(p,q) # @. Choose n so that (p, q) N D(n) # @ and choose d € (p, q)
N D(n). Because p € R — D, some convex component ¥V € YV contains
p.Then V C (« , d) and so

pelp,»)nVC[p,=)N(<,d)C[p,d)C[p,q) CBC[p,~),

ie., the set Q = BN V belongs to ¥ (V). The unique point y, with
Q=1[y,->)NVis y,=p, sop€C(nV). Compute a =a(n,V, p).
Then [ p, x(V,a)) €EC(n,V,a) €C and [p, x(V,a)) CQ CB C|[p,r).
Hence C contains a neighborhood base at each point of R* — D, as
required. 0

4.6. COROLLARY. Any GO-space having a capacity and a point-counta-
ble base is metrizable. O

Theorem 2.1 of [4] shows that a perfect GO-space with a §6-base has a
point-countable base. Hence we have:

4.7. COROLLARY. Any GO-space having a capacity and a 66-base is
metrizable. a

We conclude this section by pointing out that, in the light of (4.5),
any counterexample for (H) is also a counterexample of the type required
in (MvW).

5. Examples.

5.1 It is easy to see that the Sorgenfrey line [3] has a capacity. Thus,
Theorem (3.5) cannot be strengthened to assert that a GO-space with a
capacity is metrizable. O

5.2 No uncountable subspace of the Michael line [3, 11] can have a
capacity unless it is metrizable. For if X is an uncountable subspace of the
Michael line, then X is quasi-developable since it has a o-disjoint base
[11]. If X had a capacity then X would be perfect (2.2) and perfect
quasi-developable space is developable [3]. But a developable GO-space is
metrizable. (We remark that, under (MA + —CH), there are uncountable
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subsets of the Michael line M which are metrizable; indeed Theorem (4.1)
of [9] shows that any subspace X of M with | X |< ¢ is metrizable.) O

5.3 It is not true that a perfect GO-space with a Gg-diagonal and a
o-discrete dense set must have a capacity. Let X be the GO-space obtained
from the usual real line R by making the half-line [ x, —) open whenever x
is irrational and using the usual open interval neighborhoods for rational
numbers. Then X is separable and has a Gg-diagonal. However the set
R = {x € X|[x, —) is open} is not an F-subset of X, so X does not have
a capacity. O
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