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GENERALIZED ORDERED SPACES
WITH CAPACITIES

H. R. BENNETT AND D. J. LUTZER

We show that any GO-space having a capacity in the sense of
Scepin has a Gδ-diagonal and is perfect. In addition, such a space has a
σ-discrete dense subset and a dense metrizable subspace, and any GO-
space having a capacity and a point-countable base (or having a σ-dis-
crete dense subset and a point-countable base) is metrizable.

1. Introduction. In [14] Scepin defined a capacity for a space X to
be a family of functions {εx\x £ X) such that, for each closed F C X,

(Cj) ex(F) is a non-negative real number with ex(F) > 0 iff x E

(C2) if Fx C F2 are closed then εx(Fλ) < εx(F2),
(C3) for a fixed closed F, the function x -> εx(F) is continuous,
(C4) for a fixed x9 if [Fa | a < K] is a family of closed sets

satisfying FaD Fβ whenever a< β < K, then εx( ΓΊα Fa) — infα e^i;,).
In that same paper Scepin announced without proof that a linearly

ordered topological space (LOTS) having a capacity is metrizable. The
purpose of this note is to prove a more general result from which Scepin's
result follows immediately, namely, that any GO-space (= suborderable
space) with a capacity has a Gδ-diagonal. (Recall that the class of
GO-spaces is precisely the class of subspaces of LOTS.) Along the way to
that result, we show that any GO-space with a capacity is perfect (i.e.,
closed sets are Gδ). In §4 we will discuss two old questions about perfect
GO-spaces in the context of GO-spaces having a capacity, proving that a
GO-space with a capacity has a σ-discrete dense subset and a GO-space
with a capacity and a point-countable base must be metrizable. Finally,
examples in §5 show that our results are sharp.

Terminology and notation not defined in this paper will follow [8, 11,
12].

2. Preliminary results and perfect normality. We proceed via a
sequence of lemmas.

2.1. LEMMA. Any GOspace having a capacity is a first-countable space.
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Proof, Fix a non-isolated point p of X. If [/?, -») is not open then
ε/7[ /?, -*) = 0 and there is a well-ordered, strictly increasing net {xa \ a < K)
whose supremum is p. Let Fa = [xα, ->). According to (C4), 0 =
ε^/?, -»)) = inffε^/^lα < K}. For each «, choose αn < K such that
απ_ϊ < an and εp(Fan) < 1/w. If some point j> of X has xΛn<y <p for
each π, then for each n we have 0 < ep([y9 -*)) < ^([xα , -*)) < 1/Λ,
which is impossible. Hence /? is the limit of a sequence zπ = x from
(<- , /?). If (<- , /?] is open, then {(zΛ, /?]|H >: 1} is a neighborhood base
at p. If (<- , p] is not open, we can obtain a sequence w{ > w2 >
having/? as its limit, and then {(zw, wπ) |/ι ^ 1} is a local base at/?. Other
cases are handled analogously. D

2.2. PROPOSITION. Any GO-space with a capacity is perfect.

Proof. Let Ube any open set and let Ύ= {Va\a E A) be the family
of all convex components of U. For each a E A choose pa^Va. Then

εp{Va)
 > ° L e t ^ = {^l^ί^α) - V Ό W e c l a i m t h a t ^i i s a closed,

discrete subspace of X. Obviously Pn is discrete-in-itself. We show Pn is
closed. Let q be a limit point of Pπ. Since X is first-countable, there is a
strictly monotonic sequence ( qk) from PΛ whose limit is q, say ^^ = pak.
Let i 7 ^ {?} U (U{ίς 2 Jfc> 1}). Then F is a closed set and, by (C3),
eq(F) = l i m ^ ^ c ^ F ) > 1/Λ because ε J F ) > eftft(Fβ2ik) > 1/π. Hence
q E IntίT7). But the sequence [q2k+\ \k — 1} a l s o converges to ^ and no
term of that sequence lies in F9 contradicting q E lnt(F). Hence Pn is
closed and discrete.

Since X is first countable, each set Va E Ύis an Zyset so we may find
closed convex sets D(a, k) having pa E D(a, 1) C Z>(α, 2) C and
U {D(a, k)\k>\} = Va. Let E(n, k) = U {/)(«, k)\pa E Pπ}. Since Pn

is closed and discrete, each E(n, k) is closed, and f/= UΎ =
| « > l,fc> 1}. D

REMARK. Corollary 4.3 below provides an even stronger conclusion
than does Proposition 2.2.

2.3. LEMMA. Suppose (<- , /?] w not open. Let 8 > 0. ΓΛe« /Λere
point q> p such that for each t E [/?, #], εr([/?, q]) < δ.

Proof. Since/? is a limit point of (/?, -») there is a sequence />j > b2>
• whose limit is /?. Then 0 = ε^*- ,/?]) — inf{εp((+- , &„]) |π > 1} so
that for some Λ0, ε^^- , 6Πo]) < δ. Then e ^ p , Z?rtJ) < δ. Now assume no
point q, as described in the Lemma, exists. Let c0 = b . Then there is a
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point toe[p,co] with β,0(|>, c0]) > δ. Necessarily, p < t0. Let cx =
nήn{bno+l9 t0} and find tx E [/?, cλ] with εί{([p9 cj) > δ. In general, find a
point fΛ+1 e[p,ck+x] with ε,A+i([/>, cΛ + 1]) > δ, where c f c + 1 =
min{&no+Λ+ι, tk). If m is fixed and k> m9 p < ck< cm and so ε,Λ([/?, cm])
> ε,/[/?, c j ) > δ. Letting Λ -> oo, we obtain ep([p9 cj) = lim* etk([p9 cj)
*> β. But cm < &no+m < fcno so we obtain δ < ε ^ ^ , cm]) < ε^/;, fc^J) < δ,
a contradiction. D

REMARK. There is an obvious analogue of (2.3) in case [p, ->) is not
open.

2.4. LEMMA. Suppose neither (*- 9 p] nor [p,->) is open (i.e., p is a
two-sided limit point of X). Let 8 > 0. Then there are points q and r with
q <p < r having the property that for every t E [q, r]9 εt([q, r]) < δ.

Proof. The proof is analogous to the proof of (2.3). D

2.5. NOTATION. Let (X, ?Γ, <) be a GO-space. Let
R = {x E X\[x9 -») is open},
L = {x E X\(*- , x] is open},
I — [x E X\ {x} is open},
Λ* = Λ - /, and
L* = L - /.

2.6. LEMMA. Assume X is a GO-space having a capacity. Each of the
sets defined in (2.5) is an Fσ-set.

Proof. In the light of (2.2), / is an i^-set since / is open. If we can
show that R is an i^-set, then so is R* because R* = R — I.

To show that R is an Fσ-set, observe that for each x E /?, ex([x, ->))
> 0. Let Rn — [x E R\ex([x, ->)) > 1/w}. Suppose /? is a limit point of
jRn. Choose a strictly monotonic sequence ( Λ ^ ) from Rn whose limit is p.
There are two cases.

Case 1. Suppose xλ < x2 < . Then [/?, ->) = Π{[xΛ, -»)|/: > 1}
so that ep([p, -»)) = inf^^jc^, ->)) | A: > 1}. If A: is fixed and m> k then
xΛ < xm so that ε j[x^, -»)) > ε j [ x m , -*)) > 1/Λ. Letting m -> oc, we
obtain ep([xk9 ->)) = Urn ε j [ x ^ -*)) > l//ι. Hence εp([p9 ->)) > 1/π.
But then /? must be an interior point of [/*,->) so that the increasing
sequence (xk) could not have converged to p.
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Case 2. Suppose JC, > x2 > * *. According to (C3), εp([p9 -*)) =
Km* εx/[/?, ->)). Since /? < xΛ, eXk([p, -»)) > ε x / [ ^ , ->)) > l//i. Hence
ε;7([/?, ->)) > l/«. But then/? must be an interior point of [/?, ->) so that
p E R. Hence/? E i?π as required.

Analogously, L and L* are i^ sets. D

3. Gδ-diagonals. Ceder [6] observed that the diagonal of space X is
a Gδ-subset of X X X if there are open coverings §(n) of X (for n > 1)
such that given * ^ j in Z, St(x, β(«)) C l - {>>} for some «. In perfect
spaces, a weaker condition suffices. The proof of the next lemma is easy.

3.1. LEMMA. Suppose X is perfect. Then X has a Gδ-diagonal if there is a
countable family Ψ such that

(a) each % E Ψ is a collection of open subsets of X, and,
(b) given xφy in X, some % 6 Ψ has x E St(x, §) C X - {y}.

3.2. LEMMA. Suppose X is a GO-space with a capacity. Then there is a
countable family ΨR such that

(a) each % E ΨR is a collection of open subsets of X, and,
(b) given x E R andy φ x, some % EΨRhasx E St(x, 6) C X- {y}.

Proof. Let §0 = {{x} \x E /}. For n >: 1 and for/? E i?*, use Lemma
(2.3) to find a point q(p,n)>p such that for every t E [/?, ^(/?, Λ)],

£ /([/?,4(/?,«)])<l/«. Let 8(/i) = tt/>,tf(/>,/i))|/>elί*}. Next, use
Lemma (2.6) to write L— U {Lk\k > 1} where each L^ is closed in Z,
and notice that /?* Π L = 0 . Now define, for /ι > 1, §(-«) = {X - Ln).
We let ΨR = {β(/ι) I« is any integer}.

Fix Λ: E iί and j ^ x. If x E /, then St(x, S(0)) = {x) C l - { j ; } as
required, so assume x E R — I ^ R*. Let / be the convex hull of the
two-point set [x, y). There are two cases.

Case 1. If there is some point / having εt(J) > 0, find a positive
integer n having εt(J) > \/n. Since x E i?*, [x, #(.*, n)) E δ(«) so that
x E St(x, §(n)). Suppose some member [p,q{p,n)) of §(n) contains
both x and y. By convexity, / C [/?, g( /?,«)] so we have et(J) <
c,([Λί(^Λ)]) But / E [/>,#(/>,«)] so that l//i>e / ([p,^(p,n)])>
ε,(/) > l/«, which is impossible. Hencey ^ St(x, §(n)).

Case 2. If there is no point t in X such that ε,(/) > 0, then y < x9

because if x < y we would have [ x, y) — [ x, -») Π («- , j ) , so x would be
an interior point of /, whence εx(J) > 0. Since y < x and since no point t
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of X lies strictly between x and y, we conclude that (<-,;>] = (<-,x) is
open. Thus y E L. Choose H SO that y E Ln. Because iί* n LH = 0 ,
x e St(jc, S ( - Λ ) ) = I - L « C I - {>>}, as required. D

3.3. REMARK. Suppose X is a GO-space with a capacity. There is an
analogue of (3.2) which constructs a countable family ΨL of open collec-
tions such that if x E L and y E X — {x}, then some § E t L has x E
St(x ,g)C *

3.4. LEMMA. Suppose X is a GO-space with a capacity. Let E — X —
(RU LU I). Then there is a countable family ΨE such that

(a) each % E ΨE is a collection of open subsets of X, and,
(b) ifxEE and if'y E X - {x}, then for some § E%,x E St(jc, §)

CX-{y}.

Proof. For each/? E E9 use Lemma (2.4) to select points a(p, n) <p
< b(p, n) such that for each t E [a(p, n), b(p, n% et([a(p, n), b(p, n)])
< l/n. For n > 1, let §(n) = {(a(p, n), b(p, n)) \p E E}9 and let ΨE =
[Q(n)\n> 1}. The proof that ΨE satisfies (b) above is similar to, but even
easier than, the proof that ΨR satisfies (b) of (3.2). D

3.5. THEOREM. Any GO-space with a capacity has a Gδ-diagonal.

Proof. Using the collections found in (3.2)-(3.4) let Ψ = t Λ U Ψ L U
ΨE. Then Ψ satisfies the hypotheses of (3.1) so that, since X is perfect in
the light of (2.2), X has a G^-diagonal. D

3.6. COROLLARY (Scepin). Any LOTS with a capacity is metrizable.

Proof. Any LOTS with a Gδ-diagonal is metrizable [10]. D

4. Some results on perfect spaces. There are two old questions
which concern perfect GO-spaces. The first is due to R. W. Heath, and the
second was posed by M. Maurice and J. van Wouwe.

(H) Find a real example of a perfect GO-space which has a point-
countable base and yet is not metrizable.

(MvW) Find a real example of a perfect GO-space which does not
have a σ-discrete dense subset.
(These questions ask for "real examples", i.e., examples in ZFC, since if
there is a Souslin line, then there is a counterexample to each [2], [13],
[15].)
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In this section we show that no counterexample to (H) or to (MvW)
can have a capacity.

It is known that any GO-space having a σ-discrete dense subset is
perfect [15]. We begin this section by proving the converse for GO-spaces
having a capacity, thereby strengthening (2.2). We need the following
result, due to Przymusiήski [1].

4.1. PROPOSITION. Let (X, ?Γ, <) be a GO-space having a G^-diagonal.
Then there is a topology 9H on Xsuch that:

(a) (X, 9ϊt) is metrizable;
(b) 9IL C ?Γ;
(c) (X, 911, <) is a GO-space.

4.2. THEOREM. Suppose X is a perfect GO-space having a Gδ-diagonal.
Then X has a σ-discrete dense subset.

Proof. Let ?Γ and < be, respectively, the topology and ordering of X.
Use (4.1) to find a metrizable GO-topology 9H C ?Γ. Let D be a σ-discrete
dense subset of the metric space (X, 9lt) and let / = {x| {x} e ?Γ- 9H}.
Then Z> is also σ-discrete in (Z, ?Γ) and / is an .Fσ in (X, ?Γ), whence / is
also σ-discrete in (X9 *Γ). Let E = D U /.

Now let Wbe any nonvoid open set. If W Π / ^ 0 then W Π E ¥= 0,
so assume ff contains no isolated points. Then there are points a < b in
W such that 0 ^ (α, b) C W. But then (α, 6) e 9IL so (α, 6) Π D ^ 0 .
Hence W Γ\ E Φ 0 , as required. D

4.3. COROLLARY. Any GO-space with a capacity has a σ-discrete dense
set.

Proof. Combine (2.2), (3.5) and (4.2). D

4.4. COROLLARY. Any GO-space with a capacity has a dense metrizable
subspace.

Proof. The σ-discrete dense set D found in (4.3) is, in its relative
topology, semistratifiable in the sense of Creede [7] and any semistratifia-
ble GO-space is metrizable [11]. •
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To show that no counterexample to (MvW) can have a capacity we
prove a bit more, namely:

4.5. THEOREM. Let Xbe a GO-space having a o-discrete dense set and a
point-countable base. Then X is metrizable.

Proof. Since any <?O-space having a σ-discrete dense set is perfect and
paracompact [15], it will be enough to show that a space X which satisfies
the hypotheses of (4.5) has a σ-disjoint base. Then X is quasi-developable
[3] and perfect, so X is developable [3], But a developable paracompact
space is metrizable.

Let D— U {D(n)\n > 1} be a σ-discrete dense subset of X. A
standard argument [Prop. 3.4, 5] provides a σ-disjoint base for points of
D. Let / be the set of isolated points of X(so / C D). Let R* and L* be as
in (2.5) and let E = X- (i?* U L* U /) . A standard argument shows
that the collection CV= U{Ύn\n> 1), where % is the collection of
convex components of X — D(n), contains a σ-disjoint base for all points
of E. Therefore it suffices to find σ-disjoint collections β and β' which
contain neighborhood bases for all points of R* — D and L* — /?,
respectively. We show how to find β.

Let % be a point-countable base for X, and let T = U {% | n > 1} be
as above. For n > 1 and V E \ 9 let %(V) = {B Π F | £ E ® and for
some/7 e i ? * Π F, ([/>,-») Π F) C 5 C [/>,-»)}. L e t ^ = U { ^ ( F ) |
F E ΎJ and <? = U {%\n > 1}. Then we have

1. Φ is point-countable, and
2. £P contains a neighborhood base at each point of i?* — Z).

Fix n and F e T n . For each P E ^ ( F ) there is a unique ^ E ? ί l F
having P = [ » , ->) n F. Let C(/i, F) = {yP\P e %{V)} and choose
S(n,V) = {x(V,a)\a < κ(V)}> a cofinal strictly increasing subset of
C(n, V). Because %{V) is point-countable, we have

3. If a < κ(V) then | C(n9 V) ΓΊ ( ^ , x(F, α)) |< ω0.
For each j ; E C(π, F), let α(«, F, y) be the first index β < κ(V) such that
y < x(V, β) and define

β(n9 F, α) - {[y9 x(V, a)) \y E C(/i, F) and α ( Λ , F, 7) = α}.

lίVΦW belong to Ύ(/i) or if F = fF and α φ β9 then β(/i, V9 a) Π
6(n,W,β)= 0. Furthermore,

4. each β(«, F, α) is countable.
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Index β(n9 V, a) as {C(n9 V, a, k) \ k > 1} and let β\n9 k) =

{C(n9 V9a,k)\Ve %, a < κ(V)}. Then we have

5. the family β = U { 6 ( Λ , V9 a)\n 7> 1, F E Ύ n , and a < κ(V)} has

6 = U{β '(n, fc)|n > l , fc> l},sothatβisσ-disjoint.

It remains only to show that 6 contains a neighborhood base at each

point of R* - D. Fix/? E R* ~ D and r>p. Find ί e 9 with/? e ΰ C

[p, r[. Because p ξ£ I we may find # >p with [/?, q) C B C [p, r) and

(/?, <?) ^ 0 . Choose Λ so that (/?, qr) Π Z)(Λ) T^ 0 and choose d E (/?, <?)

Π D(π). Because p E R — D, some convex component F e T n contains

/?. Then F C ( ^ , ί / )andso

p e [ p , ->) n κ c [ p , -*) n (<- , d ) c [ / ? , d ) c [ p , q ) c B c[p9 - * ) ,

i,e., the set β = 5 Π V belongs to %(V). The unique point yQ with

β — [ΪQ > -*) n ^ is ^ρ — P^ so /? E C(w, F) . Compute α = a(n9 V, p).

Then [/?, x(V9 a)) E β(/i, F, a) E 6 and [/?, x(V9 a)) C Q C B C [p9 r).

Hence β contains a neighborhood base at each point of R* — D, as

required. D

4.6. COROLLARY. Any GO-space having a capacity and a point-counta-

ble base is metrizable. D

Theorem 2.1 of [4] shows that a perfect GO-space with a δ#-base has a

point-countable base. Hence we have:

4.7. COROLLARY. Any GO-space having a capacity and a δθ-base is

metrizable. D

We conclude this section by pointing out that, in the light of (4.5),

any counterexample for (H) is also a counterexample of the type required

in (MvW).

5. Examples.

5.1 It is easy to see that the Sorgenfrey line [3] has a capacity. Thus,

Theorem (3.5) cannot be strengthened to assert that a GO-space with a

capacity is metrizable. D

5.2 No uncountable subspace of the Michael line [3, 11] can have a

capacity unless it is metrizable. For if X is an uncountable subspace of the

Michael line, then X is quasi-developable since it has a σ-disjoint base

[11]. If X had a capacity then X would be perfect (2.2) and perfect

quasi-developable space is developable [3]. But a developable GO-space is

metrizable. (We remark that, under (MA + -iCH), there are uncountable
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subsets of the Michael line M which are metrizable; indeed Theorem (4.1)
of [9] shows that any subspace Xof M with | X\< c is metrizable.) D

5.3 It is not true that a perfect GOspace with a Gδ-diagonal and a
σ-discrete dense set must have a capacity. Let X be the GO-space obtained
from the usual real line R by making the half-line [ x, ->) open whenever x
is irrational and using the usual open interval neighborhoods for rational
numbers. Then X is separable and has a Gδ-diagonal. However the set
R = {x E X\[x9 -*) is open} is not an .Fσ-subset of X, so Xdoes not have
a capacity. D
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