GENERALIZED ORDERED SPACES WITH CAPACITIES

H. R. BENNETT AND D. J. LUTZER

We show that any GO-space having a capacity in the sense of Ščepin has a G_{δ} -diagonal and is perfect. In addition, such a space has a σ -discrete dense subset and a dense metrizable subspace, and any GOspace having a capacity and a point-countable base (or having a σ -discrete dense subset and a point-countable base) is metrizable.

1. Introduction. In [14] Sčepin defined a *capacity* for a space X to be a family of functions $\{\epsilon_x | x \in X\}$ such that, for each closed $F \subset X$,

(C₁) $\varepsilon_x(F)$ is a non-negative real number with $\varepsilon_x(F) > 0$ iff $x \in Int(F)$,

(C₂) if $F_1 \subset F_2$ are closed then $\varepsilon_x(F_1) \le \varepsilon_x(F_2)$,

(C₃) for a fixed closed F, the function $x \to \varepsilon_x(F)$ is continuous,

(C₄) for a fixed x, if $\{F_{\alpha} | \alpha < \kappa\}$ is a family of closed sets satisfying $F_{\alpha} \supset F_{\beta}$ whenever $\alpha < \beta < \kappa$, then $\varepsilon_{x}(\bigcap_{\alpha} F_{\alpha}) = \inf_{\alpha} \varepsilon_{x}(F_{\alpha})$.

In that same paper Ščepin announced without proof that a linearly ordered topological space (LOTS) having a capacity is metrizable. The purpose of this note is to prove a more general result from which Ščepin's result follows immediately, namely, that any GO-space (= suborderable space) with a capacity has a G_{δ} -diagonal. (Recall that the class of GO-spaces is precisely the class of subspaces of LOTS.) Along the way to that result, we show that any GO-space with a capacity is *perfect* (i.e., closed sets are G_{δ}). In §4 we will discuss two old questions about perfect GO-spaces in the context of GO-spaces having a capacity, proving that a GO-space with a capacity has a σ -discrete dense subset and a GO-space with a capacity and a point-countable base must be metrizable. Finally, examples in §5 show that our results are sharp.

Terminology and notation not defined in this paper will follow [8, 11, 12].

2. Preliminary results and perfect normality. We proceed via a sequence of lemmas.

2.1. LEMMA. Any GO-space having a capacity is a first-countable space.

Proof. Fix a non-isolated point p of X. If $[p, \rightarrow)$ is not open then $\varepsilon_p[p, \rightarrow) = 0$ and there is a well-ordered, strictly increasing net $\{x_{\alpha} \mid \alpha < \kappa\}$ whose supremum is p. Let $F_{\alpha} = [x_{\alpha}, \rightarrow)$. According to (C_4) , $0 = \varepsilon_p([p, \rightarrow)) = \inf\{\varepsilon_p(F_{\alpha}) \mid \alpha < \kappa\}$. For each n, choose $\alpha_n < \kappa$ such that $\alpha_{n-1} < \alpha_n$ and $\varepsilon_p(F_{\alpha_n}) < 1/n$. If some point y of X has $x_{\alpha_n} \le y < p$ for each n, then for each n we have $0 < \varepsilon_p([y, \rightarrow)) < \varepsilon_p([x_{\alpha_n}, \rightarrow)) < 1/n$, which is impossible. Hence p is the limit of a sequence $z_n = x_{\alpha_n}$ from (\leftarrow, p) . If $(\leftarrow, p]$ is open, then $\{(z_n, p) \mid n \ge 1\}$ is a neighborhood base at p. If $(\leftarrow, p]$ is not open, we can obtain a sequence $w_1 > w_2 > \cdots$ having p as its limit, and then $\{(z_n, w_n) \mid n \ge 1\}$ is a local base at p. Other cases are handled analogously.

2.2. PROPOSITION. Any GO-space with a capacity is perfect.

Proof. Let U be any open set and let $\forall = \{V_{\alpha} | \alpha \in A\}$ be the family of all convex components of U. For each $\alpha \in A$ choose $p_{\alpha} \in V_{\alpha}$. Then $\varepsilon_{p_{\alpha}}(\overline{V_{\alpha}}) > 0$. Let $P_n = \{p_{\alpha} | \varepsilon_{p_{\alpha}}(\overline{V_{\alpha}}) \ge 1/n\}$. We claim that P_n is a closed, discrete subspace of X. Obviously P_n is discrete-in-itself. We show P_n is closed. Let q be a limit point of P_n . Since X is first-countable, there is a strictly monotonic sequence $\langle q_k \rangle$ from P_n whose limit is q, say $q_k = p_{\alpha_k}$. Let $F = \{q\} \cup (\bigcup \{\overline{V_{\alpha_{2k}}} | k \ge 1\})$. Then F is a closed set and, by (C_3), $\varepsilon_q(F) = \lim_{k \to \infty} \varepsilon_{q_{2k}}(F) \ge 1/n$ because $\varepsilon_{q_{2k}}(F) \ge \varepsilon_{q_{2k}}(\overline{V_{\alpha_{2k}}}) \ge 1/n$. Hence $q \in \operatorname{Int}(F)$. But the sequence $\{q_{2k+1} | k \ge 1\}$ also converges to q and no term of that sequence lies in F, contradicting $q \in \operatorname{Int}(F)$. Hence P_n is closed and discrete.

Since X is first countable, each set $V_{\alpha} \in \mathbb{V}$ is an F_{σ} -set so we may find closed convex sets $D(\alpha, k)$ having $p_{\alpha} \in D(\alpha, 1) \subset D(\alpha, 2) \subset \cdots$ and $\bigcup \{D(\alpha, k) | k \ge 1\} = V_{\alpha}$. Let $E(n, k) = \bigcup \{D(\alpha, k) | p_{\alpha} \in P_n\}$. Since P_n is closed and discrete, each E(n, k) is closed, and $U = \bigcup \mathbb{V} = \bigcup \{E(n, k) | n \ge 1, k \ge 1\}$.

REMARK. Corollary 4.3 below provides an even stronger conclusion than does Proposition 2.2.

2.3. LEMMA. Suppose $(\leftarrow, p]$ is not open. Let $\delta > 0$. Then there is a point q > p such that for each $t \in [p, q], \varepsilon_t([p, q]) < \delta$.

Proof. Since p is a limit point of (p, \rightarrow) there is a sequence $b_1 > b_2 > \cdots$ whose limit is p. Then $0 = \varepsilon_p((\leftarrow, p]) = \inf\{\varepsilon_p((\leftarrow, b_n]) | n \ge 1\}$ so that for some $n_0, \varepsilon_p((\leftarrow, b_{n_0}]) < \delta$. Then $\varepsilon_p([p, b_{n_0}]) < \delta$. Now assume no point q, as described in the Lemma, exists. Let $c_0 = b_{n_0}$. Then there is a

point $t_0 \in [p, c_0]$ with $\varepsilon_{t_0}([p, c_0]) \ge \delta$. Necessarily, $p < t_0$. Let $c_1 = \min\{b_{n_0+1}, t_0\}$ and find $t_1 \in [p, c_1]$ with $\varepsilon_{t_1}([p, c_1]) \ge \delta$. In general, find a point $t_{k+1} \in [p, c_{k+1}]$ with $\varepsilon_{t_{k+1}}([p, c_{k+1}]) \ge \delta$, where $c_{k+1} = \min\{b_{n_0+k+1}, t_k\}$. If *m* is fixed and $k > m, p < c_k < c_m$ and so $\varepsilon_{t_k}([p, c_m]) \ge \delta$. Letting $k \to \infty$, we obtain $\varepsilon_p([p, c_m]) = \lim_k \varepsilon_{t_k}([p, c_m]) \le \delta$. But $c_m \le b_{n_0+m} < b_{n_0}$ so we obtain $\delta \le \varepsilon_p([p, c_m]) \le \varepsilon_p([p, b_{n_0}]) < \delta$, a contradiction.

REMARK. There is an obvious analogue of (2.3) in case [p, \rightarrow) is not open.

2.4. LEMMA. Suppose neither $(\leftarrow, p]$ nor $[p, \rightarrow)$ is open (i.e., p is a two-sided limit point of X). Let $\delta > 0$. Then there are points q and r with $q having the property that for every <math>t \in [q, r]$, $\varepsilon_t([q, r]) < \delta$.

Proof. The proof is analogous to the proof of (2.3).

2.5. NOTATION. Let $(X, \mathfrak{T}, <)$ be a GO-space. Let $R = \{x \in X | [x, \rightarrow) \text{ is open}\},$ $L = \{x \in X | (\leftarrow, x] \text{ is open}\},$ $I = \{x \in X | \{x\} \text{ is open}\},$ $R^* = R - I,$ and $L^* = L - I.$

2.6. LEMMA. Assume X is a GO-space having a capacity. Each of the sets defined in (2.5) is an F_{σ} -set.

Proof. In the light of (2.2), I is an F_{σ} -set since I is open. If we can show that R is an F_{σ} -set, then so is R^* because $R^* = R - I$.

To show that R is an F_{σ} -set, observe that for each $x \in R$, $\varepsilon_x([x, \rightarrow)) > 0$. Let $R_n = \{x \in R | \varepsilon_x([x, \rightarrow)) \ge 1/n\}$. Suppose p is a limit point of R_n . Choose a strictly monotonic sequence $\langle x_k \rangle$ from R_n whose limit is p. There are two cases.

Case 1. Suppose $x_1 < x_2 < \cdots$. Then $[p, \rightarrow) = \bigcap \{ [x_k, \rightarrow) | k \ge 1 \}$ so that $\varepsilon_p([p, \rightarrow)) = \inf \{ \varepsilon_p([x_k, \rightarrow)) | k \ge 1 \}$. If k is fixed and m > k then $x_k < x_m$ so that $\varepsilon_{x_m}([x_k, \rightarrow)) \ge \varepsilon_{x_m}([x_m, \rightarrow)) \ge 1/n$. Letting $m \rightarrow \infty$, we obtain $\varepsilon_p([x_k, \rightarrow)) = \lim \varepsilon_{x_m}([x_k, \rightarrow)) \ge 1/n$. Hence $\varepsilon_p([p, \rightarrow)) \ge 1/n$. But then p must be an interior point of $[p, \rightarrow)$ so that the increasing sequence $\langle x_k \rangle$ could not have converged to p. Case 2. Suppose $x_1 > x_2 > \cdots$. According to (C_3) , $\varepsilon_p([p, \rightarrow)) = \lim_k \varepsilon_{x_k}([p, \rightarrow))$. Since $p < x_k$, $\varepsilon_{x_k}([p, \rightarrow)) \ge \varepsilon_{x_k}([x_k, \rightarrow)) \ge 1/n$. Hence $\varepsilon_p([p, \rightarrow)) \ge 1/n$. But then p must be an interior point of $[p, \rightarrow)$ so that $p \in R$. Hence $p \in R_n$ as required.

Analogously, L and L* are F_{σ} sets.

3. G_{δ} -diagonals. Ceder [6] observed that the diagonal of space X is a G_{δ} -subset of $X \times X$ if there are open coverings $\mathcal{G}(n)$ of X (for $n \ge 1$) such that given $x \ne y$ in X, $St(x, \mathcal{G}(n)) \subset X - \{y\}$ for some n. In perfect spaces, a weaker condition suffices. The proof of the next lemma is easy.

3.1. LEMMA. Suppose X is perfect. Then X has a G_{δ} -diagonal if there is a countable family Ψ such that

(a) each $\mathcal{G} \in \Psi$ is a collection of open subsets of X, and,

(b) given $x \neq y$ in X, some $\mathcal{G} \in \Psi$ has $x \in St(x, \mathcal{G}) \subset X - \{y\}$.

3.2. LEMMA. Suppose X is a GO-space with a capacity. Then there is a countable family Ψ_R such that

(a) each $\mathfrak{G} \in \Psi_R$ is a collection of open subsets of X, and,

(b) given $x \in R$ and $y \neq x$, some $\mathcal{G} \in \Psi_R$ has $x \in St(x, \mathcal{G}) \subset X - \{y\}$.

Proof. Let $\mathcal{G}_0 = \{\{x\} | x \in I\}$. For $n \ge 1$ and for $p \in R^*$, use Lemma (2.3) to find a point q(p, n) > p such that for every $t \in [p, q(p, n)]$, $\varepsilon_t([p, q(p, n)]) < 1/n$. Let $\mathcal{G}(n) = \{[p, q(p, n)) | p \in R^*\}$. Next, use Lemma (2.6) to write $L = \bigcup \{L_k | k \ge 1\}$ where each L_k is closed in X, and notice that $R^* \cap L = \emptyset$. Now define, for $n \ge 1$, $\mathcal{G}(-n) = \{X - L_n\}$. We let $\Psi_R = \{\mathcal{G}(n) | n \text{ is any integer}\}$.

Fix $x \in R$ and $y \neq x$. If $x \in I$, then $St(x, \mathcal{G}(0)) = \{x\} \subset X - \{y\}$ as required, so assume $x \in R - I = R^*$. Let J be the convex hull of the two-point set $\{x, y\}$. There are two cases.

Case 1. If there is some point t having $\varepsilon_t(J) > 0$, find a positive integer n having $\varepsilon_t(J) > 1/n$. Since $x \in \mathbb{R}^*$, $[x, q(x, n)) \in \mathcal{G}(n)$ so that $x \in \operatorname{St}(x, \mathcal{G}(n))$. Suppose some member [p, q(p, n)) of $\mathcal{G}(n)$ contains both x and y. By convexity, $J \subset [p, q(p, n)]$ so we have $\varepsilon_t(J) \le \varepsilon_t([p, q(p, n)])$. But $t \in [p, q(p, n)]$ so that $1/n > \varepsilon_t([p, q(p, n)]) \ge \varepsilon_t(J) > 1/n$, which is impossible. Hence $y \notin \operatorname{St}(x, \mathcal{G}(n))$.

Case 2. If there is no point t in X such that $\varepsilon_t(J) > 0$, then y < x, because if x < y we would have $[x, y) = [x, \rightarrow) \cap (\leftarrow, y)$, so x would be an interior point of J, whence $\varepsilon_x(J) > 0$. Since y < x and since no point t

of X lies strictly between x and y, we conclude that $(\leftarrow, y] = (\leftarrow, x)$ is open. Thus $y \in L$. Choose n so that $y \in L_n$. Because $R^* \cap L_n = \emptyset$, $x \in St(x, \mathcal{G}(-n)) = X - L_n \subset X - \{y\}$, as required.

3.3. REMARK. Suppose X is a GO-space with a capacity. There is an analogue of (3.2) which constructs a countable family Ψ_L of open collections such that if $x \in L$ and $y \in X - \{x\}$, then some $\mathcal{G} \in \Psi_L$ has $x \in St(x, \mathcal{G}) \subset X - \{y\}$.

3.4. LEMMA. Suppose X is a GO-space with a capacity. Let $E = X - (R \cup L \cup I)$. Then there is a countable family Ψ_E such that

(a) each $\mathcal{G} \in \Psi_E$ is a collection of open subsets of X, and,

(b) if $x \in E$ and if $y \in X - \{x\}$, then for some $\mathcal{G} \in \Psi_E$, $x \in St(x, \mathcal{G}) \subset X - \{y\}$.

Proof. For each $p \in E$, use Lemma (2.4) to select points $a(p, n) such that for each <math>t \in [a(p, n), b(p, n)]$, $\varepsilon_t([a(p, n), b(p, n)]) < 1/n$. For $n \ge 1$, let $\mathcal{G}(n) = \{(a(p, n), b(p, n)) | p \in E\}$, and let $\Psi_E = \{\mathcal{G}(n) | n \ge 1\}$. The proof that Ψ_E satisfies (b) above is similar to, but even easier than, the proof that Ψ_R satisfies (b) of (3.2).

3.5. THEOREM. Any GO-space with a capacity has a G_{δ} -diagonal.

Proof. Using the collections found in (3.2)–(3.4) let $\Psi = \Psi_R \cup \Psi_L \cup \Psi_E$. Then Ψ satisfies the hypotheses of (3.1) so that, since X is perfect in the light of (2.2), X has a G_{δ} -diagonal.

3.6. COROLLARY (Scepin). Any LOTS with a capacity is metrizable.

Proof. Any LOTS with a G_{δ} -diagonal is metrizable [10].

4. Some results on perfect spaces. There are two old questions which concern perfect GO-spaces. The first is due to R. W. Heath, and the second was posed by M. Maurice and J. van Wouwe.

(H) Find a real example of a perfect GO-space which has a pointcountable base and yet is not metrizable.

(MvW) Find a real example of a perfect GO-space which does not have a σ -discrete dense subset.

(These questions ask for "real examples", i.e., examples in ZFC, since if there is a Souslin line, then there is a counterexample to each [2], [13], [15].)

In this section we show that no counterexample to (H) or to (MvW) can have a capacity.

It is known that any GO-space having a σ -discrete dense subset is perfect [15]. We begin this section by proving the converse for GO-spaces having a capacity, thereby strengthening (2.2). We need the following result, due to Przymusiński [1].

4.1. PROPOSITION. Let $(X, \mathfrak{T}, <)$ be a GO-space having a G_{δ} -diagonal. Then there is a topology \mathfrak{M} on X such that:

(c) (X, \mathfrak{M}, \leq) is a GO-space.

4.2. THEOREM. Suppose X is a perfect GO-space having a G_{δ} -diagonal. Then X has a σ -discrete dense subset.

Proof. Let \mathfrak{T} and < be, respectively, the topology and ordering of X. Use (4.1) to find a metrizable GO-topology $\mathfrak{M} \subset \mathfrak{T}$. Let D be a σ -discrete dense subset of the metric space (X, \mathfrak{M}) and let $I = \{x | \{x\} \in \mathfrak{T} - \mathfrak{M}\}$. Then D is also σ -discrete in (X, \mathfrak{T}) and I is an F_{σ} in (X, \mathfrak{T}) , whence I is also σ -discrete in (X, \mathfrak{T}) . Let $E = D \cup I$.

Now let W be any nonvoid open set. If $W \cap I \neq \emptyset$ then $W \cap E \neq \emptyset$, so assume W contains no isolated points. Then there are points a < b in W such that $\emptyset \neq (a, b) \subset W$. But then $(a, b) \in \mathfrak{M}$ so $(a, b) \cap D \neq \emptyset$. Hence $W \cap E \neq \emptyset$, as required.

4.3. COROLLARY. Any GO-space with a capacity has a σ -discrete dense set.

Proof. Combine (2.2), (3.5) and (4.2).
$$\Box$$

4.4. COROLLARY. Any GO-space with a capacity has a dense metrizable subspace.

Proof. The σ -discrete dense set D found in (4.3) is, in its relative topology, semistratifiable in the sense of Creede [7] and any semistratifiable GO-space is metrizable [11].

⁽a) (X, \mathfrak{M}) is metrizable;

⁽b) $\mathfrak{M} \subset \mathfrak{T}$;

To show that no counterexample to (MvW) can have a capacity we prove a bit more, namely:

4.5. THEOREM. Let X be a GO-space having a σ -discrete dense set and a point-countable base. Then X is metrizable.

Proof. Since any GO-space having a σ -discrete dense set is perfect and paracompact [15], it will be enough to show that a space X which satisfies the hypotheses of (4.5) has a σ -disjoint base. Then X is quasi-developable [3] and perfect, so X is developable [3]. But a developable paracompact space is metrizable.

Let $D = \bigcup \{D(n) | n \ge 1\}$ be a σ -discrete dense subset of X. A standard argument [Prop. 3.4, 5] provides a σ -disjoint base for points of D. Let I be the set of isolated points of X (so $I \subset D$). Let R^* and L^* be as in (2.5) and let $E = X - (R^* \cup L^* \cup I)$. A standard argument shows that the collection $\Im = \bigcup \{\Im_n | n \ge 1\}$, where \Im_n is the collection of convex components of X - D(n), contains a σ -disjoint base for all points of E. Therefore it suffices to find σ -disjoint collections \mathcal{C} and \mathcal{C}' which contain neighborhood bases for all points of $R^* - D$ and $L^* - D$, respectively. We show how to find \mathcal{C} .

Let \mathfrak{B} be a point-countable base for X, and let $\mathfrak{V} = \bigcup \{\mathfrak{V}_n | n \ge 1\}$ be as above. For $n \ge 1$ and $V \in \mathfrak{V}_n$, let $\mathfrak{P}_n(V) = \{B \cap V | B \in \mathfrak{B} \text{ and for}$ some $p \in R^* \cap V$, $([p, \to) \cap V) \subset B \subset [p, \to)\}$. Let $\mathfrak{P}_n = \bigcup \{\mathfrak{P}_n(V) | V \in \mathfrak{V}_n\}$ and $\mathfrak{P} = \bigcup \{\mathfrak{P}_n | n \ge 1\}$. Then we have

1. \mathcal{P} is point-countable, and

2. \mathcal{P} contains a neighborhood base at each point of $R^* - D$. Fix *n* and $V \in \mathcal{N}_n$. For each $P \in \mathcal{P}_n(V)$ there is a unique $y_P \in P \cap V$ having $P = [y_P, \to) \cap V$. Let $C(n, V) = \{y_P | P \in \mathcal{P}_n(V)\}$ and choose $S(n, V) = \{x(V, \alpha) | \alpha < \kappa(V)\}$, a cofinal strictly increasing subset of C(n, V). Because $\mathcal{P}_n(V)$ is point-countable, we have

3. If $\alpha < \kappa(V)$ then $|C(n, V) \cap (\leftarrow, x(V, \alpha))| \le \omega_0$. For each $y \in C(n, V)$, let $\alpha(n, V, y)$ be the first index $\beta < \kappa(V)$ such that $y < x(V, \beta)$ and define

$$\mathcal{C}(n, V, \alpha) = \{ [y, x(V, \alpha)) | y \in C(n, V) \text{ and } \alpha(n, V, y) = \alpha \}.$$

If $V \neq W$ belong to $\mathcal{N}(n)$ or if V = W and $\alpha \neq \beta$, then $\mathcal{C}(n, V, \alpha) \cap \mathcal{C}(n, W, \beta) = \emptyset$. Furthermore,

4. each $\mathcal{C}(n, V, \alpha)$ is countable.

Index $\mathcal{C}(n, V, \alpha)$ as $\{C(n, V, \alpha, k) | k \ge 1\}$ and let $\mathcal{C}'(n, k) = \{C(n, V, \alpha, k) | V \in \mathcal{V}_n, \alpha < \kappa(V)\}$. Then we have

5. the family $\mathcal{C} = \bigcup \{ \mathcal{C}(n, V, \alpha) | n \ge 1, V \in \mathcal{V}_n, \text{ and } \alpha < \kappa(V) \}$ has $\mathcal{C} = \bigcup \{ \mathcal{C}'(n, k) | n \ge 1, k \ge 1 \}$, so that \mathcal{C} is σ -disjoint.

It remains only to show that \mathcal{C} contains a neighborhood base at each point of $R^* - D$. Fix $p \in R^* - D$ and r > p. Find $B \in \mathfrak{B}$ with $p \in B \subset$ [p, r[. Because $p \notin I$ we may find q > p with $[p, q) \subset B \subset [p, r)$ and $(p, q) \neq \emptyset$. Choose *n* so that $(p, q) \cap D(n) \neq \emptyset$ and choose $d \in (p, q)$ $\cap D(n)$. Because $p \in R - D$, some convex component $V \in \mathcal{V}_n$ contains *p*. Then $V \subset (\leftarrow, d)$ and so

$$p \in [p, \rightarrow) \cap V \subset [p, \rightarrow) \cap (\leftarrow, d) \subset [p, d) \subset [p, q) \subset B \subset [p, \rightarrow),$$

i.e., the set $Q = B \cap V$ belongs to $\mathcal{P}_n(V)$. The unique point y_Q with $Q = [y_Q, \rightarrow) \cap V$ is $y_Q = p$, so $p \in C(n, V)$. Compute $\alpha = \alpha(n, V, p)$. Then $[p, x(V, \alpha)) \in \mathcal{C}(n, V, \alpha) \in \mathcal{C}$ and $[p, x(V, \alpha)) \subset Q \subset B \subset [p, r)$. Hence \mathcal{C} contains a neighborhood base at each point of $R^* - D$, as required.

4.6. COROLLARY. Any GO-space having a capacity and a point-countable base is metrizable. \Box

Theorem 2.1 of [4] shows that a perfect GO-space with a $\delta\theta$ -base has a point-countable base. Hence we have:

4.7. COROLLARY. Any GO-space having a capacity and a $\delta\theta$ -base is metrizable.

We conclude this section by pointing out that, in the light of (4.5), any counterexample for (H) is also a counterexample of the type required in (MvW).

5. Examples.

5.1 It is easy to see that the Sorgenfrey line [3] has a capacity. Thus, Theorem (3.5) cannot be strengthened to assert that a GO-space with a capacity is metrizable.

5.2 No uncountable subspace of the Michael line [3, 11] can have a capacity unless it is metrizable. For if X is an uncountable subspace of the Michael line, then X is quasi-developable since it has a σ -disjoint base [11]. If X had a capacity then X would be perfect (2.2) and perfect quasi-developable space is developable [3]. But a developable GO-space is metrizable. (We remark that, under (MA + \neg CH), there are uncountable

subsets of the Michael line M which are metrizable; indeed Theorem (4.1) of [9] shows that any subspace X of M with |X| < c is metrizable.)

5.3 It is not true that a perfect GO-space with a G_{δ} -diagonal and a σ -discrete dense set must have a capacity. Let X be the GO-space obtained from the usual real line **R** by making the half-line $[x, \rightarrow)$ open whenever x is irrational and using the usual open interval neighborhoods for rational numbers. Then X is separable and has a G_{δ} -diagonal. However the set $R = \{x \in X | [x, \rightarrow) \text{ is open}\}$ is not an F_{σ} -subset of X, so X does not have a capacity.

References

- [1] K. Alster, Subparacompactness in Cartesian products of generalized ordered topological spaces, Fund. Math., 87 (1975), 7–28.
- [2] H. Bennett, On quasi-developable spaces, Ph.D. Thesis Arizona State University, 1968.
- [3] _____, On quasi-developable spaces, Gen. Top. Appl., 1 (1971), 253–262.
- [4] _____, GO-spaces with $\delta\theta$ -bases, Topology and Order Structures, I, M.C. Tract 142, Mathematical Center, Amsterdam, 1981.
- [5] H. Bennett and D. Lutzer, Ordered spaces with σ -minimal bases, Topology Proc., 2 (1977), 371–382.
- [6] J. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105–125.
- [7] G. Creede, Concerning semistratifiable spaces, Pacific J. Math., 32 (1970), 47-54.
- [8] R. Engelking, General Topology, Polish Scientific Publishers, 1977.
- [9] W. Fleissner and G. M. Reed, Paralindelöf spaces and spaces with a σ-locally countable base, Topology Proc., 2 (1977), 89-110.
- [10] D. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc., 22 (1969), 557–558.
- [11] _____, On generalized ordered spaces, Dissertations Math., 89, 1971.
- [12] _____, Ordered Topological Spaces, Surveys in General Topology, ed. by G. M. Reed, Academic Press, New York, 1980.
- [13] V. Ponomarev, Metrizability of a finally compact p-space with a point-countable base, Sov. Math. Dokl., 8 (1967), 765-768.
- [14] E. Ščepin, On topological products, groups, and a new class of spaces more general than metric spaces, Soviet Math. Dokl., 17 (1976), 152–155.
- [15] J. van Wouwe, GO-spaces and generalizations of metrizability, M.C. Tract 104, Mathematical Center, Amsterdam, 1979.

Received May 14, 1982. The second author was partially supported by NSF Grant MCS 80-01617.

TEXAS TECH UNIVERSITY LUBBOCK, TX 79409

AND

MIAMI UNIVERSITY OXFORD, OH 45056