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A SOLUTION TO A PROBLEM OF E. MICHAEL

T. C. PRZYMUSINSKI

A product space X X Y is rectangularly normal if every continuous
real-valued function defined on a closed rectangle A X B in X X Y can
be continuously extended onto 1 X 7 . It is known that products of
normal spaces with locally compact metric spaces are rectangularly
normal. In this paper we prove the converse of this theorem by showing
there exists a normal space X such that its product X X M with a metric
space M is rectangularly normal if and only if M is locally compact, thus
answering positively a question raised by £. Michael.

Other related results are obtained; in particular, we show there
exists a normal space X and a countable metric space M with one
non-isolated point such that the product space I X Mis not rectangular
(in the sense of Pasynkov).

1. Introduction. Let /?, Q and / denote the reals, the rationals and
the unit segment. We say that a product space X X Y is rectangularly
normal if every continuous real-valued function / : A X B -» R defined on
a closed rectangle A X B in XX Y can be continuously extended onto
XX Y. The concept of rectangular normality—being a natural weakening
of normality—first appeared implicitly in papers of Morita [M9], Starbird
[S, S2] and Miednikov [Mi] in connection with their successful attempt to
generalize the Borsuk Homotopy Extension Theorem. It turned out that
even though normality and countable paracompactness of X are necessary
(and sufficient) for the normality of the product XXI, only normality of
X suffices to ensure rectangular normality of X X I. More generally, the
following theorem holds:

1.1. THEOREM [MO, S2, Mi]. Products of normal spaces with locally
compact metric spaces are rectangularly normal. D

In this paper we prove the converse of this Theorem by showing that
there exists a normal space X whose product with a metric space M is
rectangularly normal if and only if M is locally compact (Example 2.5). In
particular, X is a normal space whose product, XX Q, with the space of
rationals Q is not rectangularly normal. This answers a question raised by
E. Michael.

The existence of the above space X is a consequence of Theorem 2.4,
which states that X X M is rectangularly normal for some non-locally
compact metric space M if and only if X is countably functionally Katetov
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(see the definition in §2), and the existence of a normal space which is not

countably functionally Katetov ([PW]; Example 3).

Other related results are proved; in particular, we give an example of

a normal space X and a countable metric space M with one non-isolated

point, whose product X X M is not rectangular in the sense of B. A.

Pasynkov [Pa, Pa2].
For all the undefined notions the reader is referred to [E]. For a

cardinal number K, we denote by J(κ) the hedgehog with K spikes, i.e.

J(κ) — {0} U {(α, t): a G K and 0 < ί < 1}, where points (α, t) have

basic neighborhoods of the form {(α, t')\ t — \/n < t' < t + \/n], n —

1,2,..., and the point θ has basic neighborhoods of the form

B(n) = {0} U {(«,/>: α e K and t < \/n).

By Jo(κ) w e denote the closed subspace {θ} U {(α, 1/w): α E /c, w =

1,2,...} of /(/c). One can easily see that every non-locally compact space

contains a closed copy of/0(ω).

A subset of a space is an Fκ subset if it is a union of < K closed sets. A

subset A of a space X is C-embedded (C*-embedded) in ^ if every

continuous function f: A -* R (f: A -* I) can be continuously extended

over X We say that a covering {WS}S(ΞS of X is an extension of a covering
o f i t s subspace Λ if Ws Π yί = G5 for all s E 5.

2 Rectangular normality of products. We will deduce our results

from Proposition 2.2 below. In its proof we will use the following result

due to E. Michael (see [S2]):

2.1. THEOREM (Michael). If F is a closed subset of a metric space Z and

X is any space, then XX F is C-embedded in XX Z. D

We remark that an analogous theorem holds for compact spaces Z

[S2], but is false for paracompact/ -spaces [Wa].

2.2. PROPOSITION (Main). For a cardinal number K and a closed subset

F of a normal space X the following conditions are equivalent:

(ι)FXJ(κ) is C-embedded in X X J(κ);

(ii) F X J0(κ) is C-embedded in X X J0(κ)

(iii) every countable locally finite covering of F by open Fκ subsets can be

extended to a locally finite open covering of X.

Proof. The implication (i) =^> (ii) is an obvious consequence of Theo-

rem 2.1 and the fact that J0(κ) is a closed subspace of J(κ).
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(ii) => (ϋi). Suppose that {Gn}™={ is a countable, locally finite covering
of Fby open Fκ subsets. Hence there exist zero sets Fna in F such that

Gn = U FΛψa9

and continuous functions fna\ F-* I such that fn,a(Fna) C {1} and

fn,a(
F\Gn) c {0} Define a function/: F X J0(κ) -> / as follows:

0, if z =• θ

The function/is continuous. Indeed, if xQ E i7 then there exists an «0 < ω
and a neighborhood Fo of x0 such that P̂  Π U >Wo G, = 0, and therefore
/(*, z) = 0 for all (x9 z) in Vo X B(n0). By (ii) there exists a continuous
extension/: X X /0(κ) -> / of/onto X X /0(κ). Define

G* = (x GX: \f(x,z) - f(x9 θ)\> 3/4 for somez G B(n)}

- U {*eX: |/(x,z)-/(x,0) |

Clearly, the sets G* are open in X. We will prove that the family {(?*} is
locally finite in ̂  and that Gn C G*.

Suppose that x0 E X By the continuity of /, there exists a neighbor-
hood VQ of x0 and an n0 such that

/(F o X B(n0)) C (/(x0, β) - i , /(x 0, ί ) + i)

and therefore Vo Π U.^^ G* = 0, which implies that the family {G*}*=1

is locally finite. Suppose now that x0 E Gn. There exists a n α < κ such
that xoeFna and, consequently, f(x09 (α, 1/Λ» = / Λ α(x0) = 1, but
/(x0, ^) = 0, which implies xQ E G*.

The covering {G**}π<ω, where G** = GnU (G*\F) for n > 1 and
Gf* = Gj U (X\F)9 is obviously a locally finite open extension of

{Gn)n=V

(iii) =» (i). Suppose that /: F X J(κ) -» / is continuous. (For the sake
of simplicity we assume that/is bounded; the proof for an unbounded/
differs only inessentially, but is technically more complicated.)

It suffices to show that there exists a continuous function h: X X J(κ)
->/ such that f~\0)Ch"\0) and f\l)Ch~\l). Since the space
J(κ)\{θ] is locally compact, by Theorem 1.1 there exists a continuous
function g: X X (J(κ)\{θ}) -» / extending/r i 7 X (/(/c)\{0}). There also
exists a continuous function g0: X -> I such that { x E i 7 : / ( x , 0 ) < j } C
gό^O) and {x E F:f(x9 θ)>ϊ}C g^(l).
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For every n — 1,2,..., let

Gn= {x E F: \f(x9 z) ~f(xj)\>h for somez<ΞB{n)}.

As above, one easily shows that the family {Gn} is locally finite, decreas-
ing and consists of open Fκ sets. By (ϋi) we can find a locally finite family
{G*} of open subsets of X such that G* Π F = Gn for all n = 1,2,

For every a < K and n = 1,2,..., define

for some z E {«} X[l/(/i + 1 ) ,1/Λ]} .

Clearly, J5ΓΛ α C Gn and since the set {a} X [\/{n + 1), \/n] is com-
pact in /(K), one easily checks that the sets Kn a are also closed. Let
Fn,α ~ ^/>« ̂ ,α The sets Fnα are decreasing, closed and Fnα C Gw. The
closedness of Fn α follows from the local finiteness of {Gn} and the
inclusion Kn α C Gn.

We define:

G.=

<χ<κ

One easily sees that the sets F and G are, respectively, closed and
open in X X (/(κ)\{0})> and F C G. Using Theorem 10 in [Mi] it is not
difficult to construct a continuous function φ: X X (J(κ)\{θ}) ^ I such
thatψ(F) C {1} andφ-^O, 1]) C G.

Let h: X X /(/c) -> / be defined as follows:

l X ' Z j | ί ( * z) g(χ z) + (1 φ(jc *)) go(jc), if z Φ 0 .

Clearly Λ is continuous at all points of XX (J(κ)\{θ)). We shall
show that h is continuous at all points ( x , i ) , x £ X Let xQ E X There
exists an nQ and a neighborhood ί/0 of x0 such that Uo Π U n> n o G* = 0.
Therefore, if x 6 ί / 0 and JC E Λ(/I 0 + 2)\{θ}9 then ( c, z>V G and
φ(x, z) = 0. Consequently, A(x, z) = go(x), which implies continuity at
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It remains to show that/^O) C h~\0) a n d / ^ l ) C h~\\).
Suppose that f(x, z) — 0. If z — θ, then clearly g(x, z) = 0. Assume

z φ 0. There are two cases. Either, |/(JC, z) — f(x, θ) |< \ in which case
f(x, θ) < j , go(x) — 0 and, consequently h(x, z) = 0, or \f(x9 z) —
/(x, 0 ) | > j , in which case (x,z)GF, φ(^:, z) = 1 and consequently
h(x, z) = g(x, z) = f(x, z) = 0.

The proof for f(x9 z) — 1 is similar. This completes the proof of the
Proposition. D

REMARK. It follows from the above proof that in statements (i) and
(ii) C-embedding can be replaced by C*-embedding. D

The notions of a countably Katetov and countably functionally
Katetov space were defined in [PW] in answer to questions raised by M.
Katetov in 1958. It turns out that these notions are closely related to
rectangular normality.

DEFINITION. A normal space X is countably (functionally) Katetov if
every countable locally finite open (cozero) of any closed subspace can be
extended to a locally finite open covering of X. D

Normality and countable paracompactness implies countably Katetov;
countably Katetov implies countably functionally Katetov, which implies
normal, but none of these implications can be reversed [PW].

2.3. THEOREM. The following conditions are equivalent for a topological
space X:

( i ) I X J ( κ ) is rectangularly normal for every K E Card;
(ii) X is countably Katetov.

Proof. Implication (i) =* (ii) follows immediately from Proposition 2.2.
The implication (ii) =» (i) follows from Proposition 2.2 and Theorem
2.1. D

2.4. THEOREM. The following conditions are equivalent for a topological
space X:

(i) X X J(ω) is rectangularly normal;
(ii) XX M is rectangularly normal for some non-locally compact metric

space M\
(iii) X is countably functionally Katetov.



240 T. C. PRZYMUSINSKI

Proof. The implications (i) => (ii) is obvious. If (ii) holds then M
contains a closed copy of J0(ω) and therefore also X X J0(ω) is rectangu-
larly normal, which in view of Proposition 2.2 implies (iii). The implica-
tion (iii) => (i) follows from Proposition 2.2 and Theorem 2.1. D

The following example answers positively a question raised by E.
Michael.

2.5 EXAMPLE. There exists a (collectionwise) normal space X such that
the product space XX M with a metric space M is rectangularly normal if
and only if M is locally compact.

In particular, X X Q is not rectangularly normal.

Proof. By [PW] there exists a collectionwise normal space which is not
countably functionally Katetov, hence it suffices to apply Theorems 2.4
and 1.1. D

2.6. EXAMPLE. (V — L). There exists a Dowker space X such that
X X J(κ) is rectangularly normal for every K E Card.

Proof. By [PW], under V = L there exists a Dowker countably
Katetov space. D

It would be interesting to characterize the class of spaces X such that
XX M is rectangularly normal, for every metric space M (see [P]). The
author believes that there exists a Dowker space in this class. The
existence of such a space would even more strongly underscore the
difference between normality and rectangular normality of products. For
information on this and related matters the reader is referred to [P] and
[Wa].

3. Rectangular products. In [Pa, Pa2] B. A. Pasynkov introduced
the notion of a rectangular product and proved that for rectangular
products dim( A" X Y) < dim X + dim Y. A product space X X Y is rect-
angular if every two-element cozero covering of X X Y has a σ-locally
finite refinement consisting of cozero rectangles, i.e. sets of the form
UX V, where U and V are cozero subsets of X and 7, respectively.
Pasynkov proved that every normal product XX M, with M metric, is
rectangular. On the other hand, the following example shows that even the
product of a countable metric space and a normal space need not be
rectangular. For related examples, see [HM] and [Wg].
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3.1. EXAMPLE. There exists a (collectionwise) normal space X and a
countable metric space M with one non-isolated point such that X X M is
not rectangular.

Proof. By [P2] there exists a collectionwise normal space X and a
countable locally finite family {Gn}™=ι of its cozero subsets such that there
is no locally finite family {Wn}™=ι of open subsets of X such that
Gn C Wn, for every n = 1,2,.... Let Λf = /0(ω).

Define a continuous mapping /: X X M -> / as in the proof of the
implication (ϋ) => (iii) in Proposition 2.2, foτF=X and K — ω. If X X M
were rectangular, then there would exist a σ-locally finite refinement
{Us XVs:s<Ξ S] of the cozero covering {/"'([O, f)), Γ ^ ί i 1])}. consist-
ing of cozero rectangles. For every n = 1,2,... define

# * = U {Us: s<ESandB(n) C F s}.

Since the family {Us: s E S and 2?(«) C Vs] is σ-locally finite for every n,
the sets Hn are cozero subsets of X and obviously the family {Hn} is
increasing and U* = 1 Hn = X

We claim that for every w the sets Hn and Gn are disjoint. Indeed, if
x0 E Hn then for some ί £ S we have x0 €i Us, VSD B(n) and either
Us X F, C f ^ O , §)) or Us X F, C f 1 ^ , 1]). But if x0 E Gn9 then x0 E
G* = {x E X: |/(JC, z) ~ / ( x , ^) |> | , for some z E £(«)}, which is im-
possible.

Let An^, m— 1,2,..., be open sets such that Hn — U^= 1 An m and
Anm+ι D ̂ «,m Clearly we can also assume that An+Xm D Anm for all «,
m. The sets

are clearly open, GndWn and the family {ίFrt} is locally finite. This
contradiction completes the proof. D
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