A SOLUTION TO A PROBLEM OF E. MICHAEL

T. C. Przymusinski

A product space $X \times Y$ is *rectangularly normal* if every continuous real-valued function defined on a closed rectangle $A \times B$ in $X \times Y$ can be continuously extended onto $X \times Y$. It is known that products of normal spaces with locally compact metric spaces are rectangularly normal. In this paper we prove the converse of this theorem by showing there exists a normal space X such that its product $X \times M$ with a metric space M is rectangularly normal if and only if M is locally compact, thus answering positively a question raised by E. Michael.

Other related results are obtained; in particular, we show there exists a normal space X and a countable metric space M with one non-isolated point such that the product space $X \times M$ is not rectangular (in the sense of Pasynkov).

1. Introduction. Let R, Q and I denote the reals, the rationals and the unit segment. We say that a product space $X \times Y$ is rectangularly normal if every continuous real-valued function $f: A \times B \to R$ defined on a closed rectangle $A \times B$ in $X \times Y$ can be continuously extended onto $X \times Y$. The concept of rectangular normality—being a natural weakening of normality—first appeared implicitly in papers of Morita [M9], Starbird [S, S2] and Miednikov [Mi] in connection with their successful attempt to generalize the Borsuk Homotopy Extension Theorem. It turned out that even though normality and countable paracompactness of X are necessary (and sufficient) for the normality of the product $X \times I$, only normality of X suffices to ensure rectangular normality of $X \times I$. More generally, the following theorem holds:

1.1. THEOREM [Mo, S2, Mi]. Products of normal spaces with locally compact metric spaces are rectangularly normal.

In this paper we prove the converse of this Theorem by showing that there exists a normal space X whose product with a metric space M is rectangularly normal if and only if M is locally compact (Example 2.5). In particular, X is a normal space whose product, $X \times Q$, with the space of rationals Q is not rectangularly normal. This answers a question raised by E. Michael.

The existence of the above space X is a consequence of Theorem 2.4, which states that $X \times M$ is rectangularly normal for some non-locally compact metric space M if and only if X is countably functionally Katětov

(see the definition in §2), and the existence of a normal space which is not countably functionally Katetov ([**PW**]; Example 3).

Other related results are proved; in particular, we give an example of a normal space X and a countable metric space M with one non-isolated point, whose product $X \times M$ is not *rectangular* in the sense of B. A. Pasynkov [**Pa**, **Pa2**].

For all the undefined notions the reader is referred to [E]. For a cardinal number κ , we denote by $J(\kappa)$ the hedgehog with κ spikes, i.e. $J(\kappa) = \{0\} \cup \{\langle \alpha, t \rangle: \alpha \in \kappa \text{ and } 0 < t \leq 1\}$, where points $\langle \alpha, t \rangle$ have basic neighborhoods of the form $\{\langle \alpha, t' \rangle: t - 1/n < t' < t + 1/n\}, n = 1, 2, \ldots$, and the point θ has basic neighborhoods of the form

 $B(n) = \{\theta\} \cup \{\langle \alpha, t \rangle \colon \alpha \in \kappa \text{ and } t \leq 1/n\}.$

By $J_0(\kappa)$ we denote the closed subspace $\{\theta\} \cup \{\langle \alpha, 1/n \rangle : \alpha \in \kappa, n = 1, 2, ...\}$ of $J(\kappa)$. One can easily see that every non-locally compact space contains a closed copy of $J_0(\omega)$.

A subset of a space is an F_{κ} subset if it is a union of $\leq \kappa$ closed sets. A subset A of a space X is C-embedded (C*-embedded) in X if every continuous function $f: A \to R$ ($f: A \to I$) can be continuously extended over X. We say that a covering $\{W_s\}_{s \in S}$ of X is an extension of a covering $\{G_s\}_{s \in S}$ of its subspace A if $W_s \cap A = G_s$ for all $s \in S$.

2 Rectangular normality of products. We will deduce our results from Proposition 2.2 below. In its proof we will use the following result due to E. Michael (see [S2]):

2.1. THEOREM (Michael). If F is a closed subset of a metric space Z and X is any space, then $X \times F$ is C-embedded in $X \times Z$.

We remark that an analogous theorem holds for compact spaces Z [S2], but is false for paracompact *p*-spaces [Wa].

2.2. PROPOSITION (Main). For a cardinal number κ and a closed subset F of a normal space X the following conditions are equivalent:

(i) $F \times J(\kappa)$ is C-embedded in $X \times J(\kappa)$;

(ii) $F \times J_0(\kappa)$ is C-embedded in $X \times J_0(\kappa)$

(iii) every countable locally finite covering of F by open F_{κ} subsets can be extended to a locally finite open covering of X.

Proof. The implication (i) \Rightarrow (ii) is an obvious consequence of Theorem 2.1 and the fact that $J_0(\kappa)$ is a closed subspace of $J(\kappa)$.

236

(ii) \Rightarrow (iii). Suppose that $\{G_n\}_{n=1}^{\infty}$ is a countable, locally finite covering of F by open F_{κ} subsets. Hence there exist zero sets $F_{n,\alpha}$ in F such that

$$G_n = \bigcup_{\alpha < \kappa} F_{n,\alpha},$$

and continuous functions $f_{n,\alpha}$: $F \to I$ such that $f_{n,\alpha}(F_{n,\alpha}) \subset \{1\}$ and $f_{n,\alpha}(F \setminus G_n) \subset \{0\}$. Define a function $f: F \times J_0(\kappa) \to I$ as follows:

$$f(x, z) = \begin{cases} 0, & \text{if } z = \theta \\ f_{n,\alpha}(x), & \text{if } z = \langle \alpha, 1/n \rangle. \end{cases}$$

The function f is continuous. Indeed, if $x_0 \in F$ then there exists an $n_0 < \omega$ and a neighborhood V_0 of x_0 such that $V_0 \cap \bigcup_{i \ge n_0} G_i = \emptyset$, and therefore f(x, z) = 0 for all $\langle x, z \rangle$ in $V_0 \times B(n_0)$. By (ii) there exists a continuous extension $\tilde{f}: X \times J_0(\kappa) \to I$ of f onto $X \times J_0(\kappa)$. Define

$$G_n^* = \left\{ x \in X \colon \left| \tilde{f}(x, z) - \tilde{f}(x, \theta) \right| > 3/4 \text{ for some } z \in B(n) \right\}$$
$$= \bigcup_{z \in B(n)} \left\{ x \in X \colon \left| \tilde{f}(x, z) - \tilde{f}(x, \theta) \right| > 3/4 \right\}.$$

Clearly, the sets G_n^* are open in X. We will prove that the family $\{G_n^*\}$ is locally finite in X and that $G_n \subset G_n^*$.

Suppose that $x_0 \in X$. By the continuity of \tilde{f} , there exists a neighborhood V_0 of x_0 and an n_0 such that

$$\tilde{f}(V_0 \times B(n_0)) \subset \left(\tilde{f}(x_0, \theta) - \frac{1}{4}, \tilde{f}(x_0, \theta) + \frac{1}{4}\right)$$

and therefore $V_0 \cap \bigcup_{i \ge n_0} G_i^* = \emptyset$, which implies that the family $\{G_n^*\}_{n=1}^{\infty}$ is locally finite. Suppose now that $x_0 \in G_n$. There exists an $\alpha < \kappa$ such that $x_0 \in F_{n,\alpha}$ and, consequently, $f(x_0, \langle \alpha, 1/n \rangle) = f_{n,\alpha}(x_0) = 1$, but $f(x_0, \theta) = 0$, which implies $x_0 \in G_n^*$.

The covering $\{G_n^{**}\}_{n<\omega}$, where $G_n^{**} = G_n \cup (G_n^* \setminus F)$ for n > 1 and $G_1^{**} = G_1 \cup (X \setminus F)$, is obviously a locally finite open extension of $\{G_n\}_{n=1}^{\infty}$.

(iii) \Rightarrow (i). Suppose that $f: F \times J(\kappa) \rightarrow I$ is continuous. (For the sake of simplicity we assume that f is bounded; the proof for an unbounded f differs only inessentially, but is technically more complicated.)

It suffices to show that there exists a continuous function $h: X \times J(\kappa)$ $\rightarrow I$ such that $f^{-1}(0) \subset h^{-1}(0)$ and $f^{-1}(1) \subset h^{-1}(1)$. Since the space $J(\kappa) \setminus \{\theta\}$ is locally compact, by Theorem 1.1 there exists a continuous function $g: X \times (J(\kappa) \setminus \{\theta\}) \rightarrow I$ extending $f \upharpoonright F \times (J(\kappa) \setminus \{\theta\})$. There also exists a continuous function $g_0: X \rightarrow I$ such that $\{x \in F: f(x, \theta) \leq \frac{1}{3}\} \subset g_0^{-1}(0)$ and $\{x \in F: f(x, \theta) \geq \frac{2}{3}\} \subset g_0^{-1}(1)$. For every $n = 1, 2, \ldots$, let

$$G_n = \left\{ x \in F \colon |f(x, z) - f(x, \theta)| > \frac{1}{6}, \text{ for some } z \in B(n) \right\}.$$

As above, one easily shows that the family $\{G_n\}$ is locally finite, decreasing and consists of open F_{κ} sets. By (iii) we can find a locally finite family $\{G_n^*\}$ of open subsets of X such that $G_n^* \cap F = G_n$ for all n = 1, 2, ...

For every $\alpha < \kappa$ and $n = 1, 2, \ldots$, define

$$K_{n,\alpha} = \{ x \in F : |f(x, z) - f(x, \theta)| \ge \frac{1}{3},$$

for some $z \in \{\alpha\} \times [1/(n+1), 1/n] \}.$

Clearly, $K_{n,\alpha} \subset G_n$ and since the set $\{\alpha\} \times [1/(n+1), 1/n]$ is compact in $J(\kappa)$, one easily checks that the sets $K_{n,\alpha}$ are also closed. Let $F_{n,\alpha} = \bigcup_{i\geq n} K_{i,\alpha}$. The sets $F_{n,\alpha}$ are decreasing, closed and $F_{n,\alpha} \subset G_n$. The closedness of $F_{n,\alpha}$ follows from the local finiteness of $\{G_n\}$ and the inclusion $K_{n,\alpha} \subset G_n$.

We define:

$$F_{\alpha} = \bigcup_{n=1}^{\infty} \left(F_{n,\alpha} \times \{\alpha\} \times \left[\frac{1}{n+1}, \frac{1}{n}\right] \right),$$

$$G_{\alpha} = \bigcup_{n=1}^{\infty} \left(G_{n}^{*} \times \{\alpha\} \times \left(\frac{1}{n+2}, 0\right] \right),$$

$$F = \bigcup_{\alpha < \kappa} F_{\alpha},$$

$$G = \bigcup_{\alpha < \kappa} G_{\alpha}.$$

One easily sees that the sets F and G are, respectively, closed and open in $X \times (J(\kappa) \setminus \{\theta\})$, and $F \subset G$. Using Theorem 10 in [Mi] it is not difficult to construct a continuous function $\phi: X \times (J(\kappa) \setminus \{\theta\}) \to I$ such that $\psi(F) \subset \{1\}$ and $\phi^{-1}((0, 1]) \subset G$.

Let $h: X \times J(\kappa) \to I$ be defined as follows:

$$h(x, z) = \begin{cases} g_0(x), & \text{if } z = \theta \\ \phi(x, z) \cdot g(x, z) + (1 - \phi(x, z)) \cdot g_0(x), & \text{if } z \neq \emptyset. \end{cases}$$

Clearly *h* is continuous at all points of $X \times (J(\kappa) \setminus \{\theta\})$. We shall show that *h* is continuous at all points $\langle x, \theta \rangle$, $x \in X$. Let $x_0 \in X$. There exists an n_0 and a neighborhood U_0 of x_0 such that $U_0 \cap \bigcup_{n \ge n_0} G_n^* = \emptyset$. Therefore, if $x \in U_0$ and $x \in B(n_0 + 2) \setminus \{\theta\}$, then $\langle x, z \rangle \notin G$ and $\phi(x, z) = 0$. Consequently, $h(x, z) = g_0(x)$, which implies continuity at $\langle x_0, \theta \rangle$.

238

It remains to show that $f^{-1}(0) \subset h^{-1}(0)$ and $f^{-1}(1) \subset h^{-1}(1)$.

Suppose that f(x, z) = 0. If $z = \theta$, then clearly g(x, z) = 0. Assume $z \neq 0$. There are two cases. Either, $|f(x, z) - f(x, \theta)| < \frac{1}{3}$ in which case $f(x, \theta) < \frac{1}{3}$, $g_0(x) = 0$ and, consequently h(x, z) = 0, or $|f(x, z) - f(x, \theta)| \ge \frac{1}{3}$, in which case $\langle x, z \rangle \in F$, $\phi(x, z) = 1$ and consequently h(x, z) = g(x, z) = f(x, z) = 0.

The proof for f(x, z) = 1 is similar. This completes the proof of the Proposition.

REMARK. It follows from the above proof that in statements (i) and (ii) *C*-embedding can be replaced by C^* -embedding.

The notions of a countably Katětov and countably functionally Katětov space were defined in [**PW**] in answer to questions raised by M. Katětov in 1958. It turns out that these notions are closely related to rectangular normality.

DEFINITION. A normal space X is countably (functionally) Katětov if every countable locally finite open (cozero) of any closed subspace can be extended to a locally finite open covering of X. \Box

Normality and countable paracompactness implies countably Katětov; countably Katětov implies countably functionally Katětov, which implies normal, but none of these implications can be reversed [**PW**].

2.3. THEOREM. The following conditions are equivalent for a topological space X:

(i) $X \times J(\kappa)$ is rectangularly normal for every $\kappa \in Card$;

(ii) X is countably Katětov.

Proof. Implication (i) \Rightarrow (ii) follows immediately from Proposition 2.2. The implication (ii) \Rightarrow (i) follows from Proposition 2.2 and Theorem 2.1.

2.4. THEOREM. The following conditions are equivalent for a topological space X:

(i) $X \times J(\omega)$ is rectangularly normal;

(ii) $X \times M$ is rectangularly normal for some non-locally compact metric space M;

(iii) X is countably functionally Katětov.

T. C. PRZYMUSINSKI

Proof. The implications (i) \Rightarrow (ii) is obvious. If (ii) holds then M contains a closed copy of $J_0(\omega)$ and therefore also $X \times J_0(\omega)$ is rectangularly normal, which in view of Proposition 2.2 implies (iii). The implication (iii) \Rightarrow (i) follows from Proposition 2.2 and Theorem 2.1.

The following example answers positively a question raised by E. Michael.

2.5 EXAMPLE. There exists a (collectionwise) normal space X such that the product space $X \times M$ with a metric space M is rectangularly normal if and only if M is locally compact.

In particular, $X \times Q$ is not rectangularly normal.

Proof. By [PW] there exists a collectionwise normal space which is not countably functionally Katetov, hence it suffices to apply Theorems 2.4 and 1.1.

2.6. EXAMPLE. (V = L). There exists a Dowker space X such that $X \times J(\kappa)$ is rectangularly normal for every $\kappa \in Card$.

Proof. By [PW], under V = L there exists a Dowker countably Katětov space.

It would be interesting to characterize the class of spaces X such that $X \times M$ is rectangularly normal, for every metric space M (see [P]). The author believes that there exists a Dowker space in this class. The existence of such a space would even more strongly underscore the difference between normality and rectangular normality of products. For information on this and related matters the reader is referred to [P] and [Wa].

3. Rectangular products. In [Pa, Pa2] B. A. Pasynkov introduced the notion of a rectangular product and proved that for rectangular products dim $(X \times Y) \leq \dim X + \dim Y$. A product space $X \times Y$ is rectangular if every two-element cozero covering of $X \times Y$ has a σ -locally finite refinement consisting of cozero rectangles, i.e. sets of the form $U \times V$, where U and V are cozero subsets of X and Y, respectively. Pasynkov proved that every normal product $X \times M$, with M metric, is rectangular. On the other hand, the following example shows that even the product of a countable metric space and a normal space need not be rectangular. For related examples, see [HM] and [Wg]. 3.1. EXAMPLE. There exists a (collectionwise) normal space X and a countable metric space M with one non-isolated point such that $X \times M$ is not rectangular.

Proof. By [**P2**] there exists a collectionwise normal space X and a countable locally finite family $\{G_n\}_{n=1}^{\infty}$ of its cozero subsets such that there is no locally finite family $\{W_n\}_{n=1}^{\infty}$ of open subsets of X such that $\overline{G_n} \subset W_n$, for every $n = 1, 2, \ldots$ Let $M = J_0(\omega)$.

Define a continuous mapping $f: X \times M \to I$ as in the proof of the implication (ii) \Rightarrow (iii) in Proposition 2.2, for F = X and $\kappa = \omega$. If $X \times M$ were rectangular, then there would exist a σ -locally finite refinement $\{U_s \times V_s: s \in S\}$ of the cozero covering $\{f^{-1}([0, \frac{2}{3})), f^{-1}((\frac{1}{3}, 1])\}$, consisting of cozero rectangles. For every n = 1, 2, ... define

$$H_n = \bigcup \{U_s : s \in S \text{ and } B(n) \subset V_s\}.$$

Since the family $\{U_s: s \in S \text{ and } B(n) \subset V_s\}$ is σ -locally finite for every n, the sets H_n are cozero subsets of X and obviously the family $\{H_n\}$ is increasing and $\bigcup_{n=1}^{\infty} H_n = X$.

We claim that for every *n* the sets H_n and G_n are disjoint. Indeed, if $x_0 \in H_n$ then for some $s \in S$ we have $x_0 \in U_s$, $V_s \supset B(n)$ and either $U_s \times V_s \subset f^{-1}([0, \frac{2}{3}))$ or $U_s \times V_s \subset f^{-1}((\frac{1}{3}, 1])$. But if $x_0 \in G_n$, then $x_0 \in G_n^* = \{x \in X: |f(x, z) - f(x, \theta)| \ge \frac{3}{4}$, for some $z \in B(n)\}$, which is impossible.

Let $A_{n,m}$, m = 1, 2, ..., be open sets such that $H_n = \bigcup_{m=1}^{\infty} A_{n,m}$ and $A_{n,m+1} \supset \overline{A}_{n,m}$. Clearly we can also assume that $A_{n+1,m} \supset A_{n,m}$ for all n, m. The sets

$$W_n = X \setminus A_{n,n}$$

are clearly open, $\overline{G}_n \subset W_n$ and the family $\{W_n\}$ is locally finite. This contradiction completes the proof.

References

- [E] R. Engelking, General Topology, Polish Scientific Publishers, Warsaw 1977.
- [HM] T. Hoshina and K. Morita, On rectangular products of topological spaces, Topology and Appl., 11 (1980), 47–57.
- [M1] L. E. Miednikov, Embeddings of bicompacta into the Tychonoff cube and extensions of mappings from subsets of products, Dokl. Akad. Nauk SSSR, 222 (1975), 1287-1290 (in Russina).
- [Mo] K. Morita, On generalizations of Borsuk's homotopy extension theorem, Fund. Math., 88 (1975), 1-6.

- [Pa] B. A. Pasynkov, On the dimension of rectangular products, Dokl. Akad. Nauk SSSR, 221 (1975), 291–294 (in Russian).
- [Pa2] _____, On the dimension of products of normal spaces, Dokl. Akad. Nauk SSSR, **209** (1973), 792-794 (in Russian).
- [P] T. C. Przymusiński, Extending functions from products with a metric factor and absolutes, Pacific J. Math., 101 (1982), 463-475.
- [P2] _____, On locally finite coverings, Colloq. Math., 38 (1978), 187-192.
- [PW] T. C. Przymusiński and M. Wage, Collectionwise normality and extensions of locally finite coverings, Fund. Math., 109 (1980), 175-187.
- [S] M. Starbird, The Borsuk homotopy extension theorem without the binormality condition, Fund. Math., 87 (1975), 207-211.
- [S2] ____, Extending Maps from Products, in: Studies in Topology, Editors: N. H. Stavrakas and K. R. Allen, Academic Press 1975, 559–565.
- [Wg] M. Wage, The dimension of product spaces, Proc. Natl. Acad. Sci. USA, 75 (1978), 4671-4672.
- [Wa] A. Waśko, Extension of functions defined on product spaces, Fund. Math., to appear.

Received December 6, 1982 and in revised form March 16, 1983.

POLISH ACADEMY OF SCIENCES WARSAW, POLAND

Current address: University of Texas El Paso, TX 79968