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DERIVATIVES OF BLASCHKE PRODUCTS

HONG OH KIM

Suppose B(z) is an infinite Blaschke product with zeros {zk}. It is
known that B' £ Aw (or Dι/2B & H2). We extend this to get B' <£
App~2 (p>\) (or DβB g Hι/β,β> 0) and apply this to the Taylor
coefficients of an infinite Blaschke product. We also present extended
versions of the Hardy-Littlewood theorem on fractional integrals and the
Hardy-Littlewood embedding theorem with simple proofs. These exten-
sions show that the above theorem becomes stronger as p T oo (or β | 0 ,
respectively). Finally, we give sufficient conditions on {zk} in order that
DβB G Ap'α or e Hp

9 which shows that the above result is best possible
in a certain sense.

Introduction. Let U denote the open unit disc in the complex plane.
The Hardy space Hp (0 < p < oo) consists of all functions holomorphic in
U for which

sup ίf'Wκ")\'^) (0 <,<»),
0<r<l \J0 z π I

sup|/(z)| (p= oo)
zeυ

is finite. The weighted Bergman space Ap-a with 0 <p < oo and a > — 1
consists of all functions holomorphic in U for which

is finite. See [1], [15]. The Hardy space Hp (0 <p < oo) can be considered
as the "limiting space" of Ap'a as α | -1 .

If {zk} is a sequence (finite or infinite) of complex numbers in U for
which 2 (1 — \zk I) < oo, then the Blaschke product

— z . z

converges uniformly on the compact subsets of U and has {zk} as its zero
set. See [5].

It is a well-known fact that a Blaschke product B is a finite Blaschke
product if its Dirichlet integral
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is finite; that is, if Br E Aw or equivalently Σ kλ/2akz
k E H2. In §1, we

extend this fact in two directions; in Theorem 1.1 we replace the condition
B' G A2-0 by the condition B' G Ap-p~2 for some p > 1 and in Corollary
1.6 we replace the condition Σ kλ/2akz

k E H2 by the condition Σ kβakz
k

E Hι/β. The latter is a consequence of the former but gives a new
information about Taylor coefficients (Corollary 1.8). Theorem 1.1 is seen
to be stronger as p / oo by means of an extension of the Hardy-Littlewood
embedding theorem (due to P. R. Ahern, unpublished) which we present
here as Theorem B. In §2, we extend the Hardy-Littlewood theorem on
fractional integrals with a simple proof (Theorem 2.1). This extension
shows that Corollary 1.6 is stronger as β\0 and gives some information
about Bloch functions (Corollary 2.5). Finally, there are several known
conditions on the distribution of zeros of a Blaschke product that imply
that the derivative of that Blaschke product belongs to some Hp or APt".
See [3], [4], [13]. In §3, we extend these results to the fractional derivatives
of arbitrary order of a Blaschke product (Theorem 3.1, Theorem 3.2).
These theorems show that in Theorem 1.1 (or in Corollary 1.6), Ap%a (or
Hp) cannot be replaced by a larger Ap~^a or Ap'a+ε (or Hp~ε respectively)
for any ε > 0. The extended version of the Hardy-Littlewood theorem on
fractional integrals is essential to prove Theorem 3.2.

Throughout this paper, B always denotes a Blaschke product. C
denotes a constant and C( ) a positive constant depending only on the
arguments (•••)• Both C and C( ) may vary from occurrence to
occurrence even in the proof of the same theorem.

This paper represents a part of the author's thesis written in the
University of Wisconsin. The author appreciates the encouragement of his
thesis advisor, Patrick R. Ahern.

1. Finite Blaschke products.

1.1 THEOREM. // Bf EAP>P~2 for some p > 1, then B is a fintie

Blaschke product.

To prove this theorem, we need to quote a recent theorme of Ahern

[2]

THEOREM A. Let 0 < 1 + « < p < oo. Then B' E Ap'a if and only if
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1.2. Proof of Theorem. Suppose that B is an infinite Blaschke product
and let

k=\

Let 0 < ε < 1 be fixed. Since

— Z

— ZuZ 1 - U J '

ε if Izk - z |< ε(l -\zk |). Let zΛ = rke
ιVk and z = re' e. Then

If rk<r<rk + ε(l - rk)/2, then

s o \zk — z\< ε(l — rk) if

tM-^ + {e-ekf<e(l-rk)
2

Hence |B(z) \< ε if rk < r < rk + ε(l - rk)/2 and

Thus i f r Λ < r < r A + e ( l - rk)/2, then

Hence

2 (l -ε2(l

2 - ε

Now, we take an infinite subsequence {zk } of {ẑ .} such that

\zkj\+ε(l-\zkj\)/2<\zkjj, y = 1,2
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We form a subproduct Bλ(z) of B(z) with zero sequence {zk }. Then since

|5(z)|<|J51(z)|,wehave

^ frk + ε( 1 — rk ) / 2 /*2 7Γ

1 - r
-r)p~2dθdr

2 - ε
= 00.

So B' & Ap'p 2 by Theorem A, which is a contradiction. Hence 5 is a

finite Blaschke product.

1.3. REMARKS (1) If p — 1 and A1'1 is replaced by 7/\ then B is

continuous up to the boundary by Theorem 3.11 [5]; so it is a finite

Blaschke product, as is well known.

(2) To show that Theorem 1.1 really is a better result than the

classical one, we present an unpublished result of Ahern which is also

used again in the sequel.

THEOREM B. (Ahern). Suppose that f(z) =

< q < 00. Then

(1) iff(ΞHp, thenf<EAq'

(2) /// E Ap'a, then f E A

and let 0 < p

Proof. (Due to Ahern.) Let AΓ(1, 0) = supo</<:1

hypothesis, \f(reιθ) \< K(\ ~ r)'Ύ for some K > 0. Then

. From the

ΊP
+ M(l9θ)
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Now, let λ = 0 if M(l, θ) < K and let λ = 1 - (K/M(l9 0)) 1 / γ if K<
M(\9Θ). Then we have for any θ

f\f(re">)\\\ - r)^-p)-χ dr

, γ, p9 q) + C{K, γ, p9 q)M(\, θ)p.

We integrate both sides with respect to θ and use the complex maximal
theorem to get (1). (2) is similarly obtained.

If fEH00, then f(z) = 0(1 - \z\)'{; so /' e Ap^~2 implies that
/' E Aq'q~2 if p < q. Hence Theorem 1.1 is stronger as/? goes to oo.

1.4. Fractional integrals and derivatives. Let/(z) = Σakz
k and let

β be a real number. Flett [7] defines the fractional integral of/of order β
as Iβf(z) = Σ(A: + l)~βakz

k. If >S > 0, the following formula is easily
verified and will be useful later:

The fractional derivative Dβf off of order /? > 0 is defined as Dβf = /"^/.
The following easily verified remarks will be used without explicit men-
tion.

1.5. REMARKS. (1) If n is an integer > 1, then

D»f{z) = (-£
A;=0

where/(A;) is the ordinary A th derivative of/and Mk{z) is a monomial in
2, fc = 0,1,. . . , n - 1.

(2)If/(z) = 0(1 - | z |ΓMγ^O),then
(a) Iβf(z) = O(\- \z\y{y'β\ where 0 < β < γ, and
(b) Dβf(z) = O{\ - | z |Γ ( γ + / > ) , where β > 0.

(3) For any positive integer n and any positive number p, there exists
C,, C2 > 0 such that

C, < f2>"/(re ί β)f ^ / /"^l/ί^ίw")Γ ^ < C2.

The second inequality is obvious from (1). For the first inequality, note
that

f(z)=fD*f(tz)ώ.
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So,

\f{reiΘ)\< sup \Dιf(treiθ)\;
0<ί<l

so by the complex maximal theorem,

[ \ f ( ) \ ( p

- z-\DιfSince/'(z) - z-\Dιf(z) - /(*)}, we get
2m\DW)f dθ.

We can prove (3) for any n using induction, which we omit. Due to this
remark we use Dnf and f(n) interchangeably in this paper.

We quote some known theorems for later use. The following Theorem
C was first proved by Hardy and Littlewood in [8, Theorem 10] when
p > 1 with slightly different definitions of the fractional drivatives and
integrals.

THEOREM C. {Hardy and Littlewood, Flett [7, Theorem 6].) Let f be a
holomorphic function in ί/, 0 <p < oo, and let β > 0. Then

(1) iff E A^a, then Dβf E Ap^βp (a > -1);
(2) iff E Ap>a, then Iβf E Ap-"-βp (a - βp > -1).

THEOREM D. (Littlewood and Paley [10, Theorems 5, 6].) Let f be a
holomorphic function in ίΛ Then

(1) iff E Ap-p-\ thenf<Ξ Hp(0<p< 2);
(2) iff E Hp, then f E Ap-P~{(2<p<oo).

We combine Theorems C and D to get the following which is more
convenient for our applications.

THEOREM D'. (Littlewood and Paley.) Let f be a holomorphic function in
U,β>0 and let 0 < p < oo. Then

(1) iff E Ap<-χ+βp, then Iβf EHp(0<p< 2);
(2) iff E Hp, then Dβf E Ap^ι+βp (2<p< oo).

Now we can state and prove

1.6. COROLLARY. // DβB E Hλ/β for some β>0, then B is a finite
Blaschke product.
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Proof. lίβ>h then DβB E H]/β implies that

Dββ e A2,-\+βi2-l/β) = Aϊ2β-2^

by Theorem B (1), since DβB{z) = 0(1 - \z \)'β. So

E ^2^-2-2(^-1) = ^2.0

by Theorem C (2); so B is a finite Blaschke product by Theorem 1.1.

Next, if β < \, then DβB E tf1//J implies

D{B = Dι~βDβB E

by Theorem D' (2); so B is a finite Blaschke product by Theorem 1.1.

1.7. REMARK. Since DβB(z) = 0(1 - \z\)~β, Theorem 2.1 in the next

section shows that DβB E Hwβ implies that DyB E Hι/y if 0 < γ < β.

This means that Corollary 1.6 becomes stronger a β\0.

1.8. C O R O L L A R Y . // B(z) = Σakz
k and Σ(k + \ ) p ~ ] \akf < oo for

some p > 1, then B is a fintie Blaschke product.

Proof. Suppose that B is an infinite Blaschke product. Then for any

β>0, DβB(z) = Σ(k + \)βakz
k £ Hλ/β by Corollary 1.6. First we apply

the Hausdorff-Young inequality (Duren [5, Theorem 6.1]) with q—\/β

> 2 and \/p + \/q ~ 1, and get

oo=\\DβB\\UΣ(k+l)βp\ak\
P;

soΣ(/c+ l K ^ K Γ ^ oo for 1 <p<2ύnczβp =p - 1.

Next we apply the Hardy-Littlewood inequality (Duren [5, Theorem

6.2]) with q= l/β > 2 and get

q
2k

This completes the proof.

1.9. REMARK. The conditions Σ(k + \)p~] \akf < oo for a sequence

{ak} which is bounded by 1 are seen to be independent, for any two

different values of p. For it 1 < s < t, take

a =

 })v if* = 2", p > 0 integer;

[ otherwise,
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and bk = (k+ l)"]{log(A: + I ) } " 1 7 ' , k = 1,2,...; we can easily check
that

Σ(k + l)s~ W < oo but Σ(k + 1)'~ W = oo,

and

Σ(k + l)s~ι\bk\= oo but 2 ( Λ + 1 ) ' ~ ' N ' < oo.

Note also that α^'s and bk's are all bounded by one.

2. Hardy-Littlewood theorem on fractional integrals.

2.1 THEOREM. IffeH" and f{z) = 0(1 - \z\)~Ύ with 0 < γ < l/p,
then Iβf £ Hq with q - yp/(y - β) where 0 < β < y.

Proof. We first assume that 0 < β < 1. From the hypothesis, \f(tz) | <
K{\ - t\z\)~y <K(l - t)~y for some constant K>0. Set M(r,θ) =
supO S ί<. | / ( / ^ " ) I Since 1 - / < log \/t, (log I / / ) * " 1 < (1 - ί ) ^ ' So

Now, we proceed as in the proof of Theorem B and get

ί\\ - tf-χ\f{treiβ)\dt < C(K, β, γ) + C(K, β, y)M{r, θf
Jo

So,

f2yf(reiβ)\qdθ < C(K, β, γ, p) + C{K, β, y, p) [2*M(r, θ)p dθ
Jo Jo

< C(K, β, y, p) + C(K, β,y,p) Γ\f{reiβ)\P dθ.

We used the complex maximal theorem in the last inequality. So / E Hp

implies that Iβf e Hq where q = yp/(y - β).
Next, we note that Iβf(z) = 0(1 - \z\)~y+β. If β > 1, we write

β = βx+ β2 + - +βm with 0 < βl9 β 2 , . . . ,jβw < 1. Then successive ap-
plication of the above argument with βl9 β 2 , . . . ,βm proves the theorem.

2.2 REMARK. If / e Hp, then it is known that/(z) = O{\ - \z\)'x/p;
Iβf G H« where q=l/p- p/{\/p - β) = p/{\ ~ βp). This is the well-
known theorem of Hardy and Littlewood on fractional integrals, [9,
Theorem 30], [5, Theorem 5.12].
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2.3 COROLLARY. /// E Ap'a andf(z) = 0(1 - | z |Γ γ where 0<p<2,
α > - l and (a + \)/p < γ < (α + 2)/p, then Iβf E Hq where q =
(γp-a- l)/(γ - β) and (a + \)/p < β < γ.

Since /> < 2, /<«+1)//γE #/> b y Theorem D' (1). Note
i)//>y ( z ) = o(\ - I z j)-(r-(«+D/Jp). βy Theorem 2.1,

2.4. REMARK. If / ε A'-", then f(z) = 0(1 - |z |)-<a+2>//' [15,
Corollary B]; so /*/ E / ί ? with ^ = p/(a + 2 - βp) where (α + \)/p <
β<(a + 2)/pifO<p<2.

A function / holomorphic in U is said to be a Bloch function if
f'(z) — 0(\ — \z\)~!. See Pommerenke [12] for more about Bloch func-
tions.

2.5 COROLLARY. Iffis a Bloch function with f G Ap a where p > a +
1 > 0, then f E Hi for all q<oo.

Proof. Let 0 <p < 2. Since Dxf(z) = 0(1 - \z\y\ for any suffi-
ciently small jβ>0, Dpf= Iχ-βDλf e H^'a~X)^ by Corollary 2.3; in
particular, / e H(p~a~λ)/β for any β > 0. Let 2 <p < oo. We can easily
check that / ' E Ap>a implies that f E A2-s if δ > 2(a + l)/p - \. But
since 2(α + \)/p < 2, we can choose δ so that δ + 1 < 2. Then f E Hq

for all ήf < oo as above.

2.6. REMARKS. (1) If / is a Bloch function, then /' E Ap'a when
p <a + 1.

(2) If/is a Bloch function and f'E Hp (0 < p < 1), then/' E A2Λ~P

by Theorem B (1); so/ E / F for all q < oo by Corollary 2.5.
(3) The example f(z) — log(l — z) shows that # = oo cannot be

allowed in the conclusion of Corollary 2.5.

3. Blaschke products. Throughout this section, let B(z) be a
Blaschke product with zeros {zk}. We write dk = 1 — | zk \ as usual.

3.1. THEOREM. Let β > 0, 0 < p < oo and let a > - \. Then
(l)ifΣdk

Ύ+2~βp<oo, then

n β n ABa ( / α + 2 α + l \ α
DβBEAp-« << β
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(2) ifΣ dξlog l/dk<oo, then

(3) z/Σ d\ < oo for some 8 < (a + 2)/(β + 1), then

DβBEApa forany/7<^-j-

((α + 2)/(/S + 1) > (α + l)/β i.e., β > α + 1).

3.2. THEOREM. Le* >β > 0. ΓAe«

DβBEH" ' l ' Λ

(2) //Σ rfjf log \/dk<oo, then

DβB e / ^

(3) if Σdδ

k< oo for some 8 < l/(β + 1), ίΛe« DβB e // ? /or α«^

3.3 REMARKS. (1) If β = 1 in Theorem 3.1, it is the result of Protas

(for AUa

9 see [13, Theorem 1]) and of Ahern (for 1 <p < oo, see [1,

Theorems 4.2, 5.1]).

(2) If β — 1 in Theorem 3.2, it is the result of Protas [13, Theorems

2,3].

(3) Theorem 3.1 (1) with β = 1 and 1 <p < 2 and Theorem 3.2 (1)

with 0 = 1 were shown to have their "converses". See Ahern [1, Theorems

4.2, 6.2]. Both Theorems 3.1 (1) and 3.2 (1) for 0 <p < 2 can be seen to

have their converses with the same method of proof. For example, if

DβB G Hp (1/(0 + 1) </? < 1/0), then DβB G ,42,-1+0(2-/,) b y τ h e o _

rem B (1); so by Theorem C (2)

DXB — Iβ~ιDβB E A2'

so

where B(z) = Σα^z^. Now, by the theorem of Carleson quotd by Ahern

on page 335 of [1], there exists a set E of capacity 0 such that Σ dk(c)ι~βp

< 00 if c E t / \ £ and ^(c) = 1 — \zk(c) \ where zΛ(c) are the zeros of
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(c — B(z))/(\ — cB{z)). It would be interesting to know whether the
converse holds in general.

(4) Theorem 3.1(2) with β = 1 connects one of Rudin's results:

if 2^*log \/dk < oo, then B' e Aλβ

[14, Theorem I], and one of Protas' results:

if

[13, Theorem 3].

The following computational lemmas are well known.

LEMMA E {Tsuji [17, p. 226]). If] a |< 1 and 0 < p < 1,

1

Λ i
dθ

o 11 - ape'" |γ

C(γ) \r-i

Clog-

c

1

LEMMA F (Shields and Williams [16, Lemma 6]). 7/0 < r, p < 1, ίΛew

- p ) 1 + α " γ z / γ > l + α > 0 ;

/ -1 — Jr < I
>o (1 - rp)γ

C(o)log

C
1-p

//γ = 1 + a > 0;

ify < 1 + a > 0.

3.4. LEMMA. B(n\z) is a finite sum of the terms of the form

κ,λ,.. .,μ

(1)
X

where Σ is the sum over k, I ¥= k , . . . , m ¥= k 9 1 9 . . . ,

(2) c ( ^ ' ' μ ) < C ( « ) < o o /b

(3) skJ

(4) (K - 1) + (λ - 1) + + (μ - 1) = n.
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Proof. We proceed by induction. It is true for n = 1, since

k (1 - zkz)

See Protas [13] for example. Assume that the lemma is true for n > 1.
Consider B(n+ι\z). It is a finite sum of derivatives of terms like (1), i.e.,

/κ,λ,. . . ,μ\
C\k,l,...,mJBk'' '

• i - | z j 2 l - i z . p i - | z m p

yκzk{\-\zk\
2)

+ similar terms to the second term.

But since

(1

the first term above is of the form (1) with n + 1 in place of n in (2) and
(4). The other terms are also of the form (1) with n + 1 in place of n by
absorbing the constants like κzk in C ( ^ l λ ; m

 μ ) . This completes the
proof.

3.5. Proof of Theorem 3.1. By Theorem C, it suffices to prove the
theorem with β replaced by its integral part n. We may also consider the
ordinary «th derivative B(n) instead of DnB because of 1.5. (3). We only
prove (1). (2) and (3) can be read off in the proof of (1). Suppose first that

a + 2 a + l\ 1
max — — r , < p < —.

\ n + 1 n I r n

By Lemma 3.4, \B{n)(reiθ)\ is dominated by a finite sum of the terms of
the form

C ( Λ ) 2 ••• 1 1
I k \V Zkre I I l Z l r e I I
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/,... ,m runs through all positive integers here), which is

c ( π ) ί s Ϊ~ | Z*1 1 ( Σ
 1" |Z/I

187

Since 0 <p < 1, /0

27Γ |B {n\re iθ) f dθ is dominated by a finite sum of the
integrals of the form

i
m I ι Δm

1 _ =• „/« iμ
ι Δmrt: I

Now, we apply the Holder's inequality with indices

dθ.

n n

Then the integral is domainated by

,2.1 ^ l~\zk\

Jo \i\l-zkre"

np/{κ-\)

dθ

{κ-\)/n

Γ
Jo

1 _ ι _ i np/{μ-\) (μ-\)/n

by
Since np/(κ — 1) < w/? < 1, the integral of the first factor is dominated

2" ί1 - \ z k \ ) d θ

" 0 '

which is

<C{n,p,κ)Σ

We used Lemma E with κnp/(κ - 1) > κn(a + 2)/(/c - l)(w + 1) > 1 in

the first inequality and replaced some power of (1 — \zk\r) by the same

power of the smaller (1 — \zk\) to get the second inequality. We estimate



188 HONG OH KIM

the other factors similarly and replace the constants C(n, /?, K),. .. by the
bigger constant C(n, p) and get

Now, we integrate both sides with respect to (1 — r)a dr and use Lemma F
to get

7>7 > ( ^
Ό -Ό k

So we get B{n) G A^a if Σ d^2~np < oo.
Before proving the remaining case, we note that the above for n — 1

and the results of Ahern [1, Theorems 4.2, 5.1] and Theorem B completely
prove the theorem for n = 1. Now assume \/n <p < (a + 2)/n. We
proceed by induction. As noted above the theorem is true for n = 1. Let
n >: 2 and assume that (1) is true for n — 1. Since we can easily check that
a + 2 - np = (a - p) + 2 - (n - \)p,

(a~p) + 2 (a-p) + \ Λ (a - p) + 2
Λ — <P, ^ <,? and -̂  ^ >/?,

« ^ w — 1 ^ n — 1 ^
we have 5 ( n " 1 } e ^^ α ~^ by the induction hypothesis. By Theorem C (1),
B{n) e /̂7,« τ h i s c o m p i e t e s the proof

3.6. Proof of Theorem 32. Here again we prove only (1). (2) and (3)
can be read off from the proof of (1). Write β = n — b where n is a
positive integer and 0 < b < 1. Assume first that 0 <p < 2. By Theorem

IbDnBEHP if

But Z>"5 E Λ ' ^ - 1 by Theorem 3.1 since

and

Λbp-l)

can easily be checked. Next, assume /? > 1. We use induction on the
positive integer v with \/{v + 1) < β < l/v. If J> = 1 and { < β < 1,
then i < jβ/7 < 1; so Σ ̂ ~ ^ < oc implies DXB G //^ by the argument
above. Hence D Ĵ? = Iλ~βDxB G / F by Theorem 2.1. Now assume that



DERIVATIVES OF BLASCHKE PRODUCTS 189

we have proved the theorem for β in \/v < β < \/(v — 1), and let
\/{v+ \)<β< 1 A . Since

Vβp>vβ>-?Π = T Λ T 1 , and vβp<v=±

we get Dι/PB E Hvβp by the induction hypothesis. By Theorem 2.1 again

This completes the proof.

3.7. REMARK. We used Theorem 3.1 (1) to prove Theorem 3.2 (1).
Conversely, we can deduce Theorem 3.1 (1) from Theorem 3.2 (1).
Suppose that Theorem 3.2 (1) is proved. We shall prove Theorem 3.1 (1).
Let n > 1 an integer, a > — 1 and q > 0 be fixed so that

2 a+ \\ α + 2
max — — r , < q <

\ n + 1 ft /
Assume that Σd^2'np < oo. We need to show that 5 ( w ) e Ap>". Since
g — (a + 2)/(« + 1) > 0 and <? — (α + l)/π > 0, we can choose p > 0
very close to # so that

(i) q- (a + 2)/(/i + 1) > (# - /?)/(« + 1) > 0 and
(ii) 0<(nq- (a+ \))/p<n.

We set β = (np - (a + \))/p. Then 1 - βp = a + 2 - nq. Also
1/(0 + 1) <p by (i), and \/β>p since <?<(« + 2)/n. By Theorem 3.2
(1), DβBGHp; so DβB E A^~l^^~p) by Theorem B (1). Now by
Theorem C (1)

DnB = Dn~βDβB E Aq'~x+β("q~p^q<<n~β) — Aq'a

since — 1 + β(q — p) + q(n — β) = nq — βp — 1 = a. This completes
the proof.
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