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KRULL DIMENSION OF SKEW-LAURENT
EXTENSIONS

K. R. GOODEARL AND T. H. LENAGAN

A precise formula is derived for the (noncommutative) Krull dimen-
sion of a skew-Laurent extension R[6,"',...,6,~'], where R is a com-
mutative noetherian ring of finite Krull dimension, equipped with «
commuting automorphisms ¢,,...,0,. The formula is given in terms of
heights and automorphian dimensions of prime ideals of R, where the
automorphian dimension of a prime ideal P is a positive integer that
measures the invariance of P relative to products of powers of the g,. As
part of the development of this formula, the Krull dimension of a
skew-Laurent extension R[#,~'] over a right noetherian ring R of finite
right Krull dimension is determined. Also, some partial results are
obtained for an iterated skew-Laurent extension R[#',...,0.='] over a
right noetherian ring R of finite right Krull dimension. In particular, a
criterion is derived that indicates when such an iterated skew-Laurent
extension can achieve the maximum possible Krull dimension.

Introduction. This paper is concerned with the Krull dimension (in
the sense of Rentschler and Gabriel) of a skew-Laurent extension 7 =
R[6;°',...,6"], where R is a commutative noetherian ring of finite Krull
dimension, equipped with ¥ commuting automorphisms o,,...,0,. The
main theorem states that the Krull dimension of 7" equals the maximum of
the values

height(P) + aut.dim. (P)

as P ranges over the prime ideals of R, where aut.dim.( P) is a nonnegative
integer that measures the invariance of P relative to products of powers of
the o,. This theorem is developed in Part C of the paper. Part A is
concerned with the question of the Krull dimension of a skew-Laurent
extension T = R[@, §~'] over a right noetherian ring of finite right Krull
dimension n, equipped with a single automorphism o. In this portion of
the paper, the main result is that 7" has Krull dimension » unless there
exists a simple right R-module 4 such that 4 ®; T is not simple (as a
T-module) and 4 has height n in the sense that there exist critical right
R-modules 4 = A4, 4,,...,A4, such that each 4, ®; T is a critical 7-mod-
ule, each A, is a minor subfactor of 4, ,, and 4, is a subfactor of R. If
such an 4 does exist, then 7 has Krull dimension » + 1. This criterion is
simplified when R is fully bounded. In this case it is shown that T has
Krull dimension n unless R has a maximal two-sided ideal M of height n
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such that M is invariant under some nonzero power of o, in which case T’
has Krull dimension » + 1. In Part B of the paper, some technical results
are developed that relate to the Krull dimension of an iterated skew-
Laurent extension 7 = R[6,"',...,0,"'] over a right noetherian ring R
with finite right Krull dimension k. Although the main thrust of these
results is toward applications in Part C, they do lead to a criterion that
tells when 7 can have the maximum possible Krull dimension, namely
k+ u.

A. NONCOMMUTATIVE COEFFICIENTS; SINGLE AUTOMORPHISM

If R is a right noetherian ring and o is an automorphism of R, then
we can construct the skew-Laurent extension 7= R[#, 6 '; o], which is
also a right noetherian ring. It is well-known that the right Krull dimen-
sion of T is equal to either r.K.dim.(R) or r.K.dim.(R) + 1, but the exact
value of r.K.dim.(7") has been calculated only in some extreme cases [1, 7]
and in the case of a commutative noetherian coefficient ring [6]. Here we
develop a formula for r.K.dim.(7T") whenever R is right noetherian with
finite right Krull dimension, that generalizes the results in both [7] and [6].
The formula that we obtain gives the Krull dimension of 7 in terms of
K.dim.(4 ®; T') and the “height” of 4, where 4 ranges over the simple
right R-modules. The Krull dimension of 4 ®x 7, which is either 0 or 1,
may be determined by a criterion of Hodges and McConnell [7]. The
“height” of A generalizes the idea of the height of a maximal ideal in a
commutative ring, and is given by the length of the longest sequence
A =4y A,,...,A, of “clean” modules (i.e., each A4, is critical and each
A, ®g T is critical as well) such that 4, is a minor subfactor of 4,,, and 4,
is a subfactor of R. In the case that R is a fully bounded noetherian ring
these notions reduce to more familiar concepts, and we are able to recover
the same formula for r.K.dim.(7) as that provided by Hodges [6] for
commutative noetherian coefficient rings.

The pattern of our results, and the line of proof that we follow, are
parallel to our earlier work on the corresponding problem of the Krull
dimension of a differential operator ring over a right noetherian ring with
a derivation [3, 4]. In the skew-Laurent case, an extra step is sometimes
required, for certain graded module arguments must be carried out over
the skew-polynomial ring R[f; o] and the results then transferred to the
skew-Laurent ring R[6, 6~ '; o].

All rings in this paper are associative with unit. In dealing with
modules over a skew-Laurent extension of a ring R with an automorphism
o, some results must be expressed in terms of semilinear isomorphisms
rather than in terms of isomorphisms. To be specific, consider right
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R-modules A and B, and an integer n. A o"-semilinear homomorphism
from A to B is any abelian group homomorphism f: A — B such that
f(ar) = f(a)o"(r) for all a € A and r € R. (In the terminology of (7],
such a map is called a o"-twisted R-module map.) We may construct a
category whose objects are all right R-modules and whose morphisms are
all ¢”-semilinear homomorphisms between them, for arbitrary n. A mor-
phism in this category is an isomorphism if and only if it is bijective, a
monomorphism if and only if it is injective, and an epimorphism if and
only if it is surjective. Thus there is no problem in using the terms
o"-semilinear isomorphism (monomorphism, epimorphism). We define
A ~, B if and only if there is a ¢”-semilinear isomorphism of 4 onto B for
some n, and we define 4 S, B if and only if there is a o”-semilinear
monomorphism of A into B for some n. Note that a o"-semilinear
monomorphism of 4 into B induces an embedding of the lattice of
submodules of A4 into the lattice of submodules of B, whence K.dim.( A4)
= K.dim.(B) (provided 4 and B have Krull dimension). In particular, if
A =~, B, then K.dim.(4) = K.dim.( B).

Given a ring R with an automorphism o, the skew-polynomial exten-
sion S = R[0; o] is the free left R-module with basis {1, 8, 6%,...}, given a
ring structure by the relations 6"r = ¢”(r)§” for r € R and n € N,
together with the usual multiplication in R. This ring is also referred to as
an Ore extension of R. The skew-Laurent extension T = R[0, 0 "; o] is the
corresponding ring, which, as a left R-module, is free with basis

(1,0,071,6%,672,...}).

Alternatively, the multiplicative set {1, 6, 62,... } is a right and left Ore set
in S, and T may be identified with the Ore localization of S at this
multiplicative set. It follows that T is flat as a right or a left S-module.

We abbreviate the above by writing “let 7= R[6,07"; o] be a
skew-Laurent extension” to stand for “let R be a ring, let 0 be an
automorphism of R, and let T = R[#,0"; o]”. We similarly use the
abbreviation “let S = R[#; o] be a skew-polynomial extension”. The
reader should be forewarned that although the skew-polynomial construc-
tion can be carried out with a ring equipped with a ring endomorphism, in
this paper we will always assume that we are dealing with an automor-
phism.

Given a right R-module A4, the nonzero elements of either 4 ®3 S or
A ®x T can be written uniquely in the form

x=(a,®0m)+ (amJrl ® 0”’“) + -+ (a ® 0"_‘) + (a,®6"),

n—1
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where the a, € 4 and a,,, a, ¥ 0. (Of course, for x € 4 ®z § we must
have m = 0.) The a, are called the coefficients of x, and a,, is the leading
coefficient of x. The integer n is the degree of x, denoted deg(x), and the
positive integer n — m + 1 is the length of x. The element 0 is defined to
have degree — oo, leading coefficient 0, and length 0. There is a natural
ascending filtration

X, <X, <X,< -
on A ®; S given by the R-submodules
X, = {x €A ®; S| deg(x) =n},

and X, =4 while X, /X, |, ~,A for alln = 1,2,... . Similarly, there is a
doubly infinite filtration

e SY <Y <Y, <Y, <Y,<---

on A ®x T given by the R-submodules
Y,={y €4 ®T| deg(y) <n},

and Y,/Y_,=Awhile Y,/Y, ,~;Aforalln= =1,*2,....

The natural basis {1, 6, 02,...} for S as a free left R-module is a
subset of the corresponding basis for T as a free left R-module, so that ;.S
is a direct summand of 7. Hence, the inclusion map S — 7 induces an
embedding 4 ®z § - A ®; T, and we may identify 4 ®z S with its image
in A ®x T. In particular, when writing

x=(ay®1) +(a;,®0)+ -+ (a,®0")

with a,,...,a, € A, we need not specify whether we are viewing x as an
element of 4 ®y S or as an element of A Oy T.

For any T-submodule B of A4 ®; T, we write A(B) to denote the set of
leading coefficients of elements of B. The set A(B) is an R-submodule of
A.

We use Krull dimension for noncommutative rings in the sense of
Rentschler and Gabriel [9], and the reader is referred to the monograph
[5] for the basic properties of Krull dimension. When A4 is a noetherian
right R-module, then 4 ®; S is a noetherian right S-module and 4 ®¢ T is
a noetherian right 7-module, and the Krull dimensions of 4 ®; S and
A ®y T equal either K.dim.(A4) or K.dim.(4) + 1. These results are proved
by easy graded module and faithful flatness arguments. (E.g., see [10,
Lemma 1].) In particular, r.K.dim.(7) equals either r.K.dim.(R) or
r.K.dim(R) + 1.
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I. Submodules of induced modules. In calculating the Krull di-
mensions of induced modules over a skew-Laurent extension 7 =
R[0,67"; o], that is, modules of the form A ®; T, we shall need to
consider the kinds of R-modules that can occur as subfactors, in addition
to studying descending chains of 7-submodules. We consider various
cases that arise, in the following series of results. In each case, we proceed
by first deriving the corresponding result for induced modules 4 ®; S
over the skew-polynomial extension S = R[6; o].

LEMMA 1.1. Let S = R[6; o] be a skew-polynomial extension, let A be a
right R-module, and let B be a nonzero S-submodule of A ®r S. Then there
exists a nonzero right R-module C such that C S, A and C ®r S embeds
in B.

Proof. Choose a nonzero element x € B of minimal degree n, and
write
x=(xy®1)+(x,®0)+---+(x,®0")
where each x; € 4 and x, # 0. Set
I={reRlx,0o"(r)=0}.

If r € I, then xr is an element of B with degree less than n, and so xr = 0.
Thus xI = 0 and xIS = 0.
Consider any s in S — IS. Write

s=t+ (sy+ 50+ +560%)
where ¢ € IS, each s, € R, and s, & I. Since xt = 0, the coefficient of
6"** in xs in x,0"(s,). This coefficient is nonzero because x, & I, and so
xs # 0.
Thus IS = anny(x). Now if C = R/, then
C®rS=S/IS=xS =B.

The rule 7 + x,0"(r) defines a ¢"-semilinear homomorphism from R to 4
with kernel 7, and hence C <, 4. a

Although the skew-Laurent analogue of Lemma 1.1 is easily obtained
as a corollary of the lemma, by a direct argument we can obtain a stronger
result in the skew-Laurent case.

LEMMA 1.2. Let T = R[0, 07 "; o] be a skew-Laurent extension, let A be
a right R-module, and let B be a nonzero T-submodule of A g T. Then A
contains a nonzero submodule C such that C ®x T embeds in B.
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Proof. Choose a nonzero element x € B of minimal length k. Replac-
ing x by x@™ for a suitable integer m, we may assume that x has the form

x=(x,®1) +(x,98) + -+ (x,_, ®6<7")

where each x; € 4 and x,, x,_, # 0. Set I = anng(x,). If r € 1, then xr
is an element of B with length less than k, and so xr = 0. Thus xI =0
and xIT = 0.

Consider any ¢ in T — IT. Write

t=u+ (1,07 +1,,,0"" + - +1,67)

where u € IT, each t, € R, and ¢, & I. Since xu = 0, the coefficient of 6"
in xt is x4t,. This coefficient is nonzero because ¢, & I, and so xt # 0.

Thus IT = ann;(x). Set C = xR. Then C is a nonzero submodule of
A, and

C®xT=(R/I)®:T=T/IT =xT < B. O

COROLLARY 1.3. [6, Lemma 2.3] Let T = R[0,07"; o] be a skew-
Laurent extension. If A is a compressible right R-module, then A ®x T is a
compressible right T-module.

Proof. If B is a nonzero T-submodule of 4 ®z T, then by Lemma 1.2
there exists a nonzero submodule C < A4 such that C ®; T embeds in B.
Since 4 is compressible, 4 embeds in C, and then 4 ®; T embeds in
C ®x T, because T is a flat left R-module. Therefore 4 ®z T embeds
in B. O

PROPOSITION 1.4. Let S = R[0; o] be a skew-polynomial extension, let
A be a noetherian right R-module, and let I, J be S-submodules of A ® S
such that I < J. Suppose that B is a nonzero noetherian right R-module such
that B ® S is isomorphic to an S-module subfactor of J /1. Then there exists
a nonzero subfactor C of N(J)/N(I) such that C < B.

Proof. By enlarging / and reducing J, if necessary, we may assume
that J /1 is isomorphic to B ® S. As an R-module, B ®; S is the union of
an ascending chain of submodules with the successive subfactors semilin-
early isomorphic to B. Hence, in 4 ®; S there exist R-submodules

with UB, =J and each B,,,/B; ~,B. Note that since B is noetherian,
each B,/I is a noetherian R-module.
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For each nonnegative integer n, set
I, = {x € I|deg(x) <n},
A, (I) = {y € 4|y s the leading coefficient of some x € I,}

and define J, and A, (J) in the same manner. Then I, <1, =< --- is an
ascending chain of R-submodules of 4 @z S and A([) =A(I)=<--- is
an ascending chain of submodules of A4, and similarly for the J, and the
A, (J). Since A is noetherian, there exists a positive integer p such that
A (1) =A,(I) and A, (J) =A,(J) for all n=p, so that A, (1) = A(])
and A (J) = A(J) for all n = p. Thus for n = p we obtain the following
semilinear isomorphism of R-modules:

O T+5)/ U+ =0/ (0I+]_)) =1/ (I, + )
~o () /A(T) = A(T)/N(T).

As the R-module {x € A4 ®; S|deg(x) < p} is noetherian, so is J,,
and hence (I + J,)/1 is noetherian. Consequently, there exists a positive
integer g such that

(Byar/I) N ((I+J,)/1) = (B,/I) 0 ((I+J,)/1).

Thus B, NJ,<B,.SetD =B, ,+J,and E= B, + J, so that D and
E are R-submodules of 4 ®; S with £ < D and

(2) D/E;Bq+l/(Bq+l ﬂ(Bq_+_‘]p)):Bq+l/Bq%aB-

Also, since D/I is a finitely generated R-submodule of J/I (because
B, /I and J, are each finitely generated), D < I + J, for some n > p.

On applying the Schreier Refinement Theorem to the two chains of
R-modules

[+J,<E<D=<I+J,
I+J,<I+J,  <--<I+J,

we see that some nonzero submodule F of D/E is isomorphic to a
subfactor G of one of the modules ( + J,,,,)/(I + J,,), where p < m < n.
Using the semilinear isomorphisms (1) and (2), we conclude that there is a
nonzero subfactor C of A(J)/A(I) such that

C~,G=Fs,B. O

COROLLARY 1.5. Let T = R[0, 6~ '; o] be a skew-Laurent extension, let
A be a noetherian right R-module, and let I, J be T-submodules of A ®x T
such that I < J. Suppose that B is a nonzero noetherian right R-module such



116 K. R. GOODEARL AND T. H. LENAGAN

that B ®x T is isomorphic to a T-module subfactor of J/I. Then there exists
a nonzero subfactor C of N(J)/AN(I) such that C < B.

Proof. We may assume that J/I = B ® T, in which case there exists
a T-module epimorphism f: J - B ® T such that ker(f) = I. Set S =
R[#; o], and set

I,=IN(A®S) and J,=JN(48S).
Note that A(1,) = A(]) and A(J,) = A(J). Also, note that
I,T=1<J=J,T,

whence J, /1, # 0.

As A is a noetherian R-module, 4 ®; S is a noetherian S-module, and
hence J, is a finitely generated S-module. Choose S-module generators
X...,x; for J,, and then choose a negative integer n such that each f(x;)
lies in (B ® S)6". Hence, f(J,) is contained in (B ®; S)f". Since I,
equals the kernel of the restriction of f to J;, it follows that J,/I is
isomorphic to an S-submodule of (B ®; §)8".

Make the abelian group B into a new right R-module B’ by using the
R-module multiplication * under which b * r = bo"(r) for all » € B and
all r € R. Then the rule

b®O b

defines an S-module isomorphism of B’ ®z S onto (B ®% §)0". Thus
Jo/ 1, is isomorphic to a nonzero S-submodule of B ®¢ S.

By Lemma 1.1, there exists a nonzero right R-module D such that
D <s,B’ and D ®; S embeds in Jy/I,. Since B’ ~,B, we also have
D <, B. Applying Proposition 1.4, we obtain a nonzero subfactor C of
A(Jy)/A(1,) such that C S, D. Then C is a subfactor of A(J)/A(I), and
C <, B as well. a

PROPOSITION 1.6. Let S = R[0; o] be a skew-polynomial extension, and
let A be an a-critical noetherian right R-module, for some ordinal a. Let

A®rS=B,=ZB,=---=B>0

where the B; are R-submodules of A ®r S and B is a nonzero S-submodule of
A ®gr S. Then there exists a positive integer p such that for any integer j = p,
all finitely generated R-module subfactors of B,/B, , have Krull dimension
less than a.

Proof. Set A, = {x € A ®g S|deg(x) =n} for each n =0,1,2,... .
Then each A4,,,/A, ~.A, whence A,,,/A, is a-critical, and so
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K.dim.(4,)) = « for all n. Note that any finitely generated R-submodule
of A ®y S is contained in some A4, and so is noetherian. Thus all finitely
generated R-module subfactors of 4 ®; S have Krull dimension.

Choose a nonzero element b € B with positive degree ¢. For n = 1,
t+ 1,..., we must have

An N (B +An—l) >An——l’
because 0" ‘liesin (4, N B) — A,_,. Thus 4,/(4,N(B+A4,_,)isa
proper factor of 4, /4, . In addition,
(B+4,)/(B+4,.,)=4,/(4,0(B+4,)),

sothat(B + 4,)/(B + A,_,) is isomorphic to a proper factorof 4,/4,_,.
Hence,

K.dim.((B+ 4,)/(B+A4,_))) <«
foreachn =t. As (4 ®x S)/(B + A,) is the union of the submodules

(B +At+l)/(B +A1) S(B +At+2)/(B + AI) =,

it follows that all finitely generated R-module subfactors of
(4®rS)/(B+4,)

have Krull dimension less than «.
In the R-module (A4 ® S)/B, consider the following two chains of
submodules:

(A®xS)/B=(B+A4,)/B=0,
B,/B=B,/B=B,/B= ---

We may use [3, Proposition 3.2(b)] to obtain a common refinement of
these chains. Namely, there exist R-submodules

A®rS=Vy=Vy,=---=B+A4,
B+A4,=zV,=V,=---=B
B, = Wo; = W\ = Wy; = B,
(forj=1,2,...)such that V, /V, ., =W, /W,_,  foralli,j. Now
K.dim. ((B + 4,)/B) = K.dim. (4,) = a.
Hence, there exists a positive integer p such that

K.dim. (V,,/V; ,4,) <
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for all j = p. Consequently, for j = p the module W, /W, is a noetherian
R-module with

K.dim. (W,,/W,;) <a.

Since Wy,/W,; is isomorphic to V;,/V, ;,,, which is a subfactor of
(A ®rS)/(B+ A,), all finitely generately subfactors of W;,/W,; have
Krull dimension less than a. Therefore for j = p, every finitely generated
subfactor of B;/B; | has Krull dimension less than a. g

COROLLARY 1.7. Let T = R[0,07"; o] be a skew-Laurent extension,
and let A be an a-critical noetherian right R-module, for some ordinal a. Let

A®yT=B =2B,=---=B>0

be a chain of nonzero T-submodules of A ®x T. Then there exists a positive
integer p such that for any integer j = p, all finitely generated R-module
subfactors of B;/B, . have Krull dimension less than a.

Proof. Set S = R[0; o], set C;= B, N (4 ®;S) for each positive
integer j, and set C = B N (A4 ®x S). Then we obtain a chain of S-sub-
modules

A®rS=C,=C,=---=C>0.

By Proposition 1.6, there exists a positive integer p such that for j = p, all
finitely generated R-module subfactors of C;/C;,, have Krull dimension
less than a.

Suppose, for some j = p, that B, /B, , has a finitely generated R-mod-
ule subfactor with Krull dimension at least & (or with no Krull dimension).
Then there exists a finitely generated R-submodule E < B, such that
E/(E N B,,,) either has no Krull dimension or else has Krull dimension
at least a. Choose a positive integer n such that £6" < A ® S, and note
that E ~, E@". As observed in the proof of Proposition 1.6, all finitely
generated R-submodules of 4 ®y S are noetherian. Thus E6" is noetherian,
and so E is noetherian, whence E/(E N B, ) has Krull dimension. Now

K.dim.(E/(EN B,,,)) = a.
Observe that E6" < B, N (4 ® §) = C;, and s0
E¢"NC,,=E"NB, =(ENB,)0"
Hence, multiplication by " induces a ¢~ "-semilinear isomorphism

E/(EN Bj—l—]) ~.E0"/ (E6" N Cj+l)’
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and consequently K.dim.(E6"/(E6" N C,,,)) = a. On the other hand,
K.dim. (E6"/ (E6" N C;1 ) <«

because E0"/(E" N C,.,) is isomorphic to a finitely generated R-sub-
module of C,/C, ., and we have reached a contradiction.

Therefore for j = p, all finitely generated R-module subfactors of
B,/B; ,, must have Krull dimension less than a. O

II. Clean modules. This section is devoted to the basic induction
step needed in calculating the Krull dimensions of induced modules over a
skew-Laurent extension T = R[#, §'; o]. When A4 is a critical noetherian
right R-module, the aim is to describe the Krull dimension of 4 ®; T in
terms of the Krull dimensions of the modules 4" ®, T as A’ ranges over
critical subfactors of 4 with lower Krull dimension than A4. If A happens
to be compressible, then by Corollary 1.3, 4 ®; T is compressible, and
hence critical. In particular, this holds if R is commutative, or if A4 is
simple. (That A ®; T is critical when A4 is simple is also shown in [7,
Corollary 4.8].) However, in general A ® T need not be critical, as shown
by an example at the end of the section. Thus we restrict attention to
those critical R-modules A for which 4 ®3 T is critical, as follows.

DErFINITION. Let R C T be rings. As in [3, Section IV], we define a
T-clean right R-module to be any critical right R-module. 4 such that
A ®p T'is a critical right T-module. We shall sometimes refer just to clean
R-modules if no ambiguity is likely to arise. Note that all clean modules
are nonzero, because they are critical. Also, note that if T is flat as a left
R-module (as in the case that T is a skew-Laurent extension of R), then
any nonzero submodule of a 7-clean right R-module is T-clean. The next
lemima guarantees the existence of an abundance of clean modules in the
skew-Laurent context.

LEMMA 2.1. Let T = R[0, 07'; o] be a skew-Laurent extension. If A is
a nonzero noetherian right R-module, then A contains a T-clean submodule.

Proof. Since A ®y T is a noetherian T-module, it has Krull dimension,
and so it contains a critical 7-submodule B. By Lemma 1.2, 4 contains a
nonzero submodule C such that C ®; T embeds in B. Since 4 is noetherian,
C has Krull dimension, and hence C contains a critical R-submodule D.
Now D ®; T embeds in B, and so D ®x T is a critical 7-module. There-
fore D is a T-clean R-submodule of 4. O
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For one technical step in our procedure, we require a notion of height
1 for clean modules, as used in [3, Section IV]. Recall that a minor
subfactor of a module A4 is any submodule of a proper factor of A.

DEFINITION. Let R C T be rings, and let A, B be T-clean noetherian
right R-modules. Define h,(A4: B) =1 if 4 is isomorphic to a minor
subfactor of B but no nonzero submodule of A is isomorphic to a minor
subfactor of a T-clean minor subfactor of B. We drop the subscript 7 in
cases in which no ambiguity is likely to arise. Note that if #,(A: B) = 1,
then h,(A": B) = 1 for all nonzero T-clean submodules 4" of 4. In case
h(A: B) = 1 does not hold, we write h(A4: B) #+ 1.

LEMMA 2.2. Let T = R[0, 0~ '; o] be a skew-Laurent extension, let B be
a T-clean noetherian right R-module, and let

be a chain of submodules of B. Then there exists a positive integer p such

that for all integers j = p, there are no T-clean subfactors X of C,/C .,
satisfying h(X: B) = 1.

Proof. As every nonzero noetherian right R-module contains a 7-clean
submodule (Lemma 2.1), the lemma is a special case of [3, Lemma 4.3]. [J

LEMMA 2.3. Let S = R[0; o] be a skew-polynomial extension, let B be a
noetherian right R-module, and let D be a nonzero S-module subfactor of
B ®y S. Then there exists a nonzero subfactor C of B such that C <, Dg.

Proof. Set B, = {x € B ®f S|deg(x) =n — 2} for all positive in-
tegers n, and write D = E/F for some S-submodules F < E in B ®; S.
Consider the following chains of R-submodules:

0=F<E=BQ®;S,
0=B<B,=<
We may use [3, Proposition 3.2(a)] to obtain a common refinement of
these chains. Namely, there exist R-submodules
0=V, =Vy,=---=<F
F=V,=sV,=---<E
E=V, =Vy=--=B®S
B =W, =W, =W, <W,=B8,,
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(forj = 1,2,...)suchthat V, ,,,/V,; = W, /W, for alli,j, and also

Uv,=E.

j=1
Let k be the least positive integer such that V;, > F, and set C’ =V, /F.
Then C’ is a nonzero R-submodule of D such that

C=Vi/Vivka =Wt/ Wik-1

so that C’ is isomorphic to a subfactor of B, /B, . Since B, /B, |, ~, B,
there exists a nonzero subfactor C of B such that C ~,C’, and hence
Cc=<,D. O

Recall that if T = R[6, 8~ '; o] is a skew-Laurent extension, and if M
and N are right R-modules such that M ~; N, then M @y, T = N Qx T.
Namely, if f is a o “-semilinear isomorphism of M onto N, for some integer
k, then there is a T-module isomorphism

g M®RT > NGO T
such that g(m ® t) = f(m) ® @*t forallm € Mandt € T.

COROLLARY 2.4. Let T = R[0, 6~ '; o] be a skew-Laurent extension, let
B be a noetherian right R-module, and let D be a nonzero T-module
subfactor of B ®x T. Then there exist a T-clean subfactor A of B and a
T-clean R-submodule A* < D such that A ~, A'.

Proof. Write D = E /F for some T-submodules F < E in B @z T. Let
S = R[0; o], and set

E,=EN(B®;S) and F,=FN (B®;S).

Since F;T = F<E = E,T, we see that E,/F, is a nonzero S-module
subfactor of B ®x S. Note that £,/ F, embeds in D.

By Lemma 2.3, there exists a nonzero subfactor 4 of B such that
A <, (Ey/Fy)g. Since A has T-clean submodules (Lemma 2.1), there is no
loss of generality in assuming that A itself is 7-clean. As E,,/F, embeds in
D, there is an R-submodule A" < D such that 4 =~,A4’; since 4 ®x T =
A’ ®x T, we conclude that A’ is T-clean. O

We are now in a position to derive an expression for the Krull
dimension of an induced module B ®; T over a skew-Laurent extension
T = R[6, 6 '; o], at least when B is clean, in terms of the Krull dimen-
sions of the modules 4 ®z T, where A runs through the clean minor
subfactors of B.
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PROPOSITION 2.5. Let T = R[6, 07'; o] be a skew-Laurent extension,
and let B be a T-clean noetherian right R-module with finite Krull dimension.
If B is not simple, then

K.dim. (B ®; T) = max{K.dim. (4 ®; T)|4 € &} + 1,

where @ is the family of T-clean minor subfactors of B.

Proof. Since B is not simple, it has some nonzero minor subfactors,
and so @ is nonempty, because of Lemma 2.1. Set 8 = K.dim.(B). Since 8
is finite, K.dim.(B ®y T') is finite, and hence the value

a = max{K.dim. (4 ®; T)|4 € @}
is really a maximum (rather than a supremum). Choose 4 € @ with
K.dim. (4 ®;T) = a.
Then 4 ®x T is isomorphic to a minor subfactor of B ®, T, and so
K.dim.(B ®zT) > a,
because B ®y T is critical. Thus K.dim(B ®x T) = a + 1.
If K.dim.(B ®; T) > a + 1, then
K.dim.((B®;T)/C) > «
for some nonzero T-submodule C of B ®x T. Hence, there exists a chain
of T-submodules
such that K.dim.(C,/C,,,) = a for infinitely many j. After refining this
chain, we may assume that each C;/C,,, is critical. By Corollary 1.7, there
exists a positive integer p such that for any j = p, all finitely generated

R-module subfactors of C,/C, | have Krull dimension less than S.
Inside B, there is a chain of R-submodules

B=AC)=NGy) = ---=A(C)>0.

By Lemma 2.2, there exists a positive integer ¢ such that for all j =g,
there are no clean subfactors X of A(C;)/A(C,,.)) satisfying h(X: B) = 1.

Choose m = max{p, q} such that K.dim.(C,/C,,,) = a. By
Corollary 2.4, there exist a clean subfactor 4 of B and a clean R-submod-
ule 4" of C,/C,,,, such that 4 ~, 4’. Since m = p, we have K.dim.(4") <
B, and so K.dim.(4) < 8. Thus 4 must be a minor subfactor of B. Then
A € @and

K.dim. (4 ®;T) < a.
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Since A ~,A’, wehave 4 g T = A’ ®; T, and hence

Now set E = A'T, which is a nonzero T-submodule of C,/C,, . ,, and note
that

K.dim. (E) = K.dim. (C,/C,,,,) = a,

because C,,/C,, . , is critical.
The module E is a homomorphic image of the critical module
A ®rT. As

K.dim.(E) = a = K.dim. (4’ ® T),

we see that E cannot be a proper homomorphic image of A’ ®; T. Thus
E=A4 ®xT, and

K.dim. (E) = K.dim. (4’ ®; T) = a.

Now A’ ®g T is isomorphic to a submodule of C,,/C,, ., ,. By Corollary
1.5, there exists a nonzero subfactor X of A(C,,)/A(C,.,) such that
X <S,A'. Since X is a subfactor of A(C,,)/A(C,,.,), it is also a minor
subfactor of B. Because of Lemma 2.1, there is no loss of generality in
assuming that X is clean. Hence, #( X : B) # 1, because m = ¢. Thus there
exist a nonzero submodule Y < X and a clean minor subfactor G of B
such that Y is isomorphic to a minor subfactor of G. Then G € @, and
Y ®x T is isomorphic to a minor subfactor of the critical module G ®z 7T,
whence

On the other hand, Y =, Y’ for some submodule Y’ < A4’, and so Y ®x T
= Y ®xT. Since Y’ ®x T is isomorphic to a nonzero submodule of the
critical module 4’ ® T, it follows that

K.dim. (Y ®; T) = K.dim. (4’ ®; T) = a,

which is a contradiction.
Therefore K.dim.(B ®z T) = a + 1. O

We conclude this section with an example of an unclean critical
module, to show the necessity of using clean modules rather than critical
modules in our results.

EXAMPLE 2.6. There exists a skew-Laurent extension 7= R[6, 07 '; o]
of a right and left noetherian domain R such that R has a 1-critical cyclic
right module which is not 7-clean.
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Proof. Choose a field K of characteristic zero, let 7, x be independent
indeterminates, and set

Ry, = K(#)[x, x7].

Define commuting K-algebra automorphisms o, and o, on R, so that
0,(¢) = 2t and o\(x) = x while 0,(#) = ¢ and 0,(x) = 2x. Now set

R= RO[BDBI—I; °1]’

which is a right and left noetherian domain. Since o, and o, commute, we
may extend o, to an automorphism of R such that o,(8,) = 6,. Set

r= R[02’02—l§ 0] = Ro[altlﬁzﬂ? 01’02]'

It is easily checked that no maximal ideal of R, is invariant under any
nonzero power of o,. Hence, by [7, Lemma 3.4], all simple R,-modules
tensor up to simple modules over R,[6,, 6, ; o,]. Thus R[6,, 6, '; 0,] has
right Krull dimension 1, by [7, Theorem 6.1}, and consequently
r.K.dim(7T) = 2.

We construct a 1-critical cyclic right R-module 4, built as a non-split
extension of a l-critical module C by a simple module B, such that
A ®g T is not critical, which occurs because B ®x T and C ® T each have
Krull dimension 1.

First, set B = R/(x + t)R. Since (x + t)R, is a maximal ideal of R,
that is not invariant under any nonzero power of o,, it follows from [7,
Lemma 3.4] that (x + ¢)R is a maximal right ideal of R. Thus B is a
simple R-module. On the other hand,

6,0,((x + t)R) =0,2x +t)R=(2x + 2¢)6,R = (x + )R

and 6, € R — (x + t)R, and hence [7, Lemma 3.5] shows that B ®; T'is a
non-artinian 7-module. As B ®; T is compressible (Corollary 1.3) and
therefore critical, it must be 1-critical.

Next, set C = R/(#, — 1)R. Since R = R, ® (6, — )R as right R-
modules, we may identify C with R,, made into a right R-module with a
module multiplication * such that r x 8, = ¢, '(r) for all r € R,. Thus
the lattice of R-submodules of C is isomorphic to the lattice of o,-in-
variant ideals of R . Each of the ideals in the chain

(X—’ l)R0>(x— 1)2R0>(x— 1)3R0>

is o,-invariant, and so C is not artinian. However, C is 1-critical as an
R ,-module. Therefore C must also be a 1-critical R-module. Since C & T
is isomorphic to 7/(8, — 1)T, which is a proper factor of the critical



KRULL DIMENSION OF SKEW-LAURENT EXTENSIONS 125

module T, we have
K.dim. (C ®; T) <r.K.dim.(T) < 2.
On the other hand, K.dim.(C ®; T') = K.dim.(C) = 1, and hence
K.dim.(C®;T) = 1.

Finally, set A = R/(x + t)(8, — 1)R, which is an extension of C by
B. If this extension splits, then by [2, Lemma 2.9] there exist elements
u, v € R such that
u(x+1)+(6,— Ho=1.

Write u = (6, — 1)r + r, for some r € R and r, € R,. Then
(0, = D(o+r(x+1)=1—rx+1)

and so ry(x + ¢) = 1, which is impossible. Thus the extension is not split.
Therefore A is a non-split extension of the 1-critical module C by the
simple module B, whence A4 is a 1-critical right R-module. On the other
hand, 4 ®; T is an extension of C ®x T by B ®x T, each of which has
Krull dimension 1, and hence 4 ®; T is not critical. Therefore 4 is not
T-clean. O

III. Krull dimension formulas. The formula given in Proposition
2.5 is designed for use in an inductive procedure, by which the Krull
dimension of an induced module B ®, T over a skew-Laurent extension
T = R[6,67'; o] may be computed in terms of the Krull dimensions of
the modules M ®x T where M runs through the simple subfactors of B. In
order to keep track of the number of steps in which Proposition 2.5 is
used, a notion of height for simple modules is required, as in [3, Section
V1. A height value for non-simple clean modules is not required.

DEerINITION. Let R C T be rings, let M be a simple right R-module,
and let B be an arbitrary right R-module. Then s, (M : B) is defined to be
the supremum of those nonnegative integers n for which there exists a
sequence M = A,, A,,...,A, of T-clean right R-modules such that A4, is
isomorphic to a minor subfactor of 4,,, fori = 0,1,...,n — 1 while 4, is
isomorphic to a subfactor (not necessarily minor) of B. Given such a
sequence,

K.dim. (4,) > K.dim. (4,_,) > - - - > K.dim. (4,) > K.dim. (4,) = 0,

because each A, is critical, and hence K.dim.(B) = n if K.dim.(B) exists.
Thus if B has Krull dimension, then 4, (M : B) < K.dim.(B). Note that
hy(M: B) =0 only if M is T-clean and isomorphic to a subfactor of B;
otherwise, h (M : B) = —o0.
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THEOREM 3.1. Let T = R[0, 07'; o] be a skew-Laurent extension, and
let B be a nonzero noetherian right R-module with finite Krull dimension.
Then

K.dim. (B ®; T) = max{K.dim. (M ®; T) + h,(M: B)|M € O},

where O is the set of simple subfactors of B.

Proof. Set B = K.dim.(B). If 8 = 0, then B has submodules
0=B,<B,<B,<---<B,=B
such that each B,/B; , is simple, and each simple subfactor of B is

isomorphic to some B,/B;_,. Note that h,(M: B) =0 for all M € IN.
Thus

K.dim. (B ® T) = max{K.dim. (B,/B,_,) ® T)|i = 1,... .k}
= max{K.dim.(M ®; T)|M € O}
= max{K.dim.(M ® T) + h(M: B)|M € O}
in this case.

Now let >0 and assume that the result holds for noetherian
R-modules of Krull dimension less than . Set

p = max{K.dim. (M ®; T) + h(M: B)|M € O }.

If M €9 and h(M: B) = n, then there exist clean right R-modules
M =A,, A,,...,A, such that 4, is isomorphic to a minor subfactor of
A;,, for i=0,1,...,n — 1 while 4, is isomorphic to a subfactor of B.
Then each A, ®x T is isomorphic to a minor subfactor of the critical
module 4, , ®x T, whence

K.dim. (4, ®: T) > K.dim. (4,_, ®z T)
> ... >K.dim. (4, ®z T) = K.dim. (M ®; T).
As A, ®x T is isomorphic to a subfactor of B ®; T, we obtain
K.dim. (B ®; T) = K.dim. (4, ®; T) = K.dim. (M @z T) + n
= K.dim.(M ®; T) + h(M: B).

Thus K.dim.(B ®x T) = p.
Use Lemma 2.1 to choose submodules

O:CO<C1<C2<"'<Ck:B
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such that each C,/C,_, is clean. Any simple subfactor M of C,/C,_, is
also a simple subfactor of B, and

he(M:C/Cy) <hy(M: B),
whence
max {K.dim. (M ®T) + h(M: C/C.,)|M €N} <p,

where 9N, is the set of simple subfactors of C,/C,_,. Thus we need only
show that our Krull dimension formula holds for each C,/C,_,. Hence,
there is no loss of generality in assuming that B is clean.

By Proposition 2.5, there exists a clean minor subfactor 4 of B such
that

K.dim. (B ®; T) = K.dim. (4 ®; T) + 1.

Since B is critical, K.dim.(4) < . Then, by the induction hypothesis,
there exists a simple subfactor M of 4 such that

K.dim. (4 ®; T) = K.dim. (M @z T) + h(M: A).
Consequently,
K.dim.(B®; T) = K.dim.(M @z T) + h(M: A) + 1.

In addition, M € O, and h(M: B) = h (M: A) + 1, because 4 is a
minor subfactor of the clean module B. Hence,

K.dim. (B ®;T) < K.dim. (M ®xT) + h(M: B) < p.
Therefore K.dim.(B ®;x T') = p. O
COROLLARY 3.2. Let R be a right noetherian ring with finite right Krull

dimension, let o be an automorphism of R, and set T = R[6, 07 "; 6]. Then
r.K.dim. (T) = max{K.dim. (M ®; T) + h;(M: R)|M € M},
where O is the family of simple right R-modules. d

COROLLARY 3.3. Let R be a right noetherian ring with finite right Krull
dimension, let o be an automorphism of R, and set T = R[6,07"; o). Then

r.K.dim. (7) = r.K.dim. (R)
unless there exists a simple right R-module M such that
K.dim.(M®;T)=1 and hy(M:R)=rK.dim.(R),

in which case
r.K.dim.(7) = rK.dim.(R) + 1. O
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COROLLARY 3.4. Let R be a right noetherian ring with finite right Krull
dimension, let ¢ be an automorphism of R, and set T = R[0,07"; o). Then

r.K.dim.(T) = r.K.dim. (R)
unless there exists a maximal right ideal J of R such that
hr(R/J: R)=r.K.dim. (R)

and xa"(J) C J for some element x € R — J and some nonzero integer n.
In this latter case,

r.K.dim.(7) = r.K.dim. (R) + 1.
Proof. Corollary 3.3 and [7, Lemmas 3.4, 3.5]. |

Two cases of Corollary 3.3 were obtained previously by Hodges and
McConnell, namely, that

r.K.dim. (7) = r.K.dim. (R) + 1

when all simple right R-modules tensor up to 1-critical 7-modules [7,
Theorem 5.1], and that

r.K.dim.(7) = r.K.dim. (R)

when all simple right R-modules tensor up to simple 7-modules [7,
Theorem 6.1]. The commutative version of Corollary 3.4 was proved by
Hodges [6, Theorem 2.8]. In that result, for a maximal ideal J of R the
value h(R/J: R) is of course replaced by the ordinary height of J.
However,

h(R/J: R) = hi(J),

as we shall see in Proposition 4.2, and hence Hodges’ result may be viewed
as a special case of our result.

IV. Fully bounded noetherian coefficient rings. In this section,
we specialize our results to the case of a skew-Laurent extension 7 =
R[6,67"; o] where R is a fully bounded noetherian ring. In this case the
values h(M : R) for simple R-modules M may be replaced by the heights
of maximal two-sided ideals of R, and our Krull dimension formula for 7
reduces to exactly the same result as that obtained by Hodges in the case
that R is commutative [6, Theorem 2.8].

LEMMA 4.1. Let T = R[6,07'; o] be a skew-Laurent extension of a
right noetherian ring R. Let M be a simple right R-module, set P = ann z( M)
and assume that R /P is a simple artinian ring. Then K.dim.(M ®xT) =1
if and only if P is invariant under some nonzero power of o.
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Proof. We may assume that M = R/J for some maximal right ideal J
of R that contains P.

If K.dim.(T/JT) = 1, then by [7, Lemma 3.4], x¢"(J) C J for some
x in R — J and some nonzero integer n. Then o"(J) is a maximal right
ideal of R such that R/¢"(J) =R/J, and hence P C ¢"(J). For any
r € Rand p € P, we have 6"(r)p € P, whence re”"( p) € J. Thus

o "(P) C anng(R/J) = P.

Conversely, assume that ¢”(P) C P for some nonzero integer n. Since
P is a maximal two-sided ideal of R, so is ¢"( P), and hence o”(P) = P.
Then P C 0"(J), from which it follows that

anng(R/0"(J)) = P,

and consequently R/0"(J) = R/J, because R/P is a simple artinian
ring. Hence, xo"(J) C J, for some x in R —J. By [7, Lemma 3.5],
K.dim(7/JT) = 1. O

PROPOSITION 4.2. Let T = R[6, ™', o] be a skew-Laurent extension of
a fully bounded noetherian ring R. Let M be a simple right R-module, and let
P = anng(M). Then h(M: R) = ht(P).

Proof. The proof of [3, Proposition 6.2] may be repeated here. O

THEOREM 4.3. Let R be a fully bounded noetherian ring with finite right
Krull dimension, let ¢ be an automorphism of R, and set T = R[6, 67 '; o].
Then

r.K.dim.(7) = r.K.dim. (R)

unless there exists a maximal two-sided ideal P of R such that ht(P) =
r.K.dim.(R) and P is invariant under some nonzero power of o. In this latter
case,

r.K.dim.(7) = r.K.dim. (R) + 1.

Proof. Corollary 3.3, Lemma 4.1, Proposition 4.2. O
B. NONCOMMUTATIVE COEFFICIENTS; ITERATED EXTENSIONS

The purpose of this part of the paper is to derive some of the basic
induction steps needed in calculating the Krull dimension of a skew-
Laurent extension formed from a coefficient ring equipped with several
commuting automorphisms. For these induction arguments, the commuta-
tivity of the automorphisms is irrelevant, and so we proceed in the context
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of iterated skew-Laurent extensions. In addition to providing the key
induction steps for the final part of the paper, these results also allow us
to derive a criterion that determines when an iterated skew-Laurent
extension can achieve its maximum possible Krull dimension, analogous
to the criterion derived for iterated differential operator ring extensions in

[2].

V. Iterated skew-Laurent extensions. Let R be aring, and let u be a
positive integer. A u-fold iterated skew-Laurent extension of R is any ring
of the form

T=R[6,,6,";0][6,,6;";0,] ---[6,,8,",0,],

where o0, is an automorphism of R, and ¢, for i = 2,...,u, is an automor-
phism of the ring

R[6,,6;"50)][6,,0; "5 0] -~ [0, 670, ].

We abbreviate the expression for T to T = R[6,"',...,6,7']. Such exten-
sions are of course studied by procedures following induction on u,
starting from results in the case that ¥ = 1. For instance, if A is any
noetherian right R-module, then 4 ®; T is a noetherian right 7-module,
and

K.dim. (4) < K.dim. (4 ®; T) < K.dim. (4) + u.

LEMMA 5.1. Let T = R[60, 67 '; o] be a skew-Laurent extension, and let
A be a right T-module. Then there exists a short exact sequence

00oAQRT > AQRrT—->A-0
of right T-modules.

Proof. Let g: A ®x T — A be the map given by the 7-module multipli-
cation on A4, so that g(a®t) =arforalla€ 4 andt € T. Then g is a
T-module epimorphism.

Next, define an additive map f: A ®x T - A ®x T so that

f(a®8")=(ad ® ") — (a ® 6")

for all a € A and n € Z. We shall show that f is a T-module homomor-
phism. Clearly, f(x6) = f(x)60 and f(x6~ ") = f(x)0~ ' for all x in 4 @ T.
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Also,ifa € A,n € Z,r € R, then

(f(a®0")r=(ad0®6" 'r) — (a®@"r)
= (abe"(r) @ 6°1) — (a0"(r) © 0")
= (ag"(r)§ ® 6" ') — (ac"(r) ® 6)
=flac"(r)®0") = f((a ® 6")r).

It follows that fis a T-module homomorphism.

Clearly, f is a monomorphism, and gf = 0. Given x in ker(g), we
show that x is in the image of f, by induction on the length of x. If x has
length at most 1, write x = a ® §" for some a € A and n € Z. Then
af" = 0 and so a = 0, whence x = 0 = f(0).

If x has length greater than 1, write

n
x= 3 a,®6

withm <mn,alla, € 4,and q,,, a, 7 0. Set
y=x+f(a,®8")=x+ (a,0®6"") - (a,® "),

which has shorter length than x, and notice that y € ker(g). Thus y is in
the image of f, and hence so is x.
Therefore the sequence is exact. O

PROPOSITION 5.2. Let T = R[6,"',...,6."] be an iterated skew-Laurent
extension, and let A be a nonzero right T-module. If A is noetherian as a
right R-module, then

K.dim. (4 ® T) = K.dim.(4) + u.

Proof. Since A is a noetherian right R-module, 4 ®, T is a noetherian
right T-module and so has Krull dimension. First consider the case in
which u =1, and set B=A ®xT. In view of Lemma 5.1, B has a
T-submodule B, such that B, =B and B/B, = A. As B, = B, we may
continue this process, obtaining an infinite descending chain of T-sub-
modules

A®rT=B>B, >B,> ---

with B, /B, . | = A for each n. Then K.dim.(4 ®; T') > K.dim. +(4), com-
pleting this case.
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For the general case, let u > 1 and assume that the result holds for
modules over (u — 1)-fold iterated skew-Laurent extensions. Set S =
R[6°'], so that T = S[6,"",...,6,"]. Since 4 is noetherian as an R-mod-
ule, it is also noetherian as an S-module, and so by the induction
hypothesis,

K.dim. (4 ®5T) = K.dim.(4) + u — 1.
Now by Lemma 5.1 there exists a short exact sequence of right S-modules
0->A®rS>A48rS—->4-0,

and since 7 is a flat left S-module, this induces a short exact sequence of
right 7-modules

0 ABT->AQrT>AQsT - 0.
It follows that there exists an infinite descending chain of 7-submodules
A®rT>B,>B,> -

with B,/B,,, =A ®sT for each n. Therefore K.dim.(4 ®xT) >
K.dim.(4 ®¢T), and hence

K.dim. (4 ®; T) = K.dim.(4) + u. O

In studying the Krull dimensions of modules over iterated skew-
Laurent extensions, clean modules of course arise again. Here, in order to
fit inductive procedures, cleanness must be defined so that criticality is
preserved at each iteration, as follows.

DEFINITION. Let 7= R[6,"',...,6,°"] be a u-fold iterated skew-
Laurent extension, and set T, = R[8,"',...,0,"'] for each k = 1,...,u. A
u-clean right R-module (relative to this extension) is any critical right
R-module A such that 4 ®; T, is a critical right 7;-module for each
k = 1,...,u. Note that all compressible noetherian right R-modules are
u-clean, because of Corollary 1.3.

LEMMA 5.3. Let T=R[6,"',...,6°"] be an iterated skew-Laurent
extension. If A is a nonzero noetherian right R-module, then A contains a
u-clean submodule.

Proof. The proof is by induction on u, the case in which # = 1 being
Lemma 2.1. Thus assume that » > 1, and that the result holds over
(u — 1)-fold iterated skew-Laurent extensions.

Set T, = R[6,"',...,6,""] for each k =1,...,u, and set S =T, so
that 7= S[6,",...,0°']. Now 4 ®; S is a nonzero noetherian right
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S-module, and hence, by the induction hypothesis, 4 ®z S contains a
(u — 1)-clean submodule B. Thus B ®; 7, is a critical right 7,-module for
each k = 1,2,...,u. By Lemma 1.2, 4 contains a nonzero submodule C
such that C ®; S embeds in B. Choose a critical submodule D of C. For
eachk = 1,...,u, we have

D®;T,=(D®S)®T,,

which embeds in B ®5 T}, and so D ®x T, 1s a critical T;-module. There-
fore D is a u-clean submodule of A. O

For technical purposes, we again need a notion of height 1, for
u-clean modules.

DEFINITION. Let 7= R[6,"',...,6,°'] be an iterated skew-Laurent
extension, and let 4, B be u-clean noetherian right R-modules. Define
h,(A: B)=11if and only if 4 is isomorphic to a minor subfactor of B but
no nonzero submodule of 4 is isomorphic to a minor subfactor of a
u-clean minor subfactor of B.

LEMMA 5.4. Let T=R[6,"',...,6°"] be an iterated skew-Laurent
extension, let B be a u-clean noetherian right R-module, and let

B=C,=zC,=--=C>0
be a chain of submodules of B. Then there exists a positive integer p such

that for all integers j = p, there are no u-clean subfactors X of C,/C;,
satisfying h (X: B) = 1.

Proof. The proof is identical to the proof of [3, Lemma 4.3], with
“T-clean” replaced by “u-clean”. O

Recall from Part A the notation A(C) for the submodule of leading
coefficients of a submodule C of an induced module 4 ®; T, when
T = R[6,"']is a 1-fold skew-Laurent extension.

PROPOSITION 5.5. Let T = R[0,"',...,0."] be an iterated skew-Laurent
extension, let B be a u-clean noetherian right R-module with finite Krull
dimension, and set

a = max{K.dim. (4 ®; T)|4 € @},
where Q is the set of u-clean minor subfactors of B. If
K.dim.(B®xT) = B> u,
then B = a + 1.
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Proof. Note that 8 =2, and that K.dim.(B) = 1, so that B is not
simple. Thus B has some minor subfactors, and hence & is nonempty, by
Lemma 5.3. Since K.dim.(B) is finite, « and B8 are both finite.

We proceed by induction on u. If = 1, then as B is not simple, the
result is given by Proposition 2.5.

In the case that u > 1, first observe that B ®3 T is critical, because B
is u-clean. As each A ®; T (for 4 € @) is isomorphic to a minor subfactor
of B ®x T, it follows that

K.dim. (B ®; T) > K.dim. (4 ®; T)

forall4 € @, whence 8 = a + 1.
Set S=R[0"'] and M =B ®;S; then M is a (u — 1)-clean
noetherian right S-module and
K.dim. (M ®sT)=8>u— 1.
Therefore, by the induction hypothesis, there exists a (¥ — 1)-clean minor
S-subfactor N of M such that
K.dim. (N ®3T) =8 — 1.

Write N = C/D, where C > D > 0 are nonzero S-submodules of M.
Since N is a (u — 1)-clean noetherian right S-module with

K.dim. (N®T)=8—-1>u— 1,

we may use the induction hypothesis a second time to obtain a (u — 1)-
clean minor subfactor N, of N such that

K.dim. (N, ®sT) =B — 2.
Then N, =D,/D,, where C=D,>D,>D. Note that D,/D is a
(u — 1)-clean noetherian right S-module with
K.dim.((D,/D) ®sT)=8—1,

because (D,/D) ®sT is isomorphic to a nonzero submodule of the
(B — D)-critical module N ®¢ T. Thus we may repeat the above procedure
and find S-submodules D, = D; > D, > D such that D,/D, is (u — 1)-
clean and

K.dim. ((D,/D,) ®sT) =B — 2.
Continue in this way, generating an infinite chain of S-submodules
B®S=C=D,>D,=zD;,>D,=--->D>0
such that each D,, _,/D,, is (u — 1)-clean and
K.dim. ((D,,_,/D,,) ®T) =8 — 2.
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By Corollary 1.7, at most finitely many factors D /D ., can have
finitely generated R-module subfactors with Krull dimensions greater than
or equal to K.dim.(B). Also, applying Lemma 5.4 to the chain

B=AD,)=\ND,)=---=\D) >0,

we see that at most finitely many of the factors A(D,)/A(D, ;) can have
u-clean subfactors X satisfying s, (X: B) = 1. Thus there exists an odd
positive integer k£ such that all finitely generated R-module subfactors of
D, /D, ., have Krull dimension less than K.dim.(B), and such that all
u-clean subfactors X of A(D,)/N(D, ) satisfy h (X : B) # 1.

Since & is odd,

K.dim. ((D,/D,.,) ®sT) =B — 2.

By Corollary 2.4, there exist a nonzero subfactor E, of B and a nonzero
R-submodule Ej of D,/D, , such that E,~, Ej. Using Lemma 5.3,
choose a wu-clean submodule E < E;, and then choose a submodule
E’ < Ejwith E ~, E’. Since E @ S = E’ ®, S, it follows that E” is also
u-clean. By the choice of k, we have

K.dim. (E) = K.dim. (E’) < K.dim. (B),

and hence E must be a minor subfactor of B. Set F = E’S, which is
a homomorphic image of E’ ®; S, and thus also a homomorphic
image of E ®r S. Now F ®¢ T is isomorphic to a nonzero submodule of
(D,/D, ) ®sT, and the latter module is critical, because D, /D, is
(u — 1)-clean. Thus F ®¢ T is critical, and

K.dim.(F ®;T) = K.dim. ((D,/D,.,) ®sT) =B — 2.

If F is a proper homomorphic image of E ® S, then F ®4T is a
proper homomorphic image of E ®x 7. Since E is u-clean, £ O, T is
critical, and so

B—2=Kdim.(F®;T)<K.dim.(E®;T) < a.

Therefore 8 < a + 1 in this case.

Otherwise, F = FE ®; S. By Corollary 1.5, there exists a nonzero
subfactor X of A(D,)/AN(D, ) such that X <, E. Because of Lemma 5.3,
there is no loss of generality in assuming that X is u-clean. By the choice
of k, we have &, (X: B) # 1. As X is a minor subfactor of B (because
AN D,)/N(D,,,) is a minor subfactor of B), there must exist a nonzero
submodule Y < X and a w-clean minor subfactor 4 of B, such that Y is
isomorphic to a minor subfactor of 4. Then Y ®; T is isomorphic to a
minor subfactor of the critical module 4 ®; T, and hence

K.dim. (Y ®; T) < K.dim. (4 ®; T) < a.
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On the other hand, since Y < X 5, E, the module Y ®; T embeds in the
module E @z T = F ® T, which is critical. Consequently,

K.dim. (Y ® T) = K.dim. (F®sT) = f — 2.

Thus 8 — 2 < a, and B8 < «a + 1 in this case also.
Therefore 8 < a + 1 in both cases, and hence 8 = a + 1. O

Although Proposition 5.5 does not provide sufficient information to
completely determine the Krull dimension of an iterated skew-Laurent
extension, it does enable us to derive a criterion that tells when the Krull
dimension of an iterated skew-Laurent extension achieves its maximum
possible value. This requires a notion of height for simple modules,
analogous to that used in §III.

DEFINITION. Let 7= R[6,"',...,6,7'] be an iterated skew-Laurent
extension, and let M be a simple right R-module. Define A (M) (relative
to this extension) to be the supremum of those nonnegative integers k for
which there is a sequence M = A4, A4,,...,4, of u-clean noetherian right
R-modules such that each A4, is isomorphic to a minor subfactor of 4, .
Note that if the right Krull dimension of R exists, then A (M) =<
r.K.dim.(R).

THEOREM 5.6. Let R be a right noetherian ring with finite right Krull
dimension k, and let T = R[0,"',...,6,°"] be an iterated skew-Laurent
extension of R. Then

r.K.dim.(T) =k + u
if and only if there exists a simple right R-module M such that
h(M)=k and K.dim.(M®xT) = u.

u

Proof. First assume that there is a simple right R-module M satisfying
h (M) = k and K.dim.(M ®; T') = u. Then there exist u-clean noetherian
right R-modules M = A, A,,...,A, such that each A, is isomorphic to a
minor subfactor of A,,,. Each 4, ®; T is a critical right 7-module,
because A4, is u-clean. In addition, 4, ®z T is isomorphic to a minor
subfactor of 4, , ®; T, and hence

K.dim.(4,,, ®:; T) > K.dim. (4, @z T).
Thus
K.dim. (4, ®: T) = K.dim. (4, ®: T) + k = k + u.
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Since r.K.dim.(7T) < k + u in any case, we conclude that r.K.dim.(7') =
k + u.

Conversely, assume that r.K.dim.(7") = k + u. Because of Lemma
5.3, there is a finite chain of right ideals from 0 to R, with each successive
subfactor being u-clean, and at least one of these subfactors must tensor
up to a right 7-module with Krull dimension k + u. Thus there exists a
u-clean noetherian right R-module A4, such that 4, ®x T has Krull dimen-
sion k + u. Note that

k + u=K.dim. (4, ® T) < K.dim. (4,) + u
<rKdim.(R)+u=k+ u,

and so K.dim.(4,) = k.

If £ = 0, then R is right artinian, and A, is a simple module. In this
case, h (A,) = 0, and we need only take M = 4,.

Now suppose that k£ > 0, whence

K.dim. (A4, ®;T) =k +u>u.
By Proposition 5.5, there exists a u-clean minor subfactor 4, , of 4, such
that
K.dim.(4,_, ®:T)=k+u—1.
Continuing in this manner, we obtain u-clean noetherian right R-modules
Ay, Ay—y,. .., Ay such that each A4; is a minor subfactor of 4, |, and
K.dim.(4,®;T) =i+ u
for each i. Since K.dim.(4;) < K.dim.(4, ) for each i, we find that
K.dim. (4,) = 0,
so that 4 is a simple right R-module. By construction, 4 ,(A4,) = k, while

h(A,) = k because r.K.dim.(R) = k. Thus & (A4,) = k, and the proof is
complete (taking M = A,). O

C. CoMMUTATIVE COEFFICIENTS; MULTIPLE AUTOMORPHISMS

This part of the paper contains our main result, which provides a
precise formula for the Krull dimension of a skew-Laurent extension

T =R[6',...,6,""] constructed from a commutative noetherian ring R
of finite Krull dimension, equipped with commuting automorphisms
0,,...,0,. As we have seen in Part B, partial information about the Krull

dimension of T can be obtained just by iterating the techniques and
results of Part A. However, this method alone is not sufficient, for at some
stages it is necessary to consider the relationships that may exist among
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the automorphisms. In order to study these relationships, we introduce a
concept of “automorphian dimension ” of prime ideals of R, which plays
a role analogous to the differential dimension used in studying the Krull
dimensions of differential operator rings [4]. The automorphian dimension
of a prime ideal P indicates how large a collection of products of powers
of the o, can map P into itself. (In particular, P is invariant under some
nonzero power of each of o,,...,0, precisely when the automorphian
dimension of P equals u.) We compute that the Krull dimension of 7/PT
is at least as large as the automorphian dimension of P, and that if P is a
maximal ideal, K.dim.(T/PT') equals this dimension. By an easy argu-
ment on chains of prime ideals, it follows that for any prime ideal P of R,
the number

height( P) + automorphian dimension( P)

is a lower bound for the Krull dimension of 7. Our main theorem shows
that K.dim.(7') is actually equal to the maximum value of these lower
bounds. The line of proof that we follow is parallel to that used in our
earlier work on the corresponding problem of the Krull dimension of a
differential operator ring over a commutative noetherian ring with several
commuting derivations [4].

Given a ring R, and finitely many commuting automorphisms g,,...,0,
(not necessarily distinct) of R, we may construct the skew-Laurent exten-
sion

T=R[0,6,...,6,,6,";0,...,0],

u

(which we usually abbreviate to T = R[8,"',...,6,']), as follows. Addi-
tively, T is the abelian group of all Laurent series in independent inde-
terminates 6,,...,0, over R, but multiplication is subject to the require-
ments that 6,6, = 6,60, for all i, j and that §"r = o/(r)4 for all i, all
integers n, and all » € R, together with the given multiplication in R. This
construction may be viewed as a u-fold iterated skew-Laurent extension,
by extending the automorphisms suitably. Namely, fort = 1,...,u — 1 we
may extend o, , to an automorphism of R[,"',...,0"'] so that o,. (6,
=@, fori =1,...,t,and then R[6,"",...,6,5] may be identified with

R[67,...,67"][61].
Similarly, R[6,"',...,6,”'] may be identified with
R[62,...,67][67),....62"].

In case R is a commutative ring, this skew-Laurent extension T is
isomorphic to its opposite ring, since 7 possesses an involution, namely,
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the anti-automorphism that fixes elements of R and sends each 6, to 6.
Consequently, the right and left Krull dimensions of T (if they exist) are
equal, and we may refer just to “the Krull dimension of 7.

VI. Prime and maximal ideals. Our investigation of the Krull di-
mension of a skew-Laurent extension T = R[6,"',...,6,"'] over a com-
mutative noetherian ring R proceeds by considering modules of the form
T/PT, where P is a prime ideal of R. As long as the Krull dimension of
T/PT is greater than u, Proposition 5.5 may be used to relate
K.dim(T/PT) to the values K.dim.(7/QT) as Q runs over the prime
ideals properly containing P. In the case that K.dim.(7T/PT) =< u, which
in particular holds if P is a maximal ideal, the Krull dimension of 7/PT is
closely connected to the question of the invariance or non-invariance of P
under products of powers of the automorphisms o,. To keep track of this
invariance, we formulate a notion of independence and dependence of P
relative to a set of commuting automorphisms, and we use this notion to
define an “automorphian dimension” of P relative to the o,. This dimen-
sion is then related to the Krull dimension of T7/PT.

DEFINITION. Let R be a commutative ring, let o,,...,0, be commuting
automorphisms of R, and let P be a prime ideal of R. We say that
0,,...,0, are dependent relative to P provided that there exist integers
n(1),...,n(s), not all zero, such that

0{1(1)0;(2) e Os”(s)(P) C P.

If no such integers exist, then we say that o,,...,0, are independent relative
tfo P. In particular, if any automorphism in the list 9,,...,0, is repeated,
then o0y,...,0, are dependent relative to P, for if o; = g, for some i # j,
then o/0,"'(P) = P.

DEFINITION. Let R be a commutative ring, let ¢,,...,0, be commuting
automorphisms of R, and let P be a prime ideal of R. The automorphian
codimension of P (relative to a,,...,0,), denoted aut.codim.(P), is the
largest nonnegative integer s such that some s of the automorphisms
g,,...,0, are independent relative to P. In particular, aut.codim.(P) = 0 if
and only if there exist nonzero integers n(1),...,n(u) such that o/"”(P) C
P for each i = 1,...,u. The automorphian dimension of P (relative to
0y,...,0,), denoted aut.dim.(P), is defined by the rule

aut.dim. (P) = u — aut.codim. (P).
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LEMMA 6.1. Let R be a commutative ring, let o,,...,0, be commuting
automorphisms of R, and set T = R[Bf—",. .. ,0f1]. Let P be a prime ideal of
R, and assume that o,,...,0, are independent relative to P. If J is any right
ideal of T which properly contains PT, then J N R properly contains P.

Proof. We abbreviate products of powers of the 6, in the form 6,
where a is an s-tuple (a(l),...,a(s)) of integers, and 6* stands for
62Dge@ ... g2)_ Similarly, we write ¢* for o{Vagy® - .. g2,

Choose an element x in J — PT which is a sum of as few monomials
as possible. Write

x= X rf°

a€EA
for some finite subset 4 C Z° and some nonzero elements r, € R. As
there is no harm in multiplying x on the right by § for some choice of
a € A, we may assume that the s-tuple 0 = (0,0,...,0) is in 4. Note that
each r, & P (since otherwise x — r,6* is an element of / — PT which is a
sum of fewer monomials than x).
Given p € P, we have px € PT, and so xp — px € J. In addition,
xp—px= 2% r(0%(p)—p)o°,

aEA—{0}
and hence xp — px is a sum of fewer monomials than x. Consequently,
xp — px liesin PT, and so xp € PT. Thusr,o*(p) € Pforalla € A.

Therefore r,0%(P) C P for any a € A4, and hence 6*(P) C P, because
r, & P. Since o,,...,0, are independent relative to P, this is only possible
for a = 0. Thus 4 = {0}, and x = r,. Now x is an element of J N R that
does not lie in P. O

COROLLARY 6.2. Let R be a commutative ring, let o,,...,0, be commut-
ing automorphisms of R, and set T = R[0,"",...,0""]. Let M be a maximal
ideal of R. If 0,,...,0, are independent relative to M, then MT is a maximal
right ideal of T. |

Lemma 6.1 and Corollary 6.2 will be used in the context of a
skew-Laurent extension T = R[6,"',... ,Of'] where R is a commutative
noetherian ring and o,,...,0, are commuting automorphisms of R. Given
a prime ideal P in R, we may renumber the o; so that o,,...,0, are
independent relative to P, where s = aut.codim.(P). If § =
R[6;7',...,6°"], then the S-module S/PS will be made into a right
module over a skew-Laurent ring

— =+ +1 +
U=S[6570"Y,...,0:"w],
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where the nonzero integers n(j) (for j =s+ 1,...,u) arise from the
relations expressing the dependence of the automorphisms o,...,d;, 0;
relative to P. To effect this procedure, we require a means of making
S-modules into U-modules, and then we need to study the relations
between the Krull dimensions of U-modules and 7-modules.

LEMMA 6.3. Let S be a ring, let o,,...,0, be commuting automorphisms
of S, and set U= R[6,"',...,0°"]. Let J be a right ideal of S, let a,,...,a,
be invertible elements of S, and assume that
a0 (J)=J and a0 '(a,) — a0 '(a;) EJ

for all i, j=1,...,u. Then S/J supports a right U-module structure com-
patible with its right S-module structure, using a U-module multiplication *
such that

(s+J)*6,=ae7'(s) +J
foralls € Sandalli=1,...,u.

Proof. For a given index i, the rule s > a;6, '(s) defines an abelian
group automorphism of S. Since a,0; '(J) =J, this map induces an
abelian group automorphism of S/J, which we denote (—) * ,. For
r, s € S, we check that

[(r+J)*8]s=[a,07\(r) +J]s=a,07 '(r)s +J
= a,0; '(ro,(s)) +J =[(r + J)o,(s)] 6,
Fors € Sand i, j = 1,...,u, we check that

[(s+J)=6] %0 =[a0 ' (s) +J]x6,=a,07"(a;)0, "o, '(s) + J,

and similarly [(s +J) = 6,] % 6, = a,0, '(a,)0; 's; '(s) + J. Hence,
[(s+J)=6] *0j—[(s+J) *Bj] * 0,

= (ajoj_'(ai) - aioi"'(aj))ojfloi_‘(s) +J =0,

because a,0, '(a;,) — a,0; '(a,) € J. Therefore S/J does indeed become a
right U-module in the manner described. O

LEMMA 6.4. Let S be a right noetherian ring, let o,,. .. ,0, be commuting
automorphisms of S, and set T = S[0,"',...,6"). Let n(1),...,n(u) be
nonzero integers, and set

U=S[6:"0,...,07"].

u
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If J is any right ideal of S, then
K.dim.(7/JT) = K.dim.(T/JT) = K.dim. ,(U/JU).

Proof. Without loss of generality, we may assume that each n(i) > 0.
As a right or a left U-module,

n(H)—1 n(u)—1 - ,
T= @ --- @ UM .../,
JH=0 J(u)=0

and each of the monomials 6/V4® - .. 8/ normalizes U. Thus T is a

finite normalizing extension of U, and hence, by [8, Théoreme 5.3],
K.dim.(T/JT) = K.dim. ,(T/JT).

As a right U-module,

n(l)—1 n(u)—1
T/JT= @ -~ D (V4D -0/ /JUg/DgID - 6/,
J(H=0 J(w)=0

and the lattice of submodules of each of these summands is isomorphic
to the lattice of submodules of U/JU. Therefore K.dim. (7/JT) =

K.dim. (U/JU). O
PROPOSITION 6.5. Let R be a commutative noetherian ring, let o|,. . .,0,
be commuting automorphisms of R, and set T = R[6,",. .. 0" IfPisa

prime ideal of R such that R /P has finite Krull dimension, then
K.dim. (T/PT) = aut.dim. (P),

while if P is a maximal ideal of R, then
K.dim. (T/PT) = aut.dim. (P).

Proof. Set s = aut.codim.(P), and renumber the o, so that o,...,0,
are independent relative to P. Set S = R[6,"',...,6,"].
For each j = s + 1,...,u, the automorphisms o,,...,0,, o; are depen-

dent relative to P. Hence, there exist integers m(j, 1),...,m(j, s), n(j),
with n(j) # 0, such that

01"1(./‘1)02”1(]'2) .« .. O'Sm(j’s)ojn(J)(P) g P.
Since the ring

Rj = R/o,'"(f’l)oz’"(f’z) .. -os’"(f‘s)oj?’(j)(P)
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is a domain isomorphic to R /P, it has the same Krull dimension as R/P,
and this Krull dimension is finite. Hence, R/P cannot be a proper
homomorphic image of R, and so

o UG L gmUgn(P) = P,

Forj=s+ 1,...,u, set

a,= glm(/.l)g{nul) s gm)

which is an invertible element of S, and observe that
ajoj"(/)(PS) = Olmw,l)azmul) cee OS'"“’S)OJ"(”(P)H{"(j")ﬁz'”(f'z) N 0Sm(/~s‘)S
= PS.
In addition, forj, k = s + 1,...,u we have
ajojn(j)(ak) = 0‘”’(]«1)02’"(/2) e 0Sm(ja3)0lm(ks1)02m(k‘2) . 0Sm(k‘_v)

_ k

- ako-l?( )(a_/)’
and so

( _ (k)
a0/ (a,) — a;07%“(a,) € PS.

We now set U= S[6,577D,...,6,°")], viewed as a skew-Laurent
extension of S with respect to the automorphisms ¢, """ ... o ",
Using Lemma 6.3, the module S/PS can be made into a right U-module
in a manner compatible with its right S-module structure. By Proposition

5.2,
K.dim. (U/PU) = K.dim.,(S/PS) + (u —s) = u — s.

Then, applying Lemma 6.4, we conclude that
K.dim.(7/PT) = K.dim. (U/PU) = u — s = aut.dim. (P).

Finally, assume that P is a maximal ideal of R. In this case, Corollary
6.2 shows that PS is a maximal right ideal of S, and so S/PS is a simple
right S-module. Hence,

K.dim.(T/PT) < K.dim.(S/PS) + (u —s5) =u — s,
and therefore K.dim.(7/PT) = u — s. O

VII. Krull dimension formulas. We are now in a position to derive
a formula for the Krull dimension of a skew-Laurent extension 7 =
R[6,7',...,6,°"] over a commutative noetherian ring R of finite Krull

dimension, equipped with ¥ commuting automorphisms. If Q is a prime
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ideal of R, then R/Q is a compressible R-module. Hence, by Corollary
1.3, each of the modules (R/Q) ®& R[0,"",...,07"] (for k = 1,...,u) is
compressible, and thus critical. Consequently, R/Q is a u-clean R-module.
Since T/QT is a critical T-module,

K.dim. (T/QT) > K.dim. (T/PT)

for any prime ideal P of R that properly contains Q. Applying this
observation to descending chains of prime ideals of R, we obtain

K.dim. (T) = K.dim. (T/PT) + ht(P)

for any prime ideal P of R. As a result, our work in the previous section
provides us with lower bounds for the Krull dimension of 7, namely

K.dim. (7') = aut.dim. (P) + ht(P)

for all prime ideals P of R. In this section, we show that K.dim.(7T") is
actually the maximum of these lower bounds.

PROPOSITION 7.1. Let R be a commutative noetherian ring, let o,,.. . ,0,
be commuting automorphisms of R, and set T = R[60,"',...,0°"]. Let P be a
non-maximal prime ideal of R such that K.dim.(R/P) is finite, and set

I = max{K.dim. (T/QT)|Q € Spec(R) and Q > P}.
If K.dim(T/PT) > aut.dim.( P), then K.dim(T/PT) = I + 1.

Proof. Set m = K.dim.(T/PT) and s = aut.codim.(P). Then m >
u — s by hypothesis, and m =1/ + 1 because T/PT is critical. Renumber
the o; so that oy,...,0, are independent relative to P, and set S =
R[6',...,0°"]. By Lemma 6.1, if J is any right ideal of S such that
J>PS,thenJ N R > P.

Now the module B = §/PS is a compressible noetherian right S-
module, by Corollary 1.3. Also, by the same result, B is (4 — s)-clean.
Since B ®3T = T/PT, we have

K.dim.(B®sT) =m>u — s.

Hence, by Proposition 5.5, there exists a (4 — s)-clean minor subfactor A
of B such that

K.dim. (4 ®T)=m — 1.
Let I >J > PS be right ideals of S such that 7/J = 4. Then J N R
> P,and so (J N R)T > PT, whence
K.dim.(T/(J N R)T) <K.dim.(T/PT) = m,
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because 7/PT is critical. However, T/(J N R)T has a subfactor isomor-
phic to IT/JT, which is isomorphic to A ®g T, and hence

K.dim.(7/(J N R)T) =z K.dim. (4 ®sT) =m — 1.

Thus, K.dim(7/(J N R)T) = m — 1.
There is a chain

P<JNR=J,<J,<---<J =R

of ideals of R such that each J,/J,_, = R/Q, for some prime ideal Q, > P
in R. Thus

K.dim.(7/Q,T) =<1
for each i. Now there is a chain of right ideals
(JNR)T=JT<JT<:---<JT=T
in T such that each J,T/J _\T =T/Q,T, and so
K.dim.(T/Q.T) =m — 1
for some i, because K.dim.(7/(J N R)T) = m — 1. Hence, m — 1 <,

and therefore m = [ + 1. O
THEOREM 7.2. Let R be a commutative noetherian ring, let o,,...,0, be
commuting automorphisms of R, and set T = R[0,"',...,0.""]. For each

prime ideal P of R, set
mp = sup{ht(Q/P) + aut.dim. (Q) [Q € IM,},

where O, is the set of those prime ideals of R that contain P. If R/P has
finite Krull dimension, then K.dim.(T/PT) = m.

Proof. The proof is by induction on K.dim.(R/P). If K.dim.(R/P)
= 0, then P is a maximal ideal of R, and the result follows immediately
from Proposition 6.5.

Now assume that K.dim.(R/P) > 0, and that the result holds for all
prime ideals properly containing P.

Consider any Q € 9 ,. If Q = P, then by Proposition 6.5,

K.dim. (7/PT) = aut.dim. (Q) = ht(Q/P) + aut.dim. (Q).

If Q > P, then there exists a prime ideal Q” of R such that Q = Q' > P
and ht(Q/Q") = ht(Q/P) — 1. Then,

K.dim.(7/Q'T) = m, = ht(Q/Q’) + aut.dim. (Q)
= ht(Q/P) + aut.dim.(Q) — 1



146 K. R. GOODEARL AND T. H. LENAGAN

by the induction hypothesis, and so
K.dim.(T/PT) = K.dim.(T/Q'T) + 1 = ht(Q/P) + aut.dim. (Q),

since 7/PT is a critical module. Thus, K.dim.(7/PT) = m,.
If K.dim.(7/PT) < aut.dim.(P), then K.dim.(7/PT) < mp, and the
result holds in this case. Thus we may assume that

K.dim. (T/PT) > aut.dim. (P).
Then, by Proposition 7.1, there exists a prime ideal Q > P such that
K.dim.(7/PT) = K.dim. (T/QT) + 1.
Applying the induction hypothesis, we obtain
K.dim.(T/PT) =my + 1 <mp,

and therefore the result holds in this case also. g
The main result now follows easily from Theorem 7.2.

THEOREM 7.3. Let R be a commutative noetherian ring with finite Krull
dimension, let o,,...,0, be commuting automorphisms of R, and set T =
R[0°,...,07"). Then

K.dim. (7') = max{ht(Q) + aut.dim. (Q) |Q € Spec(R)}.

Proof. Let P,,...,P, be the minimal prime ideals of R. Since R has a
finite chain of ideals from 0 to R such that the successive subfactors are
homomorphic images of the modules R /P;, we see that

K.dim. (T) = max{K.dim. (T/PT)|i = 1,...,k}.
Now for each prime ideal Q of R,
ht(Q) = max{ht(Q/P,)|i = 1,...,k and P, < Q},

and hence the result follows from Theorem 7.2. O

The analogue of Theorem 7.3 for differential operator rings in char-
acteristic zero, [4, Corollary 4.4], has a useful simplification in the case
that the coefficient ring is a finitely generated algebra over a field of
characteristic zero. Namely, in that case the maximum value in the
formula for the Krull dimension of the differential operator ring occurs at
a maximal ideal of the coefficient ring [4, Theorem 6.8]. In the skew-
Laurent case, no such simplification occurs, as the following example
shows.
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Let x be an indeterminate, and let R be the polynomial ring C[x]. Let
o, and o, be the C-algebra automorphisms of R such that o,(x) = x + 1
and 0,(x) = x + =, and set T = R[8,"", 6,"']. Since 1 and = are Z-linearly
independent, we infer that o, and o, are independent relative to any
maximal ideal of R. Hence,

ht(M) + aut.dim. (M) =1

for all maximal ideals M of R. However, ht(0) + aut.dim.(0) = 2, and so
K.dim(T) = 2.
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