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SOLUTIONS OF CERTAIN QUATERNARY

QUADRATIC SYSTEMS

DUNCAN A. BUELL AND RICHARD H. HUDSON

For primes p — qf + 1, Diophantine systems of the type

(1) 1 6 / = x2 + 2qu2 + 2qυ2 + qw2, ( x , w, ϋ, w,/?) = 1,

xw — aυ2 — 2buυ — au2,

have been studied by <Dickson, Whiteman, Lehmer, Hasse, Zee, and
Muskat and Zee. Virtually all these studies have centered on the special
cases q = 5, 13 (the correspondence between the system (1) when q = 5
and the well-known system introduced by Dickson is discussed in §3).
For q- 13, 29, 37, 53, and 61, Hudson and Williams have proved that
(1) has exactly eight solutions when k = 1. For values of q = 5 (mod 8)
= a2 -f b2 for which the class number of the imaginary cyclic quartic
field K = Q(iJ2q + 2ajq ) is greater than one, (1) may or may not be
solvable when k — 1. In §5 we examine families of values of q and p for
which there are eight solutions of (1) when k — 1 independent of any
class number considerations. The existence of such families is somewhat
surprising, as is the fact that the question of solvability for these families
is independent of the primality of p or q (clearly we must have q — a2 +
b2) or the restriction p = qf' + 1. Indeed the entire study of systems of
type (1) is restricted in the literature to primes/? = qf + \ artificially, as
any completely general study should treat all primesp = qf Λ- r, (r/q)4

= + 1 .
Hudson and Williams have proved that when the class number of K

is not a perfect square there are always solutions of (1) with p\(x2 —
qw2). We call these zero solutions and in this paper we examine the
properties of such solutions in some detail (see, particularly, §2).

A major contribution of our paper appears in §4 where we derive
explicit formulae for inductively generating all soutions of (1) for k > 1
given a basic solution for k = 1. Finally in §7 we apply the formulae in
§4 to illustrate the Hudson-Williams-Buell extension of a theorem of
Cauchy and Jacobi (see [15]).

1. Introduction and summary. Throughout this paper q will denote
a positive integer = 5 (mod 8), q — a2 + b2, with a odd, so that

is an imaginary cyclic quartic field. For primes p = qf + 1, systems of the
type

(1 2) ]6pk ^ χ 2 + 2q"2 + 2qv2 + qw2'
xw = av2 — Ibuv — au2, (x, u, v,w, p) — 1,
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have been studied by Dickson [3], Whiteman [16], Lehmer [10, 11], Hasse
[6], Zee [19], and Muskat and Zee [13].

When (1.2) is solvable for, say (x, w, v9 w), it is clearly solvable for

(1.3) (x, -w, -v9w)9 (x9 v9 -u9 -w)9 (x9 -υ9 u9 -w)9

and for the four solutions obtained from these four 4-tuples by changing
the sign throughout. The number of solutios of (1.2) may be as great as
4 X k X the number of roots of unity, ra, in K. Throughout the paper, in
enumerating solutions, we will list only km/2 of these 4km solutions, and
will call these the basic solutions. For q > 5, K has only two roots of
unity, ± 1 (see, for example, [1], or [8, p. 4]), and we adopt the following
notation. A basic solution of (1.2) when q>5 will be denoted by
(χk,n ukj> vkj> wkj)> 1 — ' — £• I* follows from Hudson's and Williams'
proof of Theorem 7.1 of this paper, see [9], that one of these basic
solutions, which we denote by (xk%ϊ9 ukx, υk]9 wkι), has the property that

(1.4) 4 r < i 2 0 (mod/;)

if the class number of K is 1. Throughout we let h* denote the class
number of K, b! the class number of its unique quadratic subfield, and
define

(1.5) s, = s , ( χ i ) = I . \ n, J = 0,1,2,3,
^ n— 1

where (for convenience) we distinguish the nonprincipal characters mod q
of order 4, say χj and χ3, by the choice χλ{2) — i.

We call a basic solution satisfying (1.4) a nonzero solution. In the
literature to date q has been small and, consequently, there has always
been a nonzero basic solution. Indeed, Hudson has proved using Jacobi
sums (to appear elsewhere), that if p — qf + 1 and q is less than 101 (so
that h^(K)/hf(Q(}/q)) = 1 (see [14])), then for every k > 1 there is exactly
one nonzero basic solution of (1.2) and k — 1 basic solutions satisfying

(1-6) (**,,-)2 ~ 0(w*,i)2 ~ bxkj wk,, + 2 4 * uk,ι '
 vk,i = ° ( m o d P),

i = 29...9k.

Henceforth all solutions satisfying (1.6) will be called zero solutions.
In view of the above, it appears rather surprising that, for example,

for q — 101, p — 607, the system (1.2) has no nonzero basic solution for
the smallest exponent for which it is solvable (see §2). We investigate the
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phenomenon of zero solutions in some depth. In Theorem 2.1 we de-

termine the zero solutions mod p in terms of the solutions of a quartic

equation over GF(p).

Moreover, in §2, we generalize the context in which results in this

paper apply. The restriction p — qf + 1 has been employed in the papers

of Lehmer [10, 11], Whiteman [17], and Zee [19]. However, Guidici,

Muskat, and Robinson [5] have investigated solutions of quaternary

systems not only for primes p — 16/+ 1 but also for 16/+ 7. This

suggests that solvability of (1.2) for p — qf + 1 may be generalized to the

primes p = qf" + r where (r/q)4 = + 1 . Such an extension requires using

Brewer sums in place of the Jacobi sums considered when p — qf + 1. The

general theory behind such solutions will not be developed here.

In §3 we see that if q = 5, then (1.2) has exactly 5 basic nonzero

solutions and 5(k — 1) basic zero solutions. If, however, (1.2) is replaced

(as Dickson [3], Lehmer [10,11], and Whiteman [16] have done) by

, ?x 16/?* = x2 + 50u2 + 50τ;2 + 125w2, x = 1 (mod5),

xw = v2 — 4uv — u2,

then (1.7) has exactly k basic solutions of which k — 1 are zero solutions.

(For the appropriately modified definition of zero solution when q — 5 see

(3.2).)

In §4 we develop our central tool, Theorem 4.1, for generating explicit

solutions of (1.2) for p — qf + r, (r/q)4 = + 1 (and of (1.7), when q — 5)

for exponents k > 1 and values of q and p for which a solution exists

when k = 1.

The problem of determining the smallest exponent k for which (1.2) is

solvable seems very deep if h*(K) φ 1. Hudson and Williams [9] have

shown that if p — qf + 1 the exponent cannot be greater than the maxi-

mum of I So — S21 and | Sι — S3 \. However, the size of this smallest

exponent depends on whether certain ideals are principal ideals, and as a

consequence, when h*(K) is not 1, it depends not only on q but also on/?

as well as the values of | So — S21 and 15, — S3 \.

Motivated by the above remarks we examine in §5 certain families of

values of q and p for which (1.2) is solvable when k — 1, independent of

the value of h*(K). We do not attempt an exhaustive survey of all such

solutions but rather derive a few which are of some interest for their

aesthetic characteristics.

In §6 we use the results in §5, in conjunction with Theorem 4.1, to

explicitly generate families of solutions of (1.2) when k > 1.
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Finally, in §7, we use the tools developed in this paper to illustrate
Theorem 7.1 in a number of cases with h*(K) > 1, including one with
k — 1. Also, see Theorems 7.2, 7.3, we derive congruences for the family
discussed in §6.

2. A theorem on zero solutions. The following theorem may be
used to determine the values x9 w, v9 and wmod p in any zero solution of
(1.2), once any of them has been determined mod p. Since Hudson and
Williams [9] (see Theorem 7.1) have shown that a certain product of
Gauss sums determines a unique value of x mod /?, which is often a value
in a zero solution, the following theorem may be regarded as an extension
of Theorem 7.1 relating this product of Gauss sums to all four of the
parameters in a solution of (1.2) when k — max{|50 — 5 2 | , \Sι — 53|},
provided that p — qf + \ and that the solution is a zero solution. More-
over, the following theorem is applicable under much more general
conditions. In particular, we do not require r= 1 (p = qf+ r) nor even
that q or p be prime, although it is necessary that q be expressible as
a2 + b\

THEOREM 2.1. Let (x, w, v9 w) be a zero solution of (1.2), that is, a
solution of (1.2) for which (1.6) holds. The values of u, υ, — «, and —v are
precisely the four roots in GF(p) of the quartic equation in t given by

4qt4 + 4qw2t2 + b2w4 = 0.

Proof. Clearly, w is determined mod p up to sign by x (see Theorem
7.1) and the equation x2 — qw2 = 0 (mod p). Since (x, w, v9 w) is a zero
solution we have that

(2.1) u2 + v2 + w2=0 (mod/?),

as we have

x2 - qw2 = x2 + 2qu2 + 2qv2 + qw2 = 0 (mod p).

Consider the quartic equation

4qt* + 4qw2t2 + b2w4 = 0.

Working mod p and using the fact that q = a2 + b2 it is easily seen that

-4qw2 ± ]J\6q2w4 - \6qb2w4

-4qw2±4qwψ-b2/q u

: _ w 2 . ( _ 1 ± _ , {modpy
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Next, using (1.6) and (2.1), we have

4q{±v)4 + 4q(±υ)2w2 + b2w4 = 4q(±u)4 + 4q(±ufw2 + b2w4

= 0 (mod/?),

so that the four solutions of h given by (2.2) are precisely w, υ, — w, and
— ϋ, mod /?.

EXAMPLE 2.1. Let ήr = 101, /? = 607. There are no solutions of (1.2)
with k — 1 or 2. However, Theorem 7.1 asserts that there is a solution for
k - 3 with

(2.3) ][af\=~x (mod/? = <z/> 1),

where the product runs over the quartic residues of q.
For / = 6 the product on the left-hand-side of (2.3) is congruent to

294 (mod 607). Indeed this solution, which is the only basic solution for
q = 101,/? = 607, is

(2.4) (-8185,966, -1971, -5013).

Reducing modulo p this solution becomes

(2.5) (-294,359, -150,450).

It is easy to see that (2.5) follows from Theorem 2.1. For, choosing
square root signs to yield the solution as given in (2.5) (rather than one of
its other seven transforms) we have Jq = 56 (mod 607) which implies
w = 450 (mod 607) and

w~359 (mod607),

J * 5 6 W Ξ -150 (mod607).

REMARK. Precise determination of Jq (mod p) (beginning with the
determination mod prime ideal factors of p) is given in [9]. As the
determination is complicated it will not be duplicated here although it is
understood throughout that the legitimacy of operations such as the above
rests on such a prior determination.

Theorem 2.1 is most useful when the Theorem derived in §4 is not
applicable. For example, there are no solutions to (1.2) if q— 101,
p = 607, and k — 1, (so that Theorem 4.1 is not applicable) but for the
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solution with fc = 3we have

(2.6) {x9u9v9w) =-(X,517JC,112JC,271JC) (modp)

(in agreement with (2.5)) so that even in the absence of Theorem 7.1 the

search for a solution is complete when the computer has checked values of

x with x2 < 16/?*.

EXAMPLE 2.2. q - 101, p = q + r9 (r/q)4 = + 1 , p prime. In agree-

ment with Theorem 2.1 (see Example 2.4) we have

(x,u9v9w) = (247,419, 14,235) =(110,8, 14,98) (mod 137),

(x9u9v9w) = (1579, 116,505,589) =(147, 116, 147,52) (mod 179),

(x9u9v9w) = (3565, 177,482, -535) =(126, 177, 120,8) (mod 181),

(x9u9v9w) = (31,27,578,685) - ( 3 1 , 2 7 , - 1 , 106) (mod 193).

We remark that a direct computer search revealed that the above

solutions are the only basic solutions for k = 3 and there are no solutions

for k — 1 or 2. Obviously this suggests that a theorem analogous to

Theorem 7.1 exists when r Φ 1, but it would seem to be very difficult to

prove such a result in full generality.

Next we reformulate Theorem 2.1 to obtain the general expression

analogous to (2.6).

THEOREM 2.2. Let q andp be odd positive integers > 1 with q = a2 + b2,

a odd, b > 0, p = qf + r9 (r/q)4 = + 1 . For each value of x which is a

parameter in a basic zero solution {if any exist) o/(1.2), all parameters of

this solution are given modulo p for a fixed quadratic partition of q by

-a- fq

2q{q

1/2

2q{q

1/2

X

Tn

Proof. The result is immediate from the proof of Theorem 2.1.

However, note directly that

M
-a-

x2 + lq\ a- n qx2/q

Ξ 0 (mod;?),
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and that modulo/?,

x
2

= a
/<7

a- {q

2q{q
x2-a

-a-

2q{q
-2b

if and only if q = a + b .

EXAMPLE 2.3. Let q = S5,p= 101, r = 16. Then (1.2) is solvable for
k = 1 with the solution (—1,1,2,3) for the partition g = 72 + 62. For
A: = 2, (1.2) has two basic solutions with basic zero solution

(2.7) (-191,20,9,23).

Theorem 2.2 asserts that the parameters w, v9 w, satisfy (selecting sign as
before),

/ _ 7 _ 4Q \ i/2
I / Ξ ( 33—^) - (11) = 20 (mod 101),

Z _ 4 0 ) 1 / 2 . (11) = 9 (mod 101),

W Ξ - ^ = 2 3 (mod 101).

These congruences clearly hold for (2.7).

EXAMPLE 2.4. Let q - 101, p - 193, r = 92. For the fourth con-
gruence in Example 2.2 we have

, u9υ9w) = ( 3 1 ,

Ξ ( 3 1 , 2 7 , - 1 , 106) (mod 193).

3. The case q = 5 and the quaternary system of Dickson. For q = 5
the quartic field K— Q(i(y5 + 2\/T )) has ten roots of unity (see, for
example, [9]). The correspondence between the quaternary system given
by (1.2) when q — 5 and the system

(3.1) I6pk = x2 + 50u2 + 50ϋ2 + 125n>2, x = 1 (mod 5),

xw = υ2 — Auυ — u2, (x , w, v, w, p) — 1,

first studied by Dickson, is easy to establish (see, also, Guidici, Muskat,
and Robinson [5, p. 345].). For example, when k = 1, q = 5, p — 11, the
system (1.2) has the five basic solutions (x, u, v, w) equal to

(1,2,-1,5), (-4,2,2,4), (1,1,4,-1), (11,1, -2,1), (-9,3,0,1).
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Only the first, however, with 5\(u2 + v2) and 5|w, gives rise to the

unique basic solution of (3.1) when k — 1, namely (1,0,1,1).

Hudson has proved (to appear elsewhere) that the system (3.1) has

exactly k basic solutions for each exponent k. The system (1.2) when

q — 5 appears to have 5 nonzero basic solutions and 5(k — 1) basic zero

solutions for each exponent k. Exactly one of the nonzero solutions (the

one for which 5\(u2 + υ2) and 5|w) gives rise to the unique nonzero

basic solution of (3.1) where we interpret a zero solution of (3.1) to be a

solution satisfying

(3.2) x2 - \25w2 ΞΞ xw + 5uv = 0 (mod p).

Similarly, exactly k — 1 of the zero solutions of (1.2) give rise to the k — 1

zero solutions of (3.1).

EXAMPLE 3.1. Among the fifteen solutions of (1.2) when q — 5,

p — 11, and k = 3, there are three with 5 | (u 2 + υ2) and 5 | w, namely

(36,6,42,20), (-89,25,20,25), (61,8,41,5).

Of these the first and second are zero solutions. These clearly give the

three basic solutions of (3.1) when k = 3, namely

(36,6,18, - 4 ) , (-89,13,6,5), (61,5,18,-1) .

Note that the first and second are the zero solutions of (3.1).

4. Generation of solutions for exponents greater than 1. We assume

in what follows some knowledge of the properties of integers of imaginary

quartic fields; see, for example, [1], [4]. The following theorem provides

the basic tool for generating all solutions of (1.2) or of (3.1) for exponents

greater than 1, when a solution exists for the exponent 1.

THEOREM 4.1. Let q-a2 + b2 = 5 (mod8), with a>0 and odd,

b > 0, q > 5, and assume that (x, w, Ό9 W) is a basic solution of the system

(1.2) for k — 1. Let (x\ u\ t/, w') (dropping the subscripts) denote any of

the basic solutions of (4.1) for k — t. Then the basic solutions of (4.1) for

k — t + 1 may be generated from the solutions with exponents 1 and k and

are included in the set ofA-tuples (x'\ u"\ υ'\ w") obtained by setting

x" ~ \ ' [χχf ~~ 2#m/ — 2qvv/

u" = i . [χ'u + bυw' + bv'w + auw' + au'w + xu'},

υ" = \ - [xv' + bu'w + buwf - aυ'w - aυw' + x'v],

W" - T - 2auu' + 2aυυ' - 2uυfb - 2u'υb + xw'],
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together with the 4-tuples obtained by applying (4.2) after performing the

transformations

(4.3) u'->v'9 vf -» -u\ w'^-w',

(4.4) M'-> - u \ Ό'-*U\ wf -> -w\

(4.5) K ' - > - « ' , υ'-> -υ\ w'^wf.

For q = 5 all the above hold //(4.1) is replaced by

(4.6) I6pk = x2 + 50u2 + 50υ2 + 125w2, xw = v2 - 4uv - u2,

2quuf and 2qvv' are replaced by 50uu' and 50υt/, respectively, in (4.2), and

qwwf is replaced by 125 ww\

Proof. Let (x, u, v, w) be a basic solution of (4.1) for an arbitrary

exponent k. Then

ak — j - I x + iuJlq + 2a{q + iv^jlq — 2a{q + w{q I

is an integer of J1^ and we let (ak) denote the principal ideal generated by

ak.

Let Pl9 P2, P3, and P4 denote the prime ideal factors of/? in the ring of

integers of Q(el7Ti/q). Then we have

as the only units in K are ± 1 [9, p. 4]. Thus

(ak) = ±PΪP'P<P/, (άk) = ±

with k — c + e — d + f. Thus

\ak) ~ — r i r 2 r 3 4̂

It follows that solutions of (1.2) when k = t + 1 may be generated by

considering products of integers of K of the form a}an t > 1. There are, of

course, eight choices for ax and eight for ar However, the symmetric

nature of (4.2) allows us to fix a, = (x, u, v9 w) and generate the solutions

via (4.2), (4.3), (4.4), and (4.5). (It is easily seen that changing the sign

throughout does not yield new solutions and Example 4.1 shows that all

the transformations above may indeed be required to generate the solu-

tions of (4.1).)

Before proceeding further in the proof we require the following

equations. For the sake of typographic convenience, we shall denote yfq

by s for the remainder of the proof.
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We have

]j4q2 — 4a2q — lbs

(4.3) s^jlq + las = a^Jlq + las + b^jlq - las

S]jlq — las = b]/lq + las — a^jlq — las .

These equations are easy consequences of the fact that q — a2jrb2. To
obtain the first equation in (4.3), simply note that

\J4q - 4a2q = ^4q(q - a2) = lbs.

To obtain the second and third equations in (4.3) note first that

S]/2q + las = a^jlq + las + b]jlq - las

q(lq + las) = a2 (Iq + las) + b2 (Iq - las) + lab^Aq2 - 4a2q

Iq2 + laqs = Iq2 + la3s - lab2s + 4ab2s

The equations now follow from reversing these steps and including the
positive and negative signs for Jq — s in the last step.

Next, using (4.3), we derive (4.2) by multiplying

1

times

— I x + iu^jlq + las + iυ\jlq — las + ws\

— - yx' + iu']/lq + las + iυ^lq — las + w's\9

and collecting the coefficients of 1/4, i{ΐq + ΐas /4, i]/lq — las /4, and
s/4 as the rational integers x"\ u"', υ'\ and w'\ respectively. This com-
pletes the proof of the theorem for q φ 5. The proof for q — 5, being
similar, is omitted.

EXAMPLE 4.1. Let q — 29 and p — 59. Since p = qf + I and
h*(K)/h'(Q(]fq)) = 1 it follows from Hudson's and Williams' proof of
Theorem 7.1 that there is a basic solution of (4.1) when k = 1, which we
take to be (-4,2,2,4).

Using (4.2) and (4.3) we obtain the primitive solutions of (1.2),
(4,24, - 16, - 16), (-112,- 12,20, -20): k = 2.
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Again applying (4.2) and (4.3) we obtain the primitive solutions

(-700,10,170,-196), (-700,-134,-170,52),

(1620, -54,90,28): k = 3.

These solutions are somewhat interesting as they imply that it is possible
to have x" — xf{ for the leading parameters in two different basic solu-
tions.

To obtain the primitive solutions for k — 4 we need to apply (4.2),
(4.4), and (4.5). From (4.2) we obtain the solutions

(11024,-1044,324, -324), (-1852,872,120,2240): k = 4.

From (4.4) and (4.5) respectively we obtain

(-1744, -966,244,2116), (-6608,708,-1180,-1180): k = 4.

Of course imprimitive solutions (that is, (x'\ u"9 υ'\ w") Φ 1) are gener-
ated by (4.2)-(4.5) as well, but we do not delineate these as they are of
presumably less interest.

EXAMPLE 4.2. Let q = 85, p = 101, so r — 16. In Example 2.1 we
showed that the zero solution for k — 2 was (—191,20,9,23). This may be
obtained by applying (4.2) with (x, u, v, w) = (x\ u\ v\ wf) —
(-1,1,2,3). The nonzero solution for k = 2 is (-21,28, -13, -3), ob-
tained by applying (4.1).

The primitive solutions for k = 3, obtained by applying (4.1) and
(4.2) to the solution for k — 1 and to the two primitive solutions for k — 2
are

(-271,62,193, -333), (-2736,-112, -200,28), (3129,-182,79, - 5 ) .

5. Families of values of q and p having the same basic solution when
k — 1. In view of the insolvability of (1.2) for k less than

(5.1) Λ = max{ |S 0 -S 2 | , |S 1 -S 3 | }

when, for example, q = 101 and p = 137, 173, 179, 193, or 607, it is
somewhat surprising when one first confronts the fact that (1.2) is solvabe
for k — 1 when, for example, q— 173, p — 347, with h*(K) — 5, and for
q = 293, p = 587, with h*(K) = 9. It is even more surprising at first that
for these totally different values of q and/? the system (1.2) has, for k = 1,
precisely the same basic solution, namely, (x, u, v, w) = ( — 4,2,2,4). In
this section we explain this phenomenon.



34 DUNCAN A. BUELL AND RICHARD H. HUDSON

We define a family of values of q and p to be a set of ordered pairs
(q, p) having the same basic solution when k — 1. These are of interest
for several reasons, including, in particular, the following:

1. In §6 we will show, using Theorem 4.1, that such families have
solutions for each exponent k larger than 1, whether or not q and p are
prime or h*(K) = 1, and that the solutions are given by explicit functions
of a and b.

2. The consequences of Theorem 7.1 cannot be studied directly when
the value of h in (5.1) is greater than 3 unless (1.2) is solvable when k — 1,
as a direct search by computer in such cases could take centuries.
However, using the results in this and in the following section, we are able
to examine the consequences of Theorem 7.1 for k at least as large as 7.

We consider first the solutions of (1.2) of the form (x, u, v,w) =
( —4, m,m,w). Applying the defining conditions in (1.2) for k — 1
we have that I6(qf+ 1) = 16 + 2qm2 + 2qm2 + qw2 and thus that f —
(4m2 + w2)/\6. Further, we obtain w — bm2/2. It follows that (indepen-
dent of class number considerations or of the primality of q or p) the
system (1.2) has, for k — 1, q = a2 + b2, the same basic solution, namely,

(5.3) (-4, m,m,6m2/2)

for every integer/? = (m2/4 + b2m4/64) + 1.
As x is even in (5.3), it is easy to see that u, υ, and w must also be

even. Moreover, taking q = 5 (mod 8), we have that b = 2 (mod 4). The
following theorem includes (5.3) as a special case.

THEOREM 5.1. Let q — a2 + b2
 Ξ 5 (mod 8), q > 5, with a > 0 and

odd, b > 0, and let p = qf + 1 be an odd positive integer. Then for m > 0
and n an odd positive integer > 1, the 4-tuple

( —4,2m,2m«, w)

is a basic solution of (1.2) with k = 1 provided that

w = m2(2bn — a(n2 — 1))

and

f=m2[2s + 1 + (b'nf - absn + (as)2],

where s = (n2 - l)/4 and V = b/2.

Proof. Using the defining conditions in (1.2) we have

\6qf+ 16 = 16 + 2q(n2 + \)(2mf + qw2

=>/= (n2 + l)m2/2 + w2/\6
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and

-4w = a(n2 ~ \)(2mf - 2bn(2mf

=> w = m2(2bn — a(n2 — 1)).

The result is then immediate.

EXAMPLE 5.1. Taking n = 1 so that w — 2bm2 and s — 0 in Theorem
5.1, we have that for q = a2 + 62, p — qf + 1, k = 1, the system (1.2) has
the basic solutions

(5.4) (-4,2,2,26) ifandonlyif/=6 2/4 + 1,

(5.5) (-4,4,4,86) if and only i f/= 4ό2 + 4,

(5.6) (-4,6,6,186) if andonlyif/= 8162/4 + 9,

(5.7) (-4,8,8,326) if and only i f/= 6462 + 16,

(5.8) (-4,10,10,506) if and only if/ = 62562/4 + 25,

In particular, ( — 4,2,2,26) is a basic solution of (1.2) with k — 1 for
the following prime values of q and p:

q p b

(5.9)

173
293
1229
157

661
197

349

349

587
2459
1571
6661
9851

28619

2
2
2

6
6
14

18

To cite just one of many examples of Theorem 5.1 when n φ 1, take
n — 3 so that s — 2. Then / = 6 and (1.2) has as basic solution when
k = 1 andm = 1, (-4,2,6,66 - 8a) if and only if/ = 5 + (36 - 4a)2/4.
In particular, for q — 61 = 52 + 62, ( — 4,2,6,-4) is a basic solution of
(1.2) ίotk = 1 when/? = 367 = 6q + I.

Next we consider the family which arises when one considers values
of q and p with basic solution

(5.10) (<?-4,tf,26,-tf).

Using the defining conditions in (1.2) we have for p — qf + 1 that (5.10) is
a solution of (1.2) when k — 1 if / = (q + 3)/4. Such solutions arise
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frequently; we cite three:

q p solution

13 53 (9,3,4,-3)

(5.11) 53 743 (49,7,4,-7)

293 21683 (289,17,4,-17).

We close this section by noting that similar results are easily estab-

lished when p = qf + r, r ^ 1, (r/q)Λ — + 1 , and by giving a theorem

about families with the rather aesthetic basic solution (α, a, —b, a).

THEOREM 5.2. Let q be as in Theorem 5.1, and let p = qf + r be a

positive integer. Then for each q satisfying a2 — \6r — sq with s an integer

and each f with (s + 3a2 + 2b2)/\6 an integer, (a, a, —b, a) is a basic

solution of(\2) when k — 1 if and only if a2 + a — 3b2.

Proof. We have from (1.2), substituting (a, a, —b, α), that a2 — \6r

= sq with s = 1 6 / - 3a2 - 2b2 if and only if / = (s + 3a2 + 2b2)/\6.

Also, we have from (1.2) that a2 — ab2 — a(a2) — 2ba( — b) if and only if

3b2 = a2 + a.

EXAMPLE 5.2. For q — 13, r — 3, we have 9 — 16/* = — 39 = ~3q,

and 9 + 3 = 3(22). Since {s + 3a2 + 2b2)/l6 = 2 we have that

(3, 3, —2, 3) is a basic solution of (1.2) when k = 1 if q — 13 and p = 29.

6. Solutions for exponents greater than 1 for families of values of q

and p. As in §5 we define a family of values of q and p to be a set of

ordered pairs (q, p) for which (1.2) has the same basic solution when

k = 1.
We consider in this section the family

which, by Theorem 5.1, has the basic solution ( — 4,2,2,2b) for k — 1.

Using Theorem 4.1 we explicitly generate all solutions of (1.2) when k — 2

and k — 3 for all members of this family. Moreover we show that there

are exactly two generatable basic solutions when k — 2. We conjecture but

cannot prove (generally) that there are k — \ zero solutions for every k.

THEOREM 6.1. Let q — a2 + b2 = 5 (mod 8), q > 5, a > 0 and odd,

b > 0, and let p = ((1 + b2/4)q) + 1. Then

(6.1) 16/?2 = x2 + 2qu2 + 2qυ2 + qw2, xw = av2 — 2buυ — au2,

(6.2) (x, u, v, w, p) = I
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has two solutions, namely,

(6.3) (4 - 4q + qb2, - 4 + lab + lb2, - 4 - lab + lb2, -86),

(6.4) (4 - qb2, - 4 - Ib2,lab, ~4a),

of which only the latter is a zero solution.

Proof. Applying (4.2) with

{x,u,υ,w) = (x\u\υ\w') = (-4,2,2,2/?)

we obtain (6.3). Similarly (6.4) follows upon applying (4.3). Next, as

q==-l/(l+ b2/4) (mod p),

we have

32

b2 + 4
= — 8g (mod p), w = —$b (mod p),

so that (6.3) is not a zero solution as p \ 64qa2. To show that (6.4) is a zero
solution we need to show in view of (2.1), that u2 + v2 + w2 = 0 (mod p).
Indeed we have from (6.4) that

u2 + v2 + w2 = 16 + \6q + 4b2q = \6p.

Finally, if it straightforward to show that application of (4.5) yields a
solution of (6.1) which does not satisfy (6.2). (This follows also from the
fundamental property αα = p.). Similarly it is easy to see that application
of (4.4) gives the solution (6.4). By Theorem 4.1 these are the only
solutions of (1.2) which can be generated from the basic solution
(-4,2,2,26).

THEOREM 6.2. Let q = a2 + b2 = 5 (mod 8), q > 5, a > 0 and odd,

b > 0, and let p = ((1 + b2/4)q) + 1. Then the system

(6.5) 16/73 = x2 + Iqu2 + 2qv2 + qw1, xw — av2 — Ibuv — au2,

(6.6) (x, u, υ,w, p) = 1,

Λ̂ ZJ /A/ ̂  basic solutions,

(x3l, u3],υ3l,w3l), (x32, u32,v32,w3^), (x3j, u33,v3j,w3j),

where the parameters in these ordered 4-tuples are given explicitly by

(6.7) x3iI = 9(12 - 9b2) ~ 4,

(6.8) M3 , = q(b2/2 - 2) + 6 - Sb2 + a2b2 + b4 - Sab,

(6.9) υ3Λ = q{b2/2 - 2) + 6 - 8b2 + a2b2 + b4 + 8ab,
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(6.10) w3Λ = q(b3/2 - 2b) + 186 - 4a2b - 4b\

(6.11) JC32 = q(3b2 - 4ab + 4) - 4,

(6.12) u32 = q{-b2/2) + 6 - 4ab - 2α2 + 26,

(6.13) t>3f2 = q{-b2/2) + 2 - 4ab - 2b2 - b4 + 2a2 - a2b2,

(6.14) w3 2 = q{-b3/2) + 6b + 8a + 2a2b + 2b\

(6.15) x3 3 = q(3b2 + 4ab + 4) - 4 = x3 2 + 8 ^ ,

(6.16) u33 = q(b2/2 -2) + 6 + 4b2 + 4ab ~ a2b2 - b\

(6.17) υ3 3 = q(b2/2 - 2) - 2 + 4b2 + 4ab + a2b2 + b\

(6.18) w3 3 = q(b3/2 - 2b) - 6b + 8α.

Proof. Applying (4.2) with (x, w, υ, w) = ( — 4,2,2,2b) and with
(JC\ w', υ\ w') given by (6.3) we obtain (6.7)-(6.10). Applying (4.2) with
(*, w, ϋ, >v) = ( — 4,2,2,2b) and with (x', w\ v\ w') given by (6.4) we
obtain (6.11)—(6.14). Finally, applying (4.3) with (x, w, v9 w) =
(-4,2,2,2b) and with (xr, wr, v\ w') given by (6.3) we obtain (6.15)-(6.18).
It is straightforward, though rather tedious, to show that applications of
(4.4) and of (4.5) yield no new primitive solutions (that is solutions
satisfying not only (6.5) but also (6.6)).

EXAMPLE 6.1. Theorem 6.1 holds for the following ordered pairs
(q, p) with both q and/? prime and/? < 100,000:

(29,59), (53,107), (157,1571), (173,347), (197,9851),

(6.19) (293,587),(349,28619),(461,11987), (509,62099),

(557,27851),(773,94307), (821,41051), (1229,2459).

Of these we are particularly interested in the pairs (q, p) with q such that
h*(K)/h'(Q(Jq)) = 5 or 9 as it follows from Theorem 7.1 that products
of factorials appearing in (7.2) are congruent (mod/?) to parameters
in solutions of (6.5)-(6.6) if q and p are prime (as then we have h =
max{| 50 - S2 \, | Sx - S3 \) = 3). We include a brief table.

REMARKS. The primes q— 149, 373, 661 are the only primes < 10,000
with h*(K)/h\Q(}/q)) = 3 or 5 for which no ordered pair (q, p) appears
above. Of course, for such primes, if one can find prime values of p for
which (1.2) is solvable when k — 1, it is easy to use Theorem 4.1 to
generate the solutions for the exponent 3 whose parameters are related to
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the appropriate product of factorials as given in (7.2). Of course, if no

solution exists when k — 1, as for (g, p) — (101,607), the methods of this

section do not apply and one must use different techniques, such as the

one given in §2, to generate the solution for k = 3.

It may appear at first glance that the results of this section carry over

unchanged if (1.2) is solvable for k = m > 1 and not for k < m with one

basic solution when k = m, 2 primitive solutions when k — 2m, etc.

Although this is nearly the case the fact is that the zero solution for

(q, p) — (101,607) when k — 3, given by (2.4), generates only one primi-

tive solution when k — 6. Moreover direct computation of solutions for

(101,3) and (101,5) when k — 6 yields only one basic (zero) solution.

Thus it appears that when the basic solution for the minimal exponent is a

zero solution the number of primitive solutions for multiples of the

minimal exponent is less than when the basic solution is a nonzero

solution. This is certainly surprising and underscores the significance of

zero solutions.

7. Consequences of a quartic extension of a theorem of Cauchy and
Jacobi. In [9] Hudson and Williams prove a quartic analog of a theorem

of Cauchy and Jacobi (see H. J. S. Smith [15] for a discussion of Jacobi's

proof). We numerically illustrate in Examples 7.1-7.3 only one of the

cases arising in this rather complicated theorem. However, our results

apply also to the companion case (Case B in [9]).

THEOREM 7.1. Let q — a2 + b2 = 5 (mod 8), q > 5, be prime so that

K— Q(i(^2q + 2ajq )) is an imaginary cyclic quartic field with class

number given by {see [8])

h*(K) = {(So - S2)
2 + (5, - S3)

2) A'(β(^))/2

where SJ9 j — 0,1,2,3, are given by (1.5), Sm denotes the smallest value of

SJ9 and Se is the smallest or the second smallest value of Sf (these coincide iff

I so ~ S2 \ = \ s\ ~ S31); h'(Q(Jq)) denotes the class number of Q{Jq).

Let h be defined by h = max{|S0 - S2\, \SX - S3\} and let the

signs of x9 a, and b be fixed by x = — 4 (mod q)9 a = I (mod 4), Z? Ξ

— ((q — \)/2)\ a (mod^). Then there is a solution of the quaternary

quadratic system

(7.2) 1 6 / = x2 + 2qu2 + 2qv2 + qw2, av2 - 2\b\uv - au2,
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such that for 7 = 0 or 1 we have

for every prime/? = qf+ 1. In this notation we have

Π β e ς + r α/!
+ r

with C7 + r being they + rth coset formed with respect to the fourth powers
(mod p) and r — 0 or 2 according as Sj is less than Sj+1 or conversely. The
plus sign holds on the right-hand-side of the congruence (7.2) if and only
if y = 1 and \Sλ ~ S3\^\S0 ~ S2\ the minus sign holds if and only if
7 = 0 and the above inequality is reversed; both signs hold if

= (So - S2)
2 = (S, - S3)

2.

Lastly, the expression on the right-hand-side of the congruence simplifies
to —x if (x, w, v9 w) is a zero solution, that is, satisfies (1.6).

The proof of Theorem 7.1, as one might imagine, is quite complex,
requiring not only the Davenport-Hasse relation in a form given by
Yamamoto [18] and Stickelberger's Theorem, but also the recent explicit
evaluation of the quartic Gauss sum given by Matthews [12].

Duncan Buell contributed to [9] in several ways, including, in particu-
lar, providing examples of the consequences of this theorem for (q, p) =
(101,607) and (157,1571) with class number 5 and for (q9 p) = (149,1193)
with class number 9. In this section we note that the methods developed in
§§2, 4 and 6 of this paper make it possible to illustrate the consequences
of Theorem 7.1 for values of q with A*/Λ' quite large. In particular, we
include an example for which the class number is 25 and

h = max{| So - S2 \ , | Sx - S3 \) = 7.

We begin by proving two theorems relating to solutions when h = 3
for the family defined in Theorem 6.1 (h = 3 iff h*/h' = 5 or 9).

THEOREM 7.2. Let q = a2 + b2 = 5 (mod 8), q > 5, be prime, with
a = 1 (mod4), b = -{q ~ \)/2\a (mod q)9 p = ((1 + b2/4)q) + 1. Let
h*/h' — 9, so that h — 3 in (7.1). Then we have, using the notation of
Theorem 7.1, that

F, r p5'-3- = 6 4 T 32b2 ± (\2b + b\a2 + b2)) (a2 + bψ2

JJ 2b2 + 8 V J
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modulo pSe~ Sm+\ where the plus sign holds for exactly one ofj = 0 or 1 and
the minus sign for the other. Further,

(7.3) Fθtr + F uυ,r i , r Ί Ί • Λ

bι + 4

Proof. From the proof of Theorem 7.1 we have that

i^Γ /?5«~s* = -jc/2 ±= W#/2 (mod ^^~ 5 - + ι )

where the plus sign holds for exactly one of j — 0 or 1. When the class
number is 9, the products of factorials in (7.3) cannot correspond to
parameters in a zero solution as then one of —χ/2 ± Wyfq/2 is congruent
to 0 (mod p) and thus not to any product of factorials (mod p).

We now appeal to (6.7) and the congruence q = — 4/(b2 + 4) to
obtain

~*3,i _ 64 - 32b2

(mod p).
2 2b2 + 8

To complete the proof we need to show that

w3l/2 = 126 + b3(a2 + b2) (mod p).

This appears difficult to establish directly from (6.10). However, from
(x, w, v,w) = ( — 4,2,2,2b) we have, using the binomial theorem and
cancelling }/q9 that

(7.4) w{q = (2 + b{qf - (2 - Z?/?)3 => w = 24b + 2Z>3# (mod /?)

from which the result follows immediately.

REMARK. Again, we emphasize that the sign of {q is determined
unambiguously in [9] and this determination is necessary to establish the
legitimacy of the above operations (the reader is directed to [9] for more
precise information.) This result (7.3) is rather remarkable as it shows that
the expression on the left-hand-side of (7.3) is congruent to a simple
function of the one variable b, which arises from the basic solution
(— 4,2,2,2b), for very different values of q, p, and a.

EXAMPLE 7.1. For (q9 p) = (173,347), a = 13, and for (<?, p) =
(293,587), a = 17, we have b = 2, so that -χ3Λ = (32b2 - 64)/(b2 + 4)
= 8 (mod p); see Table 1. Also, we have from (7.4) that

w3Λ = 24b + 2b3q = 48 + 16$ = 48 - 64/ (b2 + 4) = 40 (mod p).
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For q = 293 we have h*/h' = 9, So = 35, 5! = 38, 5 2 = 38, S3 = 35 (see

[8]) so that, appealing to the generalized Wilson Theorem, see, for exam-

ple, [15], we have, as (q — l)/4 is odd if q is congruent to 5 mod 8,

Π α/!+ Π α / ! Ξ

6 4 ~ 3 2 / Ξ - 8 (mod/?)
*2 + 4

for (#, p) — (293,587). Using a simple computer program we obtain

Π « / ! Ξ Ξ 2 7 4 (mod 587), Π <*/!=305 (mod 587),
a<ΞC2

and 274 + 305 = 579 = - 8 (mod 587). For q = 173 we have h*/h' = 5

and this case will be considered next.

THEOREM 7.3. Let q andp be as in Theorem 7.2. Let h*/h' = 5, so

h = 3 /π (7.1). // r/ze product of factorials on the left-hand-side of (7.2) w

determined in terms of the solutions ( x 3 2 ? w 3 2 , ϋ 3 2 , v^32) or

*V (6.11)—(6.18),

/ 7 O Γ -\6(b2±ab
(7.5) F y t Γ Ξ y-^-4

where the ± sign on the right-hand-side of {1.5) depends on which of these is

the determining solution.

Proof. As it is proved in [9] that the indicated solutions are zero

solutions, we have by Theorem 7.1 that Fjr = — x32 or — ;c 3 3 (mod/?),

where j = 0 if | So - S21= 3 and j = 1 if |S, - S3 \= 3 and ΐr = 0 or 2

according as Sj < Sj+2 or conversely.

By (6.11), we have, a s ? Ξ -4/(Z>2 + 4) (mod p)9 that

^ ^ -Mb2- \6ab- 16 — 4Z>2 — 16
4 ) " 4 = 7 Γ ^

a° ] (mod/?).

Similarly, by (6.15) we have -χχ3 = -\6(b2 - ab + 2)/(b2 + 4), com-

pleting the proof.

EXAMPLE 7.2. We give an example which shows that both possibilities

in Theorem 7.3 can occur. For (q, p) = (173,347) we have h*/h' = 5,
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SO = 23, S, = 22, 5 2 = 20, S3 = 21, so that by Theorems 7.1 and 7.3 we
have

(i *\ ("I) 2 0 - - -\6(b2±ab + 2) , - ,
' 7 ' 6 ) Π ^7T = ~X3,2 °Γ - χ 3 f 3 = — — (mod /?).

As the product on the left-hand-side of (7.6) is congruent to 64
(mod 347) it is clear from Table 1 that it is determined in terms of the
solution (x 3 3, u3 3, t>3>3, w3f3).

For (q9 p) = (157,1571), we have h*/h' = 5,S0= 19, Sx = 18, S2 =
20,5*3 = 21, so that

or " ^ " — V T ^ — {modp)

and in this case we see from Table 1 that the product is determined in
terms of the solution (x 3 2> u3t29 v3a, w3 2 ) .

We close by showing how Theorem 4.1 can be used to illustrate the
consequences of Theorem 7.1 when h = max{| So — S2 \, | Sx ~ S31} > 3.
(When h > 3 a direct computer search for solutions of (7.1) without a
generating formula is infeasible.)

EXAMPLE 7.3. Let q = 1229, p = 2459. Then So = 154, 5, = 157,
5 2 = 153, S3 = 150, so that A = 7 and A*/A' = 25. By Example 6.1 the
solution ( — 4,2,2,4) is a basic solution of (1.2) when k — 1. Appealing to
Theorem 4.1 we find & basic solutions to (1.2) for each k < 7. For at least
one of the seven solutions (x, w, t>, w) when A: = 7 we should have, by
Theorem 7.1, that

( - i ) 1 5 0

i W 7 ϊ s ~ * ( m o d / > )

Indeed, we have the following six values for x parameters in the six zero

solutions.

X

1941085913380
158420410516
195628041396

2176521176300
1698617112964

-2408791636396

—x (mod p)

-1580
-1905
-2149
-1167
-1088
-2427
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For q — 1229, p — 2459, direct computation shows that the solution
implied by Theorem 7.1 is the second listed above, whose other parame-
ters are

u = 29578204262
v= -22409982278
w= -65596421516.

8. Computing. The numerical examples in this paper were com-
puted in BASIC on the Xerox Sigma 9 at Carleton University, Ottawa,
Canada, in FORTRAN G, FORTRAN H, VS FORTRAN, and PL/I on
the IBM 3033 of the System Network Computer Center, Louisiana State
University, in FORTRAN and Business BASIC on the Data General
Eclipse S/140 of the Computer Science Department, Louisiana State
University, and using additional computing and telecommunications
equipment supplied by Rudd Computer Systems, Inc., of Baton Rouge,
Louisiana.

9. Acknowledgement. We are deeply indebted to Kenneth S. Wil-
liams for a key idea leading to the proof of Theorem 4.1.

TABLE 1

Solutions when k = 3 and h*(K)/h'(ζ)({q)) = 5 or 9

q

157

173

197

293

349

P

1571

347

9851

587

28619

h*/h

5 (
(
(

5 (

(
5 (

(
(

9 (
(
(

5 (
(
(

-48988,
-23868,
59028,
-4156,

-15228,
20756,

-345148,
105588,
127652,
-7036,

-35164,
44532,

-1013500,
214980,
466260,

Soluti on

7354,
-3254,
-2726,

458,
-774,
-566,
55850,

-18966,
-18854,

874,
-1286,
-1014,

165610,
-56294,
-55574,

8410,
-8570,
8042,
874,

-810,
602,

56074,
-58362,
58250,
1418,

-1322,
1050,

167050,
-170570,
169850,

11412)
-14948)
15124)
-1348)

116)
92)

253988)
-264676)
264692)
-2308)

148)
124)

980316)
-1004972)
1005052)
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