TYPESETS AND COTYPESETS OF RANK-2 TORSION FREE ABELIAN GROUPS

D. ARNOLD AND C. VINSONHALER

A sufficient condition is given for a set of types to be the typeset of a rank-2 group, strengthening all previous results on this subject. A correct version of a theorem of Schultz on types and cotypes is provided, along with a variety of other results on typesets and cotypesets of rank-2 groups. Numerous examples are included.

Beaumont-Pierce [3], in 1961, posed the problem of finding necessary and sufficient conditions for a set of types to be the typeset of a rank-2 torsion free abelian group. They also, among other things, solved the problem in case the given set of types is finite. Koehler [10], in 1964, extended some of these results. Dubois [5] and [6], 1965 and 1966, used basic analytic number theory techniques to give some necessary and some sufficient conditions for a set of types to be realized as the typeset of a rank-2 torsion free abelian group.

Ito [9], in 1975, gave a sufficient condition for the realization of a set of types, which is easily seen to be equivalent to a sufficient condition of Dubois [5], Theorem 1. Ito's construction, however, is somewhat easier to understand, the group being given as a homomorphic image of a completely decomposable group rather than as a subgroup of the direct sum of two copies of the Z-adic integers.

Schultz [11], in 1978, claimed to have given necessary and sufficient conditions on two sets of types S_1 and S_2 such that there is a rank-2 group A with typeset(A) = S_1 and cotypeset(A) = S_2 . A counterexample to this theorem is given by Vinsonhaler-Wickless [12] (also see Example 1.6). Vinsonhaler-Wickless [12] also give some simple necessary and sufficient conditions for a set of types to be realized as the cotypeset of a rank-2 group.

The theme of this paper is to examine Dubois' results from the point of view of Ito's construction. This point of view leads to:

THEOREM. Let $S = \{\tau_1, \tau_2, ...\}$ be a set of types with $\inf(\tau_i, \tau_j) = \operatorname{type}(Z)$ whenever $\tau_i \neq \tau_j$. Assume that $\{\tau_i | \tau_i \text{ is very large}\}$ has no snarls in S.

(a) There is a rank-2 group A with typeset(A) = S iff either type(Z) \in S or else S has an infinite subset with no snarls in S;

- (b) Let $S' = {\sigma_1, \sigma_2, ...}$ be another set of types. Then there is a rank-2 group A with typeset(A) = S and cotypeset(A) = S' if and only if
 - (i) There is a type $\sigma_0 = \sup{\{\sigma_i, \sigma_i\}}$ for $i \neq j$;
 - (ii) $\tau_i \leq \sigma_0$ for each i;
 - (iii) $\sigma_i = \sigma_0 \tau_i$ for each i; and
- (iv) Either type(Z) $\in S$ or else S has an infinite subset with no snarls in S.

Included as special cases are Dubois' theorems (Theorem 2.9(b) and Corollary 2.10); Koehler's results (Theorem 2.9(a)); Ito's theorem (Corollary 2.14(b) which includes the Beaumont-Pierce results), and a corrected version of Schultz's assertions (Corollary 2.11). Also included is a simplification of the proof of the Vinsonhaler-Wickless theorem (Theorem 3.1).

Of particular interest are the locally completely decomposable groups, discussed in §4. If A is a finite rank torsion free group then there are locally completely decomposable groups B and E with $B \subseteq A \subseteq C$; E torsion; typeset(E), and cotypeset(E) = cotypeset(E) (Theorem 4.1).

Section 5 is devoted to some open questions.

This paper is largely self-contained, and as a result partially expository, due to the complexity and the history of the problems considered. However, references for published results are given as well as numerous examples.

0. Notation and preliminaries. The basic properties of finite rank torsion free groups may be found in Fuchs [7]. Special notation used herein includes: if h is a height sequence (characteristic) then h(p) is the pth entry for a prime p; $\tau = [h]$ denotes the type of h, an equivalence class of height sequences; and write $h \in \tau$. If A is torsion free and $a \in A$ then $h^A(a)$, $h_p^A(a)$, and type_A(a) denote the height sequence, p-height, and type of a in A, respectively. If rank A = 1 then type(A) = type_A(a) for $0 \neq a \in A$.

If $\tau = [t]$ and $\sigma = [s]$ then $\inf\{\tau, \sigma\}$ and $\sup\{\tau, \sigma\}$ are defined by $[\min\{t, s\}]$ and $[\max\{t, s\}]$, respectively. For two types τ and σ , $\tau \le \sigma$ iff there is $t \in \tau$ and $s \in \sigma$ with $t \le s$. In this case $\sigma - \tau = [s - t]$, agreeing that $\infty - \infty = 0$.

If S is a subset of A then $\langle S \rangle$ denotes the subgroup of A generated by S and $\langle S \rangle_*$ denotes the pure subgroup of A generated by S.

Also assumed are some basic analytic number theory results as found, for example, in Hardy-Wright [8]. For a positive integer n, let $\pi(n)$ be the

number of primes $\leq n$. Let $U = \{(r, s) | r, s \in \mathbb{Z}, r \geq 0, \gcd(r, s) = 1\}$ and $I_n = \{(r, s) \in U | \max\{r, |s|\} \leq n\}$. Denote the *i*th prime by p_i .

LEMMA 0.1.

- (a) (Chebyshev's Theorem.) There is $c_1 > 0$ and $c_2 > 0$ such that $c_1 n / \log n < \pi(n) < c_2 n / \log n$.
 - (b) $\lim_{n\to\infty} n/p_n = 0$.
- (c) $|I_n|=4\Phi(n)$ where $\Phi(n)=\Sigma\{\phi(i)\,|\,1\leq i\leq n\}$ and $\phi(i)$ is the Euler ϕ -function.
 - (d) $\phi(n) = 3n^2/\pi^2 + O(n \log n)$
 - (e) $\lim_{n\to\infty} (|I_n| \pi(2n^2)) = \infty$.

Note that (b) follows from (a) since $n = \pi(p_n) < c_2 p_n / \log p_n$ implies that $n/p_n < c_2 / \log p_n$. Also (c) is a fairly routine counting argument, while (e) follows from (d) and (a).

As a consequence of (b), if c is any constant then for sufficiently large n, $p_n > cn$.

1. Type sequences. A type sequence is a countably infinite sequence of types (repetition of types is permitted). Two type sequences T and T' are equivalent, $T \approx T'$, if one is a permutation of the other.

Let A be a rank-2 group and let $A_1, A_2,...$ be an indexing of the pure rank-1 subgroups of A. Define $\tau_i = \operatorname{typeset}(A_i)$ and $\sigma_i = \operatorname{type}(A/A_i)$ for each i. Then $T_A = (\tau_1, \tau_2,...)$ and $C_A = (\sigma_1, \sigma_2,...)$ are type sequences. Note that T_A and T_A are unique up to equivalence. Define $T_A = \{\tau_i \mid i \geq 1\}$ and $T_A = \{\tau_i \mid i \geq 1\}$.

The following proposition is folklore.

PROPOSITION 1.1. Let A be a rank-2 group with $T_A = (\tau_1, \tau_2,...)$ and $C_A = (\sigma_1, \sigma_2,...)$.

- (a) There is a type τ_0 such that $\tau_0 = \inf\{\tau_i, \tau_j\}$ for each $i \neq j$ and if typeset(A) is finite then $\tau_0 = \tau_i$ for some $i \geq 1$.
- (b) There is a type σ_0 such that $\sigma_0 = \sup{\{\sigma_i, \sigma_j\}}$ for each $i \neq j$ and if $\operatorname{cotypeset}(A)$ is finite then $\sigma_0 = \sigma_i$ for some $i \geq 1$.
 - (c) $\tau_i \leq \sigma_i$ for each $i \neq j$ and $\tau_0 \leq \sigma_0$.
 - (d) $\sigma_i \tau_j = \sigma_j \tau_i$ for each $i \neq j$ with $i \geq 0$ and $j \geq 0$.
 - (e) If $\tau_0 = \text{type}(Z)$ then $\sigma_i = \sigma_0 \tau_i$ for each i.

Proof. (a) If $i \neq j$ then $A/(A_i \oplus A_j)$ is torsion. Thus, for each k, $\tau_k \geq \inf\{\tau_i, \tau_j\}$. Consequently, if $k \neq l$ then $\inf\{\tau_k, \tau_l\} \geq \inf\{\tau_i, \tau_j\} \geq \inf\{\tau_k, \tau_l\}$. Now assume that typeset $(A) = \{\tau_1, \tau_2, \dots, \tau_n\}$. If j > n then

 $\tau_0 = \inf\{\tau_j, \tau_i\}$ for each $1 \le i \le n$. But $\tau_j = \tau_i$ for some $1 \le i \le n$ so that $\tau_0 = \tau_i \in \text{typeset}(A)$.

The proof of (b) is similar.

- (c) follows from the fact that if $i \neq j$ then there is a monomorphism $A_i \rightarrow A/A_j$.
- (d) First assume that $i \neq j$ are both non-zero. There is an exact sequence $0 \to A_i \to A/A_j \to A/(A_i \oplus A_j) \to 0$. Choose $0 \neq a_i \in A_i$ and $x_i \in A/A_i$ with $a_i \to x_i$. Then

$$0 \to A_i/Za_i \to (A/A_i)/Zx_i \to A/(A_i \oplus A_i) \to 0$$

is exact. Write $A/(A_i \oplus A_j) = \bigoplus_p Z(p^{k_p})$ so that

$$k_p = (p\text{-height of } x_j \text{ in } A/A_j) - (p\text{-height of } a_i \text{ in } A_i).$$

Then $[(k_p)] = \sigma_i - \tau_i$. Similarly, $[(k_p)] = \sigma_i - \tau_i$.

Given three distinct positive integers i, j, k,

$$\sigma_0 - \tau_i = \sup{\{\sigma_i - \tau_i, \sigma_k - \tau_j\}} = \sup{\{\sigma_i - \tau_i, \sigma_j - \tau_k\}} = \sigma_i - \tau_0.$$

(e) follows from (d).

Following Warfield [14], τ_0 is called the *inner type of A*, denoted by IT(A), and σ_0 is called the *outer type of A*, denoted by OT(A).

LEMMA 1.2. Assume that $Zx \oplus Zy \subseteq A$, a rank-2 torsion free group and that $T_A = (\tau_1, \tau_2, ...)$. Define

$$U_A = \{rx + sy | r, s \in Z, r \ge 0, \gcd(r, s) = 1\}.$$

- (a) For each $i \ge 1$ there is a unique $a_i \in U_A \cap A_i$. Moreover, $A_i \cap (Zx \oplus Zy) = Za_i$ and $type_A(a_i) = \tau_i$.
 - (b) $OT(A) = [max\{h^A(a) | a \in U_A\}].$

Proof. (a) is routine.

(b) Write $A/(Zx \oplus Zy) = \bigoplus_p [Z(p^{i_p}) \oplus Z(p^{j_p})]$ with $0 \le i_p \le j_p \le \infty$ for each p. Then $IT(A) = [(i_p)]$ and $OT(A) = [(j_p)]$ (Warfield [14] or Arnold [2]). If $a + (Zx \oplus Zy) \in (A/(Zx \oplus Zy))_p$ then order $(a + (Zx \oplus Zy)) = \text{least } j$ with $p^j a = mu$ for some $u \in U_A$ and some $m \in Z$ with $\gcd(p, m) = 1$. Since $j \le h_p^A(u)$, it follows that $j_p \le \max\{h_p^A(a) \mid a \in U\}$. But

$$A/(Zx \oplus Zy) \supseteq (A_i + (Zx \oplus Zy))/(Zx \oplus Zy) \simeq A_i/Za_i$$
$$= \bigoplus_{p} Z(p^{l_p}),$$

where $l_p = h_p^A(a_i)$ (by (a)) so that $\max\{h_p^A(a) | a \in U_A\} \le j_p$. Thus, $OT(A) = [(j_p)] = [\max\{h^A(a) | a \in U_A\}]$.

The following lemma reduces the problem of realizing a type sequence $T = (\tau_1, \tau_2, ...)$ to the case that type $(Z) = \inf\{\tau_i, \tau_i\}$ whenever $i \neq j$.

LEMMA 1.3 (Schultz [11]). Let $T=(\tau_1,\tau_2,\ldots)$ and $C=(\sigma_1,\sigma_2,\ldots)$ be type sequences with $\tau_0=\inf\{\tau_i,\tau_j\}$ and $\sigma_0=\sup\{\sigma_i,\sigma_j\}$ whenever $i\neq j$. There is a rank-2 group A with $T_A=T$ and $C_A=C$ iff there is a rank-2 group B with $T_B=(\tau_1-\tau_0,\tau_2-\tau_0,\ldots),\ C_B=(\sigma_1-\tau_0,\sigma_2-\tau_0,\ldots),\ IT(B)=\operatorname{type}(Z),$ and $OT(B)=\sigma_0-\tau_0.$

Proof. (\Leftarrow) Let X be a rank-1 group with type $(X) = \tau_0$ and define $A = X \otimes_Z B$. Then Y is a pure rank-1 subgroup of A iff $Y \simeq X \otimes_Z D$ for some pure rank-1 subgroup D of B. Moreover, $A/Y \simeq X \otimes_Z (B/D)$; type $(Y) = \tau_0 + \text{type}(D)$; and type $(A/Y) = \tau_0 + \text{type}(B/D)$. Thus, $T_A = T$ and $C_A = C$.

(\Rightarrow) Choose $h_i \in \tau_i$ for $i \geq 0$ such that $h_0 \leq h_i$ for each i. First of all, it suffices to assume that τ_0 is idempotent: Let X be a rank-1 group with type(X) = τ_0 and $x \in X$ with $h^X(x) = h_0$. Define $A' = \operatorname{Hom}(X, A)$. Then $\phi \colon A' \to \{a \in A \mid h^A(a) \geq h_0\}$ is an isomorphism, where $\phi(f) = f(x)$. Thus $T_{A'} = (\tau_1 - \tau'_0, \tau_2 - \tau'_0, \ldots)$, $C_{A'} = (\sigma_1 - \tau'_0, \sigma_2 - \tau'_0, \ldots)$, and $\operatorname{IT}(A') = \tau_0 - \tau'_0$ where $\tau'_0 = [h'_0]$, $h'_0(p) = 0$ if $h_0(p) = \infty$, and $h_0(p) = h'_0(p)$ if $h_0(p) < \infty$. Therefore, $\tau_0 - \tau'_0$ is idempotent.

Now assume that τ_0 is idempotent, say $\tau_0 = [h_0]$ with $h_0(p) = 0$ or ∞ for each p. Let F be a free subgroup of A with A/F torsion and define $B = A \cap (\bigcap \{F_p | h_0(p) = \infty\})$. Then $B_p = F_p$ if $h_0(p) = \infty$ and $B_p = A_p$ if $h_0(p) = 0$. Let R be the subring of Q generated by $\{1/p | h_0(p) = \infty\}$ and define θ : $R \otimes_Z B \to A$ by $\theta(r \otimes b) = rb$, noting that RA = A. Then θ is an epimorphism, hence an isomorphism, since $\operatorname{rank}(R \otimes_Z B) = \operatorname{rank}(A) = 2$. Finally, if A_i is a pure rank-1 subgroup of A let

$$B_i = A_i \cap B = A_i \cap \big(\cap \big\{ F_p | h_0(p) = \infty \big\} \big).$$

Then B_i is a pure rank-1 subgroup of B and $\operatorname{type}_B(B_i) = \tau_i - \tau_0$, since $(B_i)_p = (A_i)_p$ if $h_0(p) = 0$ and $\bigcap \{(B_i)_p | h_0(p) = \infty\}$ is pure in $\bigcap \{F_p | h_0(p) = \infty\}$. Consequently, $T_B = (\tau_1 - \tau_0, \tau_2 - \tau_0, \ldots)$, $C_B = (\sigma_1 - \tau_0, \sigma_2 - \tau_0, \ldots)$, and $\operatorname{IT}(B) = \operatorname{type}(Z)$, as desired.

Let $T = (\tau_1, \tau_2,...)$ be a type sequence with type(Z) = inf{ τ_i, τ_j } whenever $i \neq j$, let $h_i \in \tau_i$ for each i, and let τ be a type with $h \in \tau$. Then

 τ is a snarl of T if $\{p \mid 0 < h(p) < h_j(p) = \infty \text{ for some } j\}$ is infinite. Note that this definition depends only upon τ and T and not upon the choice of $h \in \tau$ and $h_j \in \tau_j$. Snarls of sets of types are defined analogously.

Suppose that A is a rank-2 group with $T_A = (\tau_1, \tau_2, ...)$. By Proposition 1.1.a, IT(A) is the only type in T_A that may be repeated. Following Beaumont-Pierce [3], A is completely anisotropic if $\tau_i \neq \tau_j$ for each $i \neq j$. In this case, IT(A) appears at most one time in T_A .

THEOREM 1.4 (Dubois [1]). Let A be a rank-2 group with $T_A = (\tau_1, \tau_2,...)$ and IT(A) = type(Z). Then T_A has an infinite subsequence T' such that no snarls of T' are in T_A .

Proof. Choose $Zx \oplus Zy \subseteq A$ with $\inf\{h^A(x), h^A(y)\} = 0$. There is an indexing u_1, u_2, \ldots of U_A such that $u_1 = x$, $u_2 = y$, $u_i = r_i x + s_i y$ and $\max\{r_i, |s_i|\} \le \max\{r_j, |s_j|\}$ if i < j. Relabel T_A so that $\tau_i = \operatorname{type}_A(u_i)$. Let $h_i = h^A(u_i) \in \tau_i$ for each $i \ge 1$.

Define $K = \{j \mid \text{ for each } p, h_j(p) < \infty \text{ or } h_j(p) = \infty \text{ and there is no } i < j \text{ with } 0 < h_i(p) < h_j(p) = \infty\}$. Let T' be the subsequence of T_A determined by K. Then for each i, τ_i is not a snarl of T' since

$$\left\{ p \middle| 0 < h_i(p) < h_j(p) = \infty, \text{ for some } j \in K \right\}$$

$$\subseteq \left\{ p \middle| 0 < h_i(p) < h_j(p) = \infty, i > j \in K \right\}$$

is finite (recalling that $\inf\{h_i(p), h_j(p)\} = 0$ for almost all p, since IT(A) = type(Z), and that there are only finitely many j < i).

It now suffices to prove that K is infinite. Let $I_n = \{i \mid \max\{r_i, |s_i|\} \le n\}$. If $j \in I_n \setminus K$ then there is some p and some i < j with $0 < h_i(p) < h_j(p) = \infty$ and $\max\{r_j, |s_j|\} \le n$. Now $r_i u_j = r_j u_i - (r_j s_i - r_i s_j) y$ and $s_i u_j = s_j u_i + (r_j s_i - r_i s_j) x$. Since $\inf\{h_p^A(x), h_p^A(y)\} = 0$, p divides $r_j s_i - r_i s_j$. Furthermore, $|r_j s_i - r_i s_j| \le 2n^2$. Thus, $|I_n \setminus K| \le \pi(2n^2)$, the number of primes $\le 2n^2$, since for each p there is at most one p with $h_p(p) = \infty$. It follows that

$$|I_n \cap K| = |I_n| - |I_n \setminus K| \ge |I_n| - \pi(2n^2).$$

Now apply Lemma 0.1.e to see that K is infinite.

Example 1.5. Let $T = (\tau_1, \tau_2,...)$ be given by $\tau_i = [h_i]$ where $h_1 = (1, 1, 1,...)$; $h_2 = (\infty, 0, 0,...)$; $h_3 = (0, \infty, 0,...)$, $h_4 = (0, 0, \infty,...)$,...

- (a) There is no rank-2 group A with $T_A = T$.
- (b) There is no rank-2 group A with typeset(A) = $\{\tau_i | i \ge 1\}$.
- (c) There is no rank-2 completely anisotropic group A with typeset(A) = $\{\tau_i | i \ge 0\}$ where $\tau_0 = \text{type}(Z) = \inf\{\tau_i, \tau_i\}$ for $i \ne j$.

- *Proof.* (a) Note that τ_1 is a snarl of every infinite subsequence of T and apply Theorem 1.4.
- (b) If there is a rank-2 group with typeset(A) = $\{\tau_i | i \ge 1\}$ then $IT(A) = type(Z) \notin typeset(A)$. Thus $T_A = (\tau_1, \tau_2, ...)$ since IT(A) is the only type that can be repeated and IT(A) does not appear in T_A . But this contradicts (a).
- (c) For such an A, $T_A = (\tau_0, \tau_1, \tau_2, ...)$ since A is assumed to be completely anisotropic. Once again, τ_1 is a snarl of every infinite subsequence of T_A contradicting Theorem 1.4.

EXAMPLE 1.6. Let $S_1 = \{\tau_i | i \ge 1\}$ be as defined in Example 1.5, $\sigma_0 = \text{type}(Q)$, and $S_2 = \{\sigma_0 - \tau_i | i \ge 1\}$. Then there is no rank-2 group A with $\text{typeset}(A) = S_1$ and $\text{cotypeset}(A) = S_2$ by Example 1.5. On the other hand, S_1 and S_2 satisfy the hypotheses of Theorem 1, Schultz [11]. Thus Schultz's main theorem is incorrect as stated.

2. Realization of type sequences and typesets. In this section the following notation is consistently employed: $T = (\tau_1, \tau_2, ...)$ is a type sequence with $\inf\{\tau_i, \tau_j\} = \operatorname{type}(Z)$ if $i \neq j$; $h_i \in \tau_i$ for all i; $a_i = r_i x + s_i y$ is a denumeration of $U = \{rx + sy \in Zx \oplus Zy \mid r, s \in Z, r \geq 0, \text{ and } \gcd(r, s) = 1\}$; $\det(i, j) = r_i s_j - s_i r_j$; and $\det_p(i, j) = h_p^Z(r_i s_j - s_i r_j)$.

The type sequence T is admissible if there is an indexing of U so that for each i there is an N > 0 such that $h_n(p) = \infty$ for some n > N implies $\det_p(i, n) = h_i(p)$.

Since for each p there is at most one n with $h_n(p) = \infty$, the admissibility of T does not depend on the choice of $h_i \in \tau_i$ or the ordering of T.

LEMMA 2.1. Given $h_i' \in \tau_i$ for each i, there exists $h_i \in \tau_i$ for each i such that $h_i \leq h_i'$ and (a) If j < k and $h_k(p) < \infty$ then $\min\{h_j(p), h_k(p)\} = 0$; and (b) If $h_k(p) < \infty$ and $\det_p(i, k) > 0$ for some i < k then $h_k(p) = 0$.

Proof. Assume h_1, \ldots, h_{n-1} have been chosen such that $h_i \in \tau_i$, $h_i \le h'_i$ and (a) and (b) are satisfied for i, j, k < n. Define $h_n(p) = 0$ if $h'_n(p) < \infty$ and either $0 < h_i(p)$ for some i < n or $\det_p(i, n) > 0$ for some i < n; and define $h_n(p) = h'_n(p)$ otherwise.

Note that there are only finitely many i < n and only a finite number of primes can divide $\det(i, n)$ if $i \ne n$. Furthermore, $h'_n(p) > 0$ and $h_i(p) > 0$ for some i < n can happen for only finitely many p since $\inf\{\tau_n, \tau_i\} = \operatorname{type}(Z)$. Thus $h_n(p) = h'_n(p)$ in case $h'_n(p) = \infty$ and for almost all p, and $h_n(p) \le h'_n(p)$. Therefore $h_n \in \tau_n$ and h_1, \ldots, h_n satisfy (1) and (2). The proof is now complete by induction on n.

LEMMA 2.2. Suppose that $h_i \in \tau_i$ for each i. Define A to be the subgroup of $Qx \oplus Qy$ generated by $\{a_i/p^j|p \text{ is a prime}, 0 \le j \le h_i(p), i = 1, 2, \ldots\}$. Then OT(A) = [h] where $h = \max\{h_i|i \ge 1\}$.

Proof. By Proposition 1.1(a),

$$OT(A) = \sup\{type(A/A_1), type(A/A_2)\},\$$

where A_1 and A_2 are the pure rank-1 subgroups of A generated by x and y, respectively. Since

type
$$(A/A_1)$$
 = type $\langle s_i/p^j \in Q | p$ is a prime, $0 \le j \le h_i(p)$, $i = 1, 2, ... \rangle$,
type (A/A_2) = type $\langle r_i/p^j \in Q | p$ is a prime, $0 \le j \le h_i(p) \rangle$,
and gcd (r_i, s_i) = 1 for each i , the result follows.

LEMMA 2.3. Let p be a prime, and $Zx \oplus Zy \subseteq A \subseteq Qx \oplus Qy$ with $h_p^A(a_i) = 0$ for each i, $B = \langle A \cup \{a_k/p^j | j \le e\} \rangle$ for some k > 0, and $0 < e \le \infty$. Then for each i, $h_p^B(a_i) = \min\{e, \det_p(i, k)\}$.

Proof. Fix i > 0 and assume that $\gcd(p, s_k) = 1$. We first show that $h_p^B(x) = 0$. Suppose that $x/p = a + ca_k/p^l$ for some $a \in A$, $c \in Z$, $0 \le l \le e$, $l < \infty$. Then $x = pa + ca_k/p^{l-1}$ so $ca_k/p^{l-1} \in A$. Thus we may assume that $c/p^{l-1} = c' \in Z$ with $\gcd(c', p) = 1$. By Lemma 1.2, $a = (m/n)a_i$ for some $i \ne k$, $\gcd(m, n) = 1$. Equating coefficients of y gives $0 = (pm/n)s_i + c's_k$. Since $\gcd(c's_k, p) = 1$, p divides n. This contradicts $h_p^A(a_i) = 0$.

The lemma now follows, in this case, from the equation $s_k a_i - s_i a_k = \det(i, k)x$. Indeed, since $h_p^B(x) = 0$ and $\gcd(s_k, p) = 1$,

$$h_p^B(a_i) \ge \min\{e, \det_p(i, k)\}.$$

On the other hand, if p' divides a_i in B, then $l \le e$ by the construction of B, so p' divides a_k in B. Since $h_p^B(x) = 0$, the equation implies p' divides $\det(i, k)$. Hence, $h_p^B(a_i) \le \min\{e, \det_p(i, k)\}$ as desired.

A similar argument shows that if $gcd(p, r_k) = 1$, then $h_p^B(y) = 0$ and again $h_p^B(a_i) = \min\{e, \det_p(i, k)\}$. Since $gcd(r_k, s_k) = 1$, the proof is complete.

LEMMA 2.4. Let p be a prime, $Zx \oplus Zy \subseteq A \subseteq Qx \oplus Qy$ with $h_p^A(a_i) = 0$ for each i, α an irrational p-adic integer and $0 < t \le \infty$. Define

$$B = \left\langle A \cup \left\{ a_i / p^j \middle| p^j \text{ divides } r_i - \alpha s_i \text{ and } j \le t, 1 \le i < \infty \right\} \right\rangle.$$

Then

$$h_p^B(a_i) = \max\{j|p^j \text{ divides } r_i - \alpha s_i \text{ and } j \leq t\} < \infty$$

for each i.

Proof. Given i, let $m = \max\{j \mid p^j \text{ divides } r_i - \alpha s_i \text{ and } j \le t\}$. Note that if p divides $r_i - \alpha s_i$ then $\gcd(s_i, p) = 1$ since $\gcd(s_i, r_i) = 1$. Clearly, $h_p^B(a_i) \ge m$ and $m < \infty$. It therefore suffices to show $h_p^B(a_i)$ is not greater than m. Suppose $(1/p^{m+1})a_i \in B$. Then $1/p^{m+1}a_i = a + \sum_{k=1}^l c_k a_k/p^{e(k)}$, where $a \in A$, $c_k \in Z$, $p^{e(k)}$ divides $r_k - \alpha s_k$ and $e(k) \le t$. Choose $1 \le j \le l$ so that e(j) is maximal among the e(k). Note that

$$s_i a_k = s_k a_j + s_k (r_i - \alpha s_j) x + s_j (\alpha s_k - r_k) x.$$

Since e(j) is maximal and $\gcd(s_j, p) = 1$, this equation implies that each $(c_k/p^{e(k)})a_k$ may be replaced by an expression of the form $b_k + (c'_k/p^{e(j)})a_j$ where $b_k \in A$ and $c'_k \in Z$. Thus we may write $(1/p^{m+1})a_i = a + (c/p^e)a_j$ where $a \in A$, $c \in Z$, p^e divides $r_j - \alpha s_j$ and $e \le t$. This shows that $(1/p^{m+1})a_i$ is in fact an element of the group $A' = A \cup \{a_j/p' | i \le e\}$. By Lemma 2.3, $m+1 \le \min\{e, \det_p(i,j)\}$. In particular, $\det_p(i,j) \ge m+1$. Therefore, p^{m+1} divides $(r_is_j - s_ir_j)$. Since $e \ge m+1$, p^{m+1} divides $(r_j - \alpha s_j)s_i$; thus p^{m+1} divides $r_is_j - \alpha s_js_i$ and p divides s_j . However p divides $s_j - \alpha s_js_j$ so p divides $s_j - \alpha s_js_j$ and $s_j - \alpha s_js_j$. Thus $s_j - \alpha s_js_j - \alpha s_js_j$ is not greater than $s_j - \alpha s_js_j - \alpha s_js_j$.

The next theorem is stated in Dubois [6].

Theorem 2.5. There is a rank-2 group A with $T_A \approx T$ if and only if T is admissible.

Proof. (\Rightarrow) Assume that $Zx \oplus Zy \subseteq A \subseteq Qx \oplus Qy$ and let $a_1 = x$, $a_2 = y$, a_3 ,... be an indexing of U such that $type_A(a_i) = \tau_i$ for each i. Define $h_i = h^A(a_i)$ for each i, let

$$N = \max\{j|h_j(p) = \infty, \inf\{h_1(p), h_2(p)\} > 0\},\$$

and let N=1 if no such j exists. Given i and n>N with $h_n(p)=\infty$, then $h_i(p)=\det_p(n,i)$ since $s_ia_n-s_na_i=\det(n,i)x$ and $r_na_i-r_ia_n=\det(n,i)y$. Note that for this choice of $h_i\in\tau_i$, N does not depend on i.

(\Leftarrow) If T is admissible, choose $h_i \in \tau_i$ satisfying (a) and (b) of Lemma 2.1. Next define $h'_i \le h_i$ by setting $h'_i(p) = 0$ if $h_k(p) = \infty$ for some $k \ne i$ and $h'_i(p) = h_i(p)$ otherwise. Note that h'_i need not be in τ_i . Given p, this

implies (along with (a)) that $h'_i(p) > 0$ for at most one i. Let

$$A(p) = \left\langle (Zx \oplus Zy) \cup \left\{ a_{i}/p^{j} \middle| 0 \le j \le e(i) \right\} \right\rangle$$

if $e(i) = h'_i(p) > 0$ for some i, and let $A(p) = Zx \oplus Zy$ otherwise. Define $A = \sum_p A(p)$. Note that $h_p^A(a_i) = h_p^{A(p)}(a_i)$ for all i and p, so we can apply Lemma 2.3 to show type_A $(a_i) = \tau_i$ for all i as follows:

Let $P_1 = \{ p | h_i'(p) = 0 \text{ for each } i \}$. Then for each $p \in P_1$, $h_p^A(a_i) = 0 = h_i(p)$ for each i.

Let $P_2 = \{ p | h'_k(p) = \infty \text{ for some } k = k(p) \}$. If $p \in P_2$ then $h_p^A(a_i) = \det_p(i, k(p))$ by Lemma 2.3. By the admissibility condition, $h_p^A(a_i) = h_i(p)$ for almost all $p \in P_2$.

Let $P_3 = \{ p \mid 0 < h'_k(p) = h_k(p) < \infty \text{ for some (unique) } k = k(p) \}$. If $p \in P_3$, then

$$h_p^A(a_i) = \min\{h_{k(p)}(p), \det_p(i, k(p))\}.$$

If i = k(p) then $h_p^A(a_i) = h_{k(p)}(p)$. On the other hand, if $i \neq k(p)$ and $\det_p(i, k(p)) > 0$ then k(p) < i by condition (b) on the h_i 's. This implies $h_p^A(a_i) = 0 = h_i(p)$ except for a finite number of p. Thus $h_p^A(a_i) = h_i(p)$ for almost all $p \in P_3$. Consequently, type_A $(a_i) = \tau_i$ for each i as desired.

THEOREM 2.6. Given a rank-2 group A and a type $\sigma \ge OT(A)$, there is a rank-2 group B with $OT(B) = \sigma$ and $T_A = T_B$.

Proof. Assume that $Zx \oplus Zy \subseteq A \subseteq Qx \oplus Qy$. Choose $h \in \sigma$ and $h_i \in \text{type}_A(a_i)$ such that $h \ge h_i$ for each i, and such that the h_i 's satisfy (a) and (b) of Lemma 2.1. Note that $h \ge \max\{h_i | i \ge 1\}$ and that $h(p) = \infty$ for all p in $P_\infty = \{p | h_k(p) = \infty \text{ for some } k\}$. In view of Theorem 2.5, it suffices to assume that $A = \sum_p B(p)$, where

$$B(p) = \langle Zx \oplus Zy \cup \{a_i/p' | 0 \le j \le h'_i(p), i = 1, 2, \dots \} \rangle,$$

 $h_i'(p) = 0$ if $p \in P_\infty$ and $h_i(p) < \infty$, $h_i'(p) = h_i(p)$ otherwise. Thus, $\min\{h_i'(p), h_j'(p)\} = 0$ for each p and $i \neq j$. We will construct B using Lemma 2.4. This involves choosing an index k = k(p) and a p-adic integer $\alpha = \alpha(p)$ for an appropriate collection of primes p.

First consider $P_1 = \{p \mid h(p) > 0 \text{ and } h_i(p) = 0 \text{ for all } i\}$. Write $P_1 = \{q(1), q(2), \ldots\}$ with q(i) < q(i+1). For each $p = q(t) \in P_1$, let k(p) = t, and let $\alpha(p)$ be an irrational p-adic integer such that p does not divide $r_i - \alpha(p)s_i$ for $i \le t$.

Next consider $P_2 = \{ p \mid 0 < h'_k(p) < h(p) \le \infty \text{ for some (unique)}$ $k = k(p) \}$. Assume $\gcd(s_k, p) = 1$ and choose an irrational p-adic integer $\alpha = \alpha(p)$ with p-height $(r_k - \alpha s_k) = h'_k(p)$. (If p divides s_k , then $\gcd(r_k, p) = 1$ and the roles of s and r may be reversed in the proof. For example, α would be chosen so that p-height $(\alpha r_k - s_k) = h'_k(p)$.)

Denote $P_3 = P_1 \cup P_2$. For $p \in P_3$, let k = k(p), $\alpha = \alpha(p)$, and let

$$A(p) = \langle Zx \oplus Zy \cup \{a_i/p^j | p^j \text{ divides } r_i - \alpha s_i \text{ and } j \leq h(p)\} \rangle.$$

By Lemma 2.4, $h_p^{A(p)}(a_i) < \infty$ for each *i*. Moreover, if $p \in P_2$ and $h_p^{A(p)}(a_i) > 0$, then *p* divides $r_i - \alpha s_i$, and hence

(*)
$$p \text{ divides } s_k(r_i - \alpha s_i) - s_i(r_k - \alpha s_k) = s_k r_i - s_i r_k = \det(i, k).$$

Define $B = \Sigma\{A(p) \mid p \in P_3\} + \Sigma\{B(p) \mid p \notin P_3\}$. Then $h_p^B(a_i) = h_p^{A(p)}(a_i)$ for each i and $p \in P_3$. By Lemma 2.2, OT(B) and σ agree on P_3 , and therefore OT(B) = σ . To see that $\operatorname{type}_A(a_i) = \operatorname{type}_B(a_i)$, first note that if p = q(t) is an element of P_1 , then for $i \le t$, $h_p^B(a_i) = 0$ by Lemma 2.4 and the choice of $\alpha(p)$. Thus $\operatorname{type}_A(a_i)$ and $\operatorname{type}_B(a_i)$ agree on P_1 . Next let $p \in P_2$. If i = k(p), then

$$h_p^B(a_i) = \max\{j|p^j \text{ divides } r_i - \alpha(p)s_i \text{ and } j \le h(p)\}$$
$$= h_i(p) = h_i'(p)$$

by Lemma 2.4 (since $h_{k(p)}(p) < h(p)$). Moreover, as in the proof of Theorem 2.5, $h_p^A(a_i) = h_i'(p)$, so that $h_p^B(a_i) = h_p^A(a_i)$ in this case. On the other hand, if $i \neq k(p)$ and $h_p^B(a_i) > 0$, then p divides $\det(i, k(p))$ as shown above (*). By condition (b), this happens only if k(p) > i, since $0 < h_{k(p)}(p) < \infty$. Thus, $i \neq k(p)$ and $h_p^B(a_i) > 0$ can happen for at most finitely many $p \in P_2$, and $h_p^A(a_i) = h_p^B(a_i)$ for almost all $p \in P_2$. It follows that $\operatorname{type}_A(a_i) = \operatorname{type}_B(a_i)$.

LEMMA 2.7 (Dubois [5]). Let $T' = (\tau'_1, \tau'_2, ...)$ be a type sequence with $type(Z) = \inf\{\tau'_i, \tau'_j\}$ whenever $i \neq j$. Assume that T' has an infinite subsequence T'_0 with no snarls of T'_0 in T'. Then there is a type sequence $T = (\tau_1, \tau_2, ...)$ and $h_i \in \tau_i$ for each i such that $T \approx T'$ and

- (a) If p_i is the ith prime, then $h_i(p_i) = 0$ whenever $j \ge 2i$.
- (b) If $K = \{k \mid \text{for each } p \text{ either } h_k(p) < \infty \text{ or else } h_k(p) = \infty \text{ and there is no } j < k \text{ with } 0 < h_j(p) < h_k(p) = \infty \} \text{ then } \{k \mid \tau_k' \in T_0'\} \subseteq K \text{ so that } K \text{ is infinite.}$

Proof. (a) Let T_1 be the subsequence of types in T' with an infinity at some p and let T_2 be the complement of T_1 in T'. Order the elements of T_1

so that if $\tau_i' = [h_i']$, $\tau_j' = [h_j']$ are elements of T_1 and min $\{p \mid h_i'(p) = \infty\}$ $< \min\{p \mid h_j'(p) = \infty\}$ then $\tau_i' \le \tau_j'$. Let T be the type sequence defined by:

 $\tau_{2i} = i$ th element in T_2 (if it exists) $\tau_{2i-1} = i$ th element in T_1 (if it exists)

If either T_1 or T_2 is finite, use the elements of the infinite sequence when the elements of the finite sequence are exhausted and if both are finite, use type(Z). By Lemma 2.1.a there is $h_i \in \tau_i$ for each i so that if $h_i(p) > 0$ and j > i, then $h_i(p) = 0$ or ∞ . It follows that (a) is satisfied by $T \approx T'$.

(b) It suffices to assume that for each j, $\{p \mid 0 < h_j(p) < h_k(p) = \infty$ for some $\tau_k' \in T_0'\}$ is empty, since τ_j is not a snarl of T_0' and setting $h_j(p) = 0$ for only finitely many p with $h_j(p) < \infty$ does not change the type of h_j . Consequently, $\{k \mid \tau_k' \in T_0'\} \subseteq K$ and K is infinite. Note that (a) is still satisfied.

LEMMA 2.8. Suppose that $(r_1, s_1), (r_2, s_2), \ldots, (r_n, s_n)$ are distinct elements of $U; q_1, q_2, \ldots, q_m$ distinct primes with each $q_j > n$ and $\det_q(i, l) = 0$ for $q = q_j$, $1 \le i \ne l \le n$, and $1 \le j \le m$; e_1, e_2, \ldots, e_m non-negative integers; and $\{i_1, i_2, \ldots, i_m\} \subseteq \{1, 2, \ldots, n\}$. Then there are infinitely many (r, s) in U such that

(*) if
$$1 \le j \le m$$
 and $q = q_j$ then $h_q^Z(rs_i - r_i s) = 0$ for $1 \le i$ $\ne i_j \le n$ and $h_q^Z(rs_i - r_i s) = e_j$ for $i = i_j$.

Proof. The proof is by induction on m. Suppose that m=1. Let $i=i_1,\ q=q_1$ and $e=e_1$. First assume that e=0. For each i with $1 \le i \le n$, there is at most one t with $1 \le t \le q$ such that q divides ts_i-r_i . Indeed, if q divides ts_i-r_i and q divides $t's_i-r_i$, then q divides $(t-t')s_i$ so that t=t' or q divides s_i . The latter case is impossible since $\gcd(r_i,s_i)=1$. Since n < q, there must exist some $1 \le t \le q$, such that $h_q^Z(ts_i-r_i)=0$ for each i. In this case $(r,s)=(t,1)\in U$ satisfies (*). Next assume that e>0. Choose $(r,s)\in U$ with $rs_i-r_is=q^e$. Then $h_q^Z(rs_i-r_is)=0$ whenever $1 \le i \ne l \le n$, otherwise $\det_q(i,l)=h_q^Z(r_is_l-r_is_i)>0$, which is impossible. Hence (r,s) satisfies (*). Given $(r,s)\in U$ satisfying (*) let $x'=r+aq^{e+1},\ y'=s+bq^{e+1},\ d=\gcd(x',y'),\ x=x'/d$ and y=y'/d. Then $(x,y)\in U$ and there are infinitely many such (x,y) which satisfy (*).

Now assume inductively that $(r', s') \in U$ satisfies (*) for $1 \le j < m$. Let $i = i_m$, $q = q_m$, $e = e_m$, and let π be the product of $\{q_j^{n(j)} | 1 \le j \le m - 1, n(j) = e_j + 1\}$. Assume that e = 0. Since n < q there is $1 \le t \le q$ such that $h_q^Z((r' + t\pi)s_l - s'r_l) = 0$ for each $1 \le l \le n$ (as above). Let $r = (r' + t\pi)/d$, s = s'/d, where $d = \gcd(r' + t\pi, s')$. Then $(r, s) \in U$ satisfies (*) since if $p = q_i \neq q$ then

$$h_p^Z((r'+t\pi)s_l - s'r_l) = h_p^Z(r's_l - s'r_l)$$
 for each $1 \le l \le n$.

Next assume that $e \neq 0$. Choose $a, b \in Z$ with $ar_i + bs_i = 1$. By the Chinese Remainder Theorem there is $x \geq 0$, y in Z with $x \equiv r' \pmod{\pi}$, $x \equiv bqe + r_i \pmod{q^{e+1}}$ and $y \equiv s' \pmod{\pi}$, $y \equiv -aq^e + s_i \pmod{q^{e+1}}$. Then $h_q^Z(xs_i - r_iy) = e$, $h_q^Z(xs_i - r_iy) = 0$ if $l \neq i$, and if $p = q_j \neq q$ then $h_p^Z(xs_i - r_iy) = h_p^Z(r's_i - r_is')$. Consequently, $(r, s) \in U$ satisfies (*), where r = x/d, s = y/d and $d = \gcd(x, y)$.

If $x' = r + u\pi q^{e+1}$, $y' = s + v\pi q^{e+1}$, $d = \gcd(x', y')$, r' = x'/d, and s' = y'/d then $(r', s') \in U$ and there are infinitely many such (r', s') satisfying (*). By induction on m, the proof is complete.

A type τ is very large if $h \in \tau$ implies that $\{p \mid h(p) = \infty\}$ is infinite.

THEOREM 2.9. Suppose that $T = (\tau_1, \tau_2,...)$ is a type sequence having an infinite subsequence T_0 with no snarls in T and that $type(Z) = \inf\{\tau_i, \tau_j\}$ whenever $i \neq j$.

- (a) There is a rank-2 group A with $\mathrm{IT}(A)=\mathrm{type}(Z)$ and $T_A=(\tau_1',\tau_2',\ldots)$, where $\tau_i'\geq \tau_i$ for each i and if $h_i'\in \tau_i'$, $h_i\in \tau_i$ then $h_i'(p)=\infty$ iff $h_i(p)=\infty$.
- (b) If $\{\tau_j | \tau_j \text{ very large}\}$ has no snarls in T then A may be chosen with $T_A \approx T$.

Proof. (a) By Lemmas 2.7 and 2.1 it suffices to assume that there is $h_i \in \tau_i$ for each i such that if j < k then $\inf\{h_j(p), h_k(p)\} = 0$ unless $h_k(p) = \infty$; $\{k \mid \tau_k \in T_0\} \subseteq K = \{k \mid \text{ for each } p \text{ either } h_k(p) < \infty \text{ or else } h_k(p) = \infty \text{ and there is no } j \text{ with } 0 < h_j(p) < h_k(p) = \infty\}$; and $h_j(p_i) = 0$ whenever $j \ge 2i$ and p_i is the ith prime.

To construct an indexing of U, via Lemma 2.8, let $u_1 = (1,0)$ and $u_2 = (0,1)$.

If $k \ge 3$ and $k \in K$ choose $u_k = (r_k, s_k) \in U$ with $\max\{r_k, |s_k|\}$ minimal among the elements of U not already chosen.

If $k \ge 3$, $k \notin K$, and τ_k is not very large let $\{q_1, q_2, \ldots, q_m\} = \{p \mid h_k(p) = \infty\}$; $e_j = h_l(q_j)$ and $i_j = l$ if $0 < h_l(q_j)$; $e_j = 0$ and $i_j = l$ for some arbitrary l < k if $h_i(q_j) = 0$ for all $1 \le i < k$; and let n_k be the largest integer less than k such that $q_j > n_k$ and $\det_{q_j}(i, l) = 0$ whenever $1 \le i \ne l \le n_k$ and $1 \le j \le m$. By Lemma 2.8, there is $u_k = (r_k, s_k) \in U$, not already chosen, such that $h_i(p) = \det_p(k, i)$ whenever $p \in \{q_1, q_2, \ldots, q_m\}$ and $1 \le i \le n_k$.

If $k \ge 3$, $k \notin K$, and τ_k is very large let $\{q_1, q_2, \ldots, q_m\} = \{p \mid 0 < h_j(p) < h_k(p) = \infty$ for some $j < k\}$; $e_j = h_l(q_j)$ and $i_j = l$ if $0 < h_l(q_j)$; and let n_k be the largest integer less than k such that $q_j > n_k$ and $\det_{q_j}(i, l) = 0$ whenever $1 \le i \ne l \le n_k$ and $1 \le j \le m$. By Lemma 2.8 there is $u_k = (r_k, s_k) \in U$, not already chosen, such that $h_i(p) = \det_{p}(k, i)$ whenever $p \in \{q_1, q_2, \ldots, q_m\}$ and $1 \le i \le n_k$.

Since K is infinite, every element of U is chosen. Moreover, if $k \in K$ then $\max\{r_k, |s_k|\} \le k$, since only k-1 elements of U have previously been chosen.

For each j define $\tau_j' = [h_j']$, where $h_j'(p) = \det_p(k, j)$ whenever $0 = h_j(p) < \det_p(k, j) < h_k(p) = \infty$ for some $j < k \notin K$ with τ_k very large, and define $h_j'(p) = h_j(p)$ otherwise. Note that $\tau_j' \ge \tau_j$ and $h_j'(p) = \infty$ iff $h_j(p) = \infty$.

By Theorem 2.5, it is sufficient to prove that $T' = (\tau'_1, \tau'_2, ...)$ is admissible relative to the chosen ordering of U. Fix j and let $m = \max\{r_j, |s_j|\}$.

Let $P_1 = \{ p \mid 0 = h'_j(p) < \det_p(k, j) < h'_k(p) = \infty \text{ for some } k \in K \}$. If $p = p_i \in P_1$ then p_i divides $\det(k, j)$ while $\det(k, j) \le 2mk \le 4mi$, since $k \in K$ and $h_k(p_i) = \infty$ implies that $k \le 2i$. By Lemma 0.1.b, $p_i > 4mi$ for sufficiently large i, so that P_1 is finite.

Next let $P_2 = \{p \mid h_j'(p) \neq \det_p(j, k) < h_k'(p) = \infty, \tau_k \text{ not very large, } j < k \notin K\}$. By the choice of $u_k = (r_k, s_k) \in U$, $j > n_k$ for each such k. Assume that P_2 is infinite. Then there are infinitely many $j < k \notin K$ with $j > n_k$, $\inf\{p \mid h_k(p) = \infty\} > j$ (noting that for each p there is at most one i with $h_i(p) = \infty$), and $h_j(p) \neq \det_p(j, k) < h_k(p) = \infty$ for some $p \in P_2$. For each such k, there is $1 \le i \ne l \le j$ with $0 < \det_p(i, l) < h_k(p) = \infty$ for some p, otherwise $j \le n_k$ by the definition of u_k . But

$$\{p \mid \det_p(i, l) > 0 \text{ for some } 1 \le i \ne l \le j\}$$

is finite, which is a contradiction.

Finally, $P_3 = \{ p | h'_j(p) \neq \det_p(j, k) < h'_k(p) = \infty \text{ for some } j < k \notin K, \tau_k \text{ very large} \}$ is empty by the definition of h'_j . Thus $P_1 \cup P_2 \cup P_3$ is finite so that T' is admissible.

(b) Note that $T_0 \cup \{\tau_j | \tau_j \text{ very large}\}$ generates an infinite subsequence of T with no snarls in T. Now apply the constructions of (a), noting that if $k \notin K$ then τ_k is not very large so that $h'_j = h_j$ for each j.

COROLLARY 2.10. Let S be a set of types with $\inf\{\tau, \tau'\} = \operatorname{type}(Z)$ whenever $\tau, \tau' \in S$ with $\tau \neq \tau'$. Assume that $\{\tau \in S \mid \tau \text{ is very large}\}$ has no snarls in S.

- (a) There is a rank-2 group A with typeset(A) = S iff either type(Z) \in S or else S has an infinite subset with no snarls in S.
- (b) There is a completely anisotropic rank-2 A with typeset(A) = S iff S has an infinite subset with no snarls in S.
- *Proof.* (a) (\Rightarrow) Let $T_A = (\tau_1, \tau_2, \ldots)$. By Theorem 1.4, T_A has an infinite subsequence with no snarls in T_A . If $S = \{\tau_i | i \ge 1\} = \text{typeset}(A)$ does not have an infinite subset with no snarls in S then some τ_i must be repeated in T_A . But IT(A) = type(Z) is the only type in T_A that may be repeated so that $\text{type}(Z) \in S$.
- (\Leftarrow) If S has an infinite subset with no snarls in S define $T = (\tau_1, \tau_2, \ldots)$ where $S = \{\tau_i | i \ge 1\}$. Otherwise $\operatorname{type}(Z) \in S$, and in this case define $T = (\tau_1', \tau_2', \ldots)$ where $\tau_{2i-1}' = \tau_i$, $\tau_{2i}' = \operatorname{type}(Z)$ for $i \ge 1$ if S is infinite. If $S = \{\tau_1, \tau_2, \ldots, \tau_n\}$ is finite define $\tau_{2i}' = \operatorname{type}(Z)$, $\tau_{2i-1}' = \tau_i$ for $1 \le i \le n$ and $\tau_i' = \tau_{2i-1}' = \operatorname{type}(Z)$ for i > n. For each of the above cases, T has an infinite subset with no snarls in T. By Theorem 2.9 there is a rank-2 group A with $T_A \approx T$ so that $\operatorname{typeset}(A) = S$.
- (b) is a consequence of (a) and the fact that A is completely anisotropic iff T_A has no repetitions.

COROLLARY 2.11. Let $S_1 = \{\tau_1, \tau_2, ...\}$ be a set of types with $\inf\{\tau_i, \tau_j\}$ = type(Z) whenever $i \neq j$, and assume that $\{\tau_j | \tau_j \text{ is very large}\}$ has no snarls in S_1 . Let $S_2 = (\sigma_1, \sigma_2, ...)$ be another set of types. Then there is a rank-2 group A with typeset(A) = S_1 and cotypeset(A) = S_2 if and only if

- (a) There is a type σ_0 such that $\sigma_0 = \sup{\{\sigma_i, \sigma_j\}}$ for $i \neq j$;
- (b) $\tau_i \leq \sigma_0$ for each i;
- (c) $\sigma_i = \sigma_0 \tau_i$ for each i; and
- (d) Either type(Z) $\in S_1$ or else S_1 has an infinite subset with no snarls in S_1 .

Proof. (\Rightarrow) Apply Proposition 1.1 and Corollary 2.10.

(\Leftarrow) In view of (d), Theorem 2.9 can be applied to obtain a group B such that typeset(B) = S_1 . Furthermore, B can be assumed to satisfy $OT(B) \le \sigma_0$ by (b) and Lemma 2.2. By Theorem 2.6, there is a rank-2 group A such that typeset(A) = typeset(B) and $OT(A) = \sigma_0$. By (c) and Proposition 1.1(e), cotypeset(A) = $\{\sigma_1, \sigma_2, \ldots\} = S_2$.

EXAMPLE 2.12. Let τ_i for $i \ge 1$ be defined as in Example 1.5. Let $S = \{\tau_i | i \ge 1\} \cup \{\text{type}(Z)\}$. Then there is a rank-2 group A with typeset(A) = S, by Corollary 2.10.a. On the other hand, by Corollary 2.10.b there is no completely anisotropic rank-2 group A with typeset(A) = S (compare Example 1.5).

EXAMPLE 2.13. (Ito [9].) Let $\tau_1, \tau_2,...$ be given by $\tau_i = [h_i]$, where $h_1 = (0, 1, 0, 1, 0, 1, ...)$; $h_2 = (\infty, 0, 0, ...)$; $h_3 = (0, \infty, 0, ...)$; $h_4 = (0, 0, \infty, ...)$;.... Let $S = \{\tau_i | i \ge 1\}$. Then $\{\tau_{2i} | i \ge 1\}$ is an infinite subset of S with no snarls in S. By Corollary 2.10(b), there is a completely anisotropic rank-2 group A with typeset(A) = S. Similarly, there is a completely anisotropic rank-2 group A with typeset(A) = S \cup {type(Z)}.

COROLLARY 2.14. Let $S = \{\tau_i | i \ge 1\}$ be a set of types with $\tau_0 = \inf\{\tau_i, \tau_i\}$ whenever $i \ne j$.

- (a) (Beaumont-Pierce [3]) If S is finite and $\tau_0 \in S$ then there is a rank-2 group A with typeset(A) = S.
- (b) (Ito [9]) If there is $h_i \in \tau_i$ for $i \ge 0$ with $h_0 = \inf\{h_i, h_j\}$ for each $i \ne j$ then there is a rank-2 group A with typeset(A) = S and $OT(A) = [\sup\{h_i | i \ge 1\}]$.

Proof. By Lemma 1.3, it suffices to assume that $\tau_0 = \text{type}(Z)$. In either case S has no snarls in S. Now apply Corollary 2.10 to get a rank-2 group A with typeset(A) = S. This group is constructed via Theorem 2.9 so that $OT(A) \leq [\sup\{h_i | i \geq 1\}]$. By Theorem 2.6, A may be chosen with $OT(A) = \sup\{\{h_i | i \geq 1\}\}$.

The next example shows that the hypothesis of Corollary 2.10 that $\{\tau \in S \mid \tau \text{ is very large}\}\$ has no snarls in S is not necessary.

EXAMPLE 2.15. There is a rank-2 group A such that IT(A) = type(Z) and $\{\tau | \tau \in typeset(A) \text{ and } \tau \text{ very large}\}$ is infinite with infinitely many snarls in typeset(A).

Proof. Let
$$S = \{\tau_i | i \ge 1\}$$
 where $\tau_i = [h_i]$ and h_i is defined by:
$$h_1 = (1, 1, 1, ..., \infty, \infty, \infty, ..., 0, 0, 0, ..., 0, 0, 0, ..., 0, 0, 0, ...)$$
$$h_2 = (\infty, 0, 0, ..., 0, 0, 0, ..., 1, 1, 1, ..., \infty, \infty, \infty, ..., 0, 0, 0, ...)$$
$$h_3 = (0, \infty, 0, ..., 0, 0, 0, ..., \infty, 0, 0, ..., 0, 0, 0, ..., 1, 1, 1, ...), \text{ etc.}$$

Apply Theorem 2.9(a) to obtain a rank-2 group A with typeset(A) = $\{\tau'_i | i \ge 1\}$, $\tau'_i \ge \tau_i$ for each i, and $\{\tau | \tau \in \text{typeset}(A) \text{ and } \tau \text{ very large}\}$ is infinite with infinitely many snarls in typeset(A).

3. Realization of cotypesets.

THEOREM 3.1 (Vinsonhaler-Wickless [12]). Let $S = \{\sigma_1, \sigma_2, ...\}$ be a set of types with $\sigma_0 = \sup\{\sigma_i, \sigma_j\}$ for each $i \neq j$ and $\sigma_0 \in S$ if S is finite.

(a) There is $s_i \in \sigma_i$ for $i \ge 0$ such that $s_0 = \max\{s_i, s_j\}$ if $i \ne j$.

(b) There is a rank-2 group A with cotypeset(A) = S, $OT(A) = \sigma_0$, $IT(A) = [\inf\{s, |i \ge 1\}]$, and $typeset(A) = \{\sigma_0 - \sigma_i + IT(A) | i \ge 1\}$.

Proof. The following proof is a simplification of the arguments given in Vinsonhaler-Wickless [12].

- (a) Given $s_0, s_1, \ldots, s_{n-1}$ with $s_i \in \sigma_i$ for $0 \le i \le n-1$ and $s_0 = \max\{s_i, s_j\}$ for $1 \le i \ne j \le n-1$ choose $s_n \in \sigma_n$ with $s_0 = \sup\{s_i, s_n\}$ for $1 \le i \le n-1$.
- (b) Define $t'_0 = \min\{s_i | i \ge 1\}$, $\tau'_0 = [t'_0]$, and $\gamma_i = \sigma_i \tau'_0$ for $i \ge 0$. Note that $\gamma_i = [s_i - t'_0]$ for each $i \ge 0$. Now $\Gamma = \{\gamma_1, \gamma_2, ...\}$ with $\gamma_0 = \sup\{\gamma_i, \gamma_j\}$ if $i \ne j$ and $\gamma_0 \in \Gamma$ if Γ is finite. Define $\tau_i = \gamma_0 - \gamma_i$ for $i \ge 0$.

The next step is to show that there is a rank-2 group B with typeset(B) = $\{\tau_i | i \ge 1\}$ and cotypeset(B) = Γ . For each i, let $t_i = (s_0 - t_0') - (s_i - t_0') \in \tau_i = \gamma_0 - \gamma_i$. Note that:

- (i) if $t_i(p) = \infty$ then $s_0(p) = \infty$, $t_0'(p) < \infty$, and $s_i(p) < \infty$.
- (ii) if $0 < t_1(p) < \infty$ then $s_0(p) < \infty$.
- (iii) $t_i(p) = s_0(p) s_i(p)$.
- (iv) $\inf\{t_i, t_j\} = 0$ whenever $i \neq j$.

By (iv) and Corollary 2.14.b there is a rank-2 group B with typeset(B) = $\{\tau_i | i \ge 1\}$, OT(B) = [sup $\{t_i | i \ge 1\}$], and IT(B) = τ_0 = type(Z). By (iii), sup $\{t_i | i \ge 1\}$ = $s_0 - t_0'$ so that OT(B) = γ_0 . Therefore, cotypeset(B) = $\{\gamma_0 - \tau_i | i \ge 1\}$ by Proposition 1.1.e.

Furthermore, $\gamma_0 - \tau_i = \gamma_i$ for each $i \ge 0$. To see this, note that $\gamma_0 - \tau_i = [(s_0 - t'_0) - (s_0 - s_i)]$, by (iii), and $\gamma_i = [s_i - t'_0]$. The only non-trivial case is $t'_0(p) \le s_i(p) < s_0(p) = \infty$, in which case $s_j(p) = s_0(p)$ for $j \ne i$ (by (a)), $t'_0(p) = s_i(p)$, and $(s_0(p) - t'_0(p)) - (s_0(p) - s_i(p)) = 0 = s_i(p) - t'_0(p)$. Consequently, cotypeset(B) = $\{\gamma_i | i \ge 1\}$.

By Lemma 1.3, there is a rank-2 group A with typeset(A) = $\{\tau_i + \tau_0' | i \ge 1\}$, IT(A) = τ_0' , cotypeset(A) = $\{\gamma_i + \tau_0' | i \ge 1\}$ = S, and OT(A) = $\gamma_0 + \tau_0' = \sigma_0$. Finally, $\tau_i + \tau_0' = \sigma_0 - \sigma_i + \tau_0'$ by (iii).

COROLLARY 3.2. Let $S = \{\sigma_1, \sigma_2, ...\}$ be a set of types. There is a rank-2 group A with cotypeset(A) = S iff there is $\sigma_0 = \sup\{\sigma_i, \sigma_j\}$ whenever $i \neq j$ and $\sigma_0 \in S$ if S is finite.

REMARK. Vinsonhaler-Wickless [12] have given necessary and sufficient conditions for a set of types to be the cotypeset of a finite rank torsion free group, with Corollary 3.2 as a special case.

4. Locally completely decomposable groups. A finite rank torsion free group A is locally completely decomposable if $A_p = Z_p \otimes_Z A$ is the

direct sum of a free Z_p -module and a divisible Z_p -module for each prime p, where Z_p is the localization of Z at p.

Let A be a finite rank torsion free group. Recall that $typeset(A) = \{type(X) | X \text{ is a pure rank-1 subgroup of } A\}$ and $cotypeset(A) = \{type(Y) | Y \text{ is a rank-1 torsion free quotient of } A\}$.

THEOREM 4.1. Assume that A is a finite rank torsion free group.

- (a) There is a finite rank torsion free locally completely decomposable group B with $B \subseteq A$, A/B torsion, and typeset(B) = typeset(A).
- (b) (Vinsonhaler-Wickless [12]). There is a finite rank torsion free locally completely decomposable group B with $A \subseteq B$, B/A torsion, and cotypeset(A) = cotypeset(B).
- (c) Further assume that $\operatorname{rank}(A) = 2$, $\operatorname{typeset}(A) = \{\tau_i | i \ge 1\}$, $h_i \in \tau_i$ for each i and $s_0 \in \operatorname{OT}(A)$. Then A is locally completely decomposable iff whenever $s_0(p) = \infty$ then $h_i(p) = \infty$ for some i.

Proof. (a) Let $A_1, A_2,...$ be a listing of the pure rank-1 subgroups of A, let p_i be the *i*th prime and choose a free subgroup F of A with A/F torsion.

Define $B_{p_i} = F_{p_i} + d(A_{p_i}) + (A_1)_{p_i} + \cdots + (A_i)_{p_i}$ where $d(A_p)$ is the maximal divisible Z_p -submodule of A_p . Define $B = \bigcap_p B_p$. Then $F = \bigcap_p F_p \subseteq B \subseteq A = \bigcap_p A_p$ and A/B is torsion. Let $X = A_i$. Then $X_p \subseteq B_p$ for almost all p. If $X_p \simeq Q$ then $X_p \subseteq d(A_p) \subseteq B_p$. Otherwise, $X_p/(X_p \cap B_p)$ is finite. Hence $X/X \cap B$ is finite since $(X/X \cap B)_p \cong X_p/X_p \cap B_p = 0$ for almost all p and $X_p/(X_p \cap B_p)$ is finite otherwise. Consequently, $X \cong X \cap B$ and so typeset(A) = typeset(B). Finally, B is locally completely decomposable since for each p, $B_p/d(B_p)$ is a finitely generated free Z_p -module.

(b) The following is a rank-2 version of the proof in Vinsonhaler-Wickless [13]. Define

$$B = \bigcap \{f^{-1}f(A)|f \in \text{Hom}(QA,Q)\} \subseteq QA = Q \otimes_Z A$$

where A is regarded as a subgroup of QA. Then $A \subseteq B \subseteq QA$ and B/A is torsion. Suppose that $g(A) = Y \subseteq Q$ for some $g: A \to Q$. Then $g: QA \to Q$ and $g(A) \subseteq g(B) \subseteq g(g^{-1}g(A)) = g(A)$. Conversely, if $g(B) = Y \subseteq Q$ for some $g: B \to Q$ then $g: QA \to Q$ since QA = QB and $g(A) \subseteq g(B) \subseteq g(g^{-1}g(A)) = g(A)$. Consequently, cotypeset(A) = cotypeset(B), noting that each rank-1 torsion free group is isomorphic to a subgroup of Q.

To show that B is locally completely decomposable suppose that $B_p = X \oplus Y$ where X has no rank-1 summands and Y is the direct sum of a free and a divisible Z_p -module. Let $0 \neq f \in \text{Hom}(QA, Q)$. If $f(X) \neq 0$,

then $f(X) = Q = f(B_p)$, since otherwise $f(X) \simeq Z_p$ and X has no rank-1 summands. But Ker f is divisible so $B_p \subseteq f^{-1}f(B_p) = \operatorname{Ker} f \oplus H$ where $f(H) = f(B_p) = Q$. Thus H is divisible so that $f^{-1}f(B_p) = f^{-1}f(A_p) = QA \supseteq QX$ in this case. Now assume that f(X) = 0. Then $QX \subseteq \operatorname{Ker} f \subseteq f^{-1}f(A_p)$. Thus, $QX \subseteq f^{-1}f(A_p)$ for all $f \in \operatorname{Hom}(QA, Q)$. But

$$B_p = \left(\bigcap \left\{ f^{-1} f(A) \middle| f \in \text{Hom}(QA, Q) \right\} \right)_p$$
$$= \bigcap \left\{ f^{-1} f(A_p) \middle| f \in \text{Hom}(QA, Q) \right\} \supseteq QX$$

so that QX = X is divisible. Since X has no rank-1 summands, X = 0 as desired.

- (c) (\Rightarrow) Let $A_p = X_1 \oplus X_2$. Then there are pure rank-1 subgroups A_i of A with $(A_i)_p = X_i$. If $s_0(p) = \infty$ then $(A/A_i)_p \approx Q$ for some i, say i = 1. But $(A/A_1)_p \approx A_p/(A_1)_p \approx X_2$ so that $X_2 \approx Q$ and A_2 is p-divisible. Therefore, for some k, $\tau_k = \text{typeset}(A_2)$ and if $h_k \in \tau_k$ then $h_k(p) = \infty$.
- (⇐) Assume that $s_0(p) < \infty$ and that A_i is a pure rank-1 subgroup of A. Then $0 \to (A_i)_p \to A_p \to (A/A_i)_p \to 0$ is exact with $(A/A_i)_p \simeq Z_p$ since $\operatorname{type}(A/A_1) \leq \operatorname{OT}(A)$. Thus $A_p \simeq Z_p \oplus (A_i)_p$ is completely decomposable. Now assume that $s_0(p) = \infty = h_i(p)$. Let A_i be a pure rank-1 subgroup of A with $\tau_i = \operatorname{type}(A_i)$. Then $(A_i)_p \simeq Q$ so that $A_p \simeq Q \oplus (A/A_i)_p$ is completely decomposable as desired.

REMARK. In view of Theorem 4.1(c), each rank-2 group constructed in Theorem 2.5 is locally completely decomposable, noting that the $h_i \in \tau_i$ in this construction are chosen to satisfy (a) of Lemma 2.1.

COROLLARY 4.2. Let $S_1 = \{\tau_1, \tau_2, ...\}$ be a set of types with $\inf\{\tau_i, \tau_j\}$ = type(Z) whenever $i \neq j$ and assume that $\{\tau_j | \tau_j \text{ very large}\}$ has no snarls in S_1 . Let $S_2 = \{\sigma_1, \sigma_2, ...\}$ be another set of types. Then there is a rank-2 locally complete decomposable group A with typeset(A) = S_1 and cotypeset(A) = S_2 iff

- (a) There is a type σ_0 such that $\sigma_0 = \sup{\{\sigma_i, \sigma_i\}}$ for $i \neq j$;
- (b) $\tau_i \leq \sigma_0$ for each i;
- (c) $\sigma_i = \sigma_0 \tau_i$ for each i;
- (d) Either type(Z) $\in S_1$ or else S_1 has an infinite subset with no snarls in S_1 ;
- (e) If $s_0 \in \sigma_0$, $h_i \in \tau_i$ for each i, and $s_0(p) = \infty$ then $h_i(p) = \infty$ for some i.

Proof. A consequence of Corollary 2.11, Theorem 4.1(c), and the preceding remark.

5. Open questions.

(5.1) Is it true that Corollaries 2.10 and 2.11 are true without the hypothesis that $\{\tau \in S \mid \tau \text{ is very large}\}\$ has no snarls in S?

As noted earlier, Example 2.15 shows that this hypothesis is not necessary. In fact, it is unknown whether or not the set S of types in Example 2.15 may be realized as the typeset of a rank-2 group.

The construction of Theorem 2.9 uses Lemma 2.8. Consequently, some strengthened, possibly infinite, version of Lemma 2.8 would be needed to make the construction of Theorem 2.9 work without the hypothesis that $\{\tau_i | \tau_i \text{ very large}\}$ has no snarls in T.

(5.2) Are the results of the paper true for modules over an arbitrary principal ideal domain?

The results of this paper use a version of the prime number theorem (Lemma 0.1(b)) which is not applicable for arbitrary principal ideal domains. De Munter-Kuyl [4], claims that Ito's Theorem (Corollary 2.14(b)) is true for arbitrary principal ideal domains. However, the construction is incorrect, even in the case of groups. For example, the construction fails for a set of types = $\{\tau_i | i \ge 1\}$ where $\tau_i = [h_i]$ and $h_1 = (\infty, 0, \ldots), h_2 = (0, \infty, 0, \ldots), h_3 = (0, 0, \infty, \ldots), \ldots$, even though Ito's theorem is true for groups.

The answer to (5.2) may depend on:

(5.3) Can the results of this paper be proved without appealing to some version of the prime number theorem?

REFERENCES

- [1] D. Arnold, *Pure Subgroups of Finite Rank Completely Decomposable Groups*, Proceedings of Oberwolfach Abelian group theory conference, Springer-Verlag Lecture Notes in Mathematics **874** (1981), 1–28.
- [2] _____, Finite Rank Torsion Free Groups and Rings, Springer-Verlag Lecture Notes in Mathematics #931, Berlin, Heidelberg, New York, 1982.
- [3] R. Beaumont and R. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc., 38 (1961).
- [4] L. De Munter-Kuyl, A note on the existence of torsion-free modules with a prescribed type-set, Proc. Amer. Math. Soc., 80 (1980), 531-532.
- [5] D. Dubois, Applications of analytic number theory to the study of typesets of torsion free abelian groups I, Publ. Math., 12 (1965), 59-63.
- [6] _____, Applications of analytic number theory to the study of typesets of torsion free abelian groups II, Publ. Math., 13 (1966), 1-8.
- [7] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
- [8] G. Hardy and E. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1979.
- [9] R. Ito, On type-sets of torsion free abelian groups of rank two, Proc. Amer. Math. Soc., 48 (1975), 39-42.
- [10] J. Koehler, Some torsion free rank two groups, Acta. Sci. Math. Szeged, 25 (1964), 186–190.

- [11] P. Schultz, The typeset and cotypeset of a rank two abelian group, Pacific J. Math., 70 (1978), 503-517.
- [12] C. Vinsonhaler and W. Wickless, *The cotypeset of a torsion free abelian group of rank two*, Proc. Amer. Math. Soc., **84** (1982), 467–473.
- [13] _____, The cotypeset of a torsion free abelian group of finite rank, J. Algebra, 83 No. 2 (1983), 380-386.
- [14] R. Warfield, Jr., Homomorphisms and duality of torsion free groups, Math. Z., 107 (1968), 189-200.

Received December 7, 1982. First author's research supported in part by NSF Grant #MCS-8003060.

University of Connecticut Storrs, CT 06268