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A CONSTRUCTION OF INNER MAPS
PRESERVING THE HAAR MEASURE ON SPHERES

BoGgusLAw TOMASZEWSKI

We show, for n > m, the existence of non-trivial inner maps f:
B" — B™ with boundary values f,: S” — S™ such that f,'(4) has a
positive Haar measure for every Borel subset 4 of S™ which has a
positive Haar measure. Moreover, if # = m, the equality o(f3'(4)) =
a(A) holds, where ¢ is the Haar measure of S".

In this paper C" is an n-dimensional complex space with inner
product defined by (2!, z2) = Xz}z2, where z/ = (z{, z{,...,z}) for j =
1,2, and the norm |z| = (z, z)'/% Let us introduce some notation:

B”={zEC":|z|<1}, S" = 0B";
let d be the metric on S™:

d(z,z*) = (1 — Re(z, z”‘))l/2 = z*| forz, z* € §",

1,
V2
and finally

B(z,r)= (z* €S d(z,2*) <r) forz€ S andr > 0.

For every complex function h: X — C we define Z(h)=h"'(0). A
holomorphic map f: B” — B™ is called inner if

fe(z) = lin} f(rz) € S™ for almost every z € S”
r—

with respect to the unique, rotation-invariant Borel measure o, on S” such
that 0,(S") = 1. If a continuous function g: B" — C™, defined on the
closure of B”, is holomorphic on B”, we write g € A, (B") or g € A(B")
when m = 1. The theorem stated below is a generalization of the result of
Aleksandrov [1]. Corollary 1 answers the problem given by Rudin [3].
Corollary 4 is a result of Aleksandrov obtained independently by the
author.

THEOREM. Let n > m and let g = (g,,...,8,) € A,(B"), h € A(B")
be maps such that |g(z)| + |h(z)| < 1 and h(z) # O for some z € B". Then
there exists an inner map f = (f,, f5,-...f,): B" = B™ such that f(z) =
g(z) for every z € Z(h) and f.(z) = g,(z) for every z € B" and i =
1,2,....,m— 1.
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COROLLARY 1. For every n > m there exist inner maps f: B" — B™
such that for every Borel subset A C S™ the inequality o,( f+'(A)) > 0 holds
provided ,(A) > 0. Moreover, if m = n, the equality o,( f4'(A)) = 0,(A)
holds and f is not an automorphism of B".

COROLLARY 2. For every n > 1 there exist inner maps f: B” — B™, not
automorphisms of B", such that

) (hof*)do,,=j;"hdo,,

Sll

for every continuous function h on S”.

Corollary 2 is an immediate consequence of Corollary 1. Let us
assume that n > m and n > 2. To deduce the assertion of Corollary 1
from the Theorem let us take a holomorphic function k € A(B*) and the
map g € A4,(B"), g(z)=p(z)+ +z2r(z,), where p(z)=(z, z5,...,
Z_1,0), 7(z) = (0,...,0, k(z,)) for z € B". Define h(z) = 4z,z2. Then

1 1 1
() +h(2)] <lp(2)| + 7|22 + gl < T=22 + 5l < 1.

By virtue of the Theorem there exists an inner map f = (f}, f5,....f,):
B" — B™ such that

(1) [z, 25,.02,) =z; forj=1,2,....m—1,
2) J(0,0.....0, 2,) = 322r(z,),
(3) flzyy 2900 052,-1,0) = (21, 25, . 5211, 0).

Foranyz € B™" 'and ! > mlet
B = {z* €B':z¥ =z forj=1,2,....,m— 1},

S!={z*e szt =zforj=1,2,....m -1},

z

let o/ be the rotation-invariant measure on the sphere S’ such that
0/(S’) = 1 and let £,, f* be the restrictions of f, f4 to the sets B and S”
respectively. From (1) it follows that f,: B — B and (2) says that
f.(w;) = w,, where w,, w, are the centers of the balls B/, B)" respectively.
Since B!” is a one-dimensional complex ball, the equality o"(( f*) *(C))
= 0,"(C) holds for every Borel subset C of S.” and every z for which £, is
an inner map (see [4] p. 405). The function f, is inner for almost every
z € B™! (with respect to the usual Lebesgue measure A on B™!)
because the map f is inner. Let us notice that there are positive functions
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51, S,: B"™' - R, such that for all Borel subsets C' € S", C* C §™ we
have

o(C) = [ (z)-al(C) dA(2),

0n(C) = [ (2)-am(C2) dA(2),

where C! = C' N §", C? = C* N §™. Substituting C; = (f*)"'(C,) and
using the equality 0/"(C!) = 0/"(C?) (which holds for almost every z), it is
easy to see that both of the above integrals are positive or equal to 0. If
n=m then s, =s, and the equality holds. This ends the proof of
Corollary 1.

The following proof of the assertion of the Theorem is based on
Low’s construction of inner functions [3]. Let g and 4 be maps satisfying
the assumptions of the Theorem. Then ¢,(F) = 0, where F = Z(h) N S".
(This fact can be proved by induction. For n =1 it is well-known
theorem.) For § > 0 let

Fy={zeS":d(z, F)< 6} and |lIslls = sup |s(z)],

zEF;

where s: S” — C” is a continuous map. Observe that there exist constants
A,, A, such that for every 0 < r < V2,

@) A< A(r) < A,

where A(r) = 6,(B(z, r)) forany z € S".
Let S € S” be any closed subset of S”, 0,(S) > 0. Assume that for
some number r > 0,

(5) 0,(S,) < 20,(5),

where S, = {z € 8":d(z,S) <r}. Let {B(z/,r)}}? be a maximal
family of disjoint balls with centers z/ € S. Since S, > UY(? B(z/, r) and
S < UMY B(z/,2r), applying inequalities (4) and (5), we get

N N |
20,(S) = 0,(S,) > o,,( A=1B(zf, r)) = '{;1 0,(B(z7,r))

=N(r)-A(r) = A;r*" ' - N(r)
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and
N N(r)
0,(S)<o, '~1B(zf,2r)) = Z_:lA(Zr) = N(r)-AQ2r)

< N(r)-4, (2r)"" " = N(r) cA, - 22l
So we have proved the existence of positive constants C; and C, (C; =
1/2%"71 C, = 2/A,) such that
Cl

(© L 0,(8) S NU) < 25 0,(S).

Let us assume now that r > 0, z € B”, k is a natural number and M, is
the maximal number of disjoint balls of radius r and with centers in
B(z,(k + 1)r). Because these balls are included in B(z,(k + 2)r), an
argument similar to the above gives the estimate

(7) M, < Gk !

for some constant C;. Let ¢: (0,1) » R be the continuous, positive
function defined by
1 1 ]<2n~1>/2

p(a) = in C, - 4, - arccos(a) -llog P

LEMMA 1. Let 0 <2e<a<b,0<8<2C,-a,e<Ce >, R<1.
Let P be a closed subset of Fy and let v be a continuous map v: S" — C”

such that \v(z)| > a for z € P. There exists a closed subset K of Fs and a
holomorphic map u: C" — C™ such that:

(a) o+ A - ulls,, < max(l, |||f“|a/2) + 3e;
(b) lullz = SUI;W(Z)I <é¢
|z|<

(c) lo(z) + h(z)-u(z)]>a—3¢ forze KU P;
(d) KcF, KNP=0 and

0,(K) = g(a) -[log(4Cy/8¢)] "V - 0,(F, — P);
(e) lg(z)l<e Jorz € B" — F; 5;
() u,;=0 forj=1,2,....m—1,whereu = (g, Uyyennstiy,).

Proof. If o,(P) = a,(Fs) then the map u = (0,0,...,0) and the set
K = @ satisfy conditions (a)-(e). Let us assume that o,(P) < o,(F;).
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There exists a positive number y such that y < § /2 and
(8) Un(S)Z%'Gn(F;S——P)’

where § = §” — [(§" — F;) U P]..
Since v, h are uniformly continuous maps and S is a closed subset,
there exists a positive number y* such that

(9) lg(z) —g(2)| <ed, Jo(z)—v(2)[<e 0,(S)<2-0,(S)
forz,z’ € §",d(z,z') < y*andr < y*.

Let r, m be positive numbers such that » < 3 min(y, y*), m is an integer
and mr? = log(2C,/8¢). Moreover we assume m is large so that

(10) C, - mn D2 emml=R) < g,
Choose a maximal family { B(z/, r)}? of pairwise disjoint balls with
centers z/ € S". Because of (9), condition (5) is satisfied, so inequalities
(6) also hold. For k = 1,2,...,[V2 /r]and z € §" let

Vi(z)={z/:kr <d(z,2’) < (k + 1)r}

and let N,(z) be the number of elements of the set V). Since V(z) C
B(z,(k + 1)r), from the definition of M,, we have N,(z) < M, and (7)
gives us

(11) N, (z) < Gk,

Let g(z) = £} B e €=+ where B, = (0,0,...,0,a,) € C" is de-
fined by B, = (0,0,...,0,0) if | f(z/)| = b. If | f(z/)| < b, then let B, be of
the previous form, such that

[f(z/) +h(z)-Bl=b and |f(z/) +a-h(z)-B|<b

for every a € C, |a| = 1. Let us notice that for every j, |B| < 1/|h(z/)| <
1/6 and that

N(r)
Y1) et o
j=1

W2 i
=k - Z Z lﬁjle—ma’ (z‘zf)eszJ(z)

k=0 zieV(z)

bt

g(z) =

for some real functions Q,, ; and k= 0,0,...,0,1) e C™.
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If Vy(z) = @ or z € B(z/, r) with B, = 0 then, because of (11) and
the inequality mr? > 2n, we have

[\/2_/"] 1 ) J[ﬁ/"]l -
(12) lg(z)l= X X 5™ 3 slVlz)le™
k=1 /e Vi(2) k=1
o) o)
C3 2n—1,—k*mr? C —kmr C3 ~mr2 —
< =3 k e < 5 g <2— i e.

This proves part (¢) of Lemma 1.If z € B(z/, r) with 8, # 0 then
(13) |o(z) + h(z) - u(z)|

Slu(z/) +h(z/)- ,3] . emmdi(z.2) eiQm‘l(z)l

+l[h(z) —h(z%)] - B; - e~ L gi0n, ()] 4 p(2) — v(z/)]

+h(z)- X B; - e~ mdN(z,20) | GiQp m(2)

/& Vo(2)
=1+ 11+ III + IV.

Because of (9)

Il <e and II <|h(z) —h(z/)|-|B|<8-e- % =
By the same argument as in (12) we can prove that IV < e. Moreover, we
have I < |v(z/)| + |h(z/) - B;| = b. This altogether gives us

(14) lo(z) + h(z)-u(z) < b+ 3e.

Inequalities (12) and (14) prove part (a) of Lemma 1. Now we shall
determine a certain subset ¥ of W = U7{) B(z/, r). To do this let us fix j,
1 <j<N(r), and let us take a = |v(z ) s(z) = e "= 0(z) =
arg(e "<y = - Im(z, 27).

Let us assume at first that « < 1. We define

V,={z€B(z/,r):s(z) 2aand cos Q(z) = a}.

Using the same notation as in (13) we can write

(15) lo(z) + A(z) - u(z)|]=1—=1I = III — IV.
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As before, II < ¢ III < eand IV < &. Assuming z € V,, we have
(16) I= ‘v(zj) +h(z7) By e EE. e’Q(”‘

>la +(1 — a)-s(z)-e'??)

= \ﬁxz +2a(1 —a)-s(z)-cosQ(z) +(1 — a)’ > a

because of our assumption about s(z) and cos Q(z), the definition of f,
and simple geometry.
Combining (15) and (16) we get

(17) lv(z) + h(z) -u(z)]>a—3e forzeV,.
Let p > 0 be defined by mp? = log(1/a). Then p < r because mr? =
2C,/8¢ and 2C;/8 > 1/a. So B(z’,p) C B(z/,r), and if z € B(z/, p)
then s(z) > a. The set {z € B(z/,p):cosQ > a} consists of certain
strips in the ball B(z/, p). An easy geometric argument shows that these
strips have a total area at least

- 1
5 " arccosa - 0,(B(z/,p)) = 5 - arccosa - 4(p).

Moreover V, C B(z’, r) C Fs. Using inequality (4) and the fact that the
above strips are included in V), we get

1 L . . A2n—1
(18) 0,,(Vj)227r arccos a A(p)zzw A, - arccosa - p*" L

If a =1, we define V.= B(z’, p). Because B, = 0, it follows from (12)
that

(19) o(z2) +h(z) -u(2)|zfo(2’)] —fo(z) = v(2/)[ = [h(z) - u(2)]
>a—¢e—|u(z)|=a— 2e

forz e V.
Fmally, we define K = U7} V We observe that inequality (17) holds
forz € K. If z € P, then Vo(z) = @ and inequality (12) gives us

0(2) +h(2) - u(2)| 2 ]o(2)] ~Ju(z)| = a e,
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This altogether proves part (c¢) of Lemma 1. It is easy to check that
K N P = @. Inequalities (18), (6), (9) and the definitions of p and mr?
yield

N(r) N(r)
0,(K)> o,,( V,-) =X o.(V)
j=1

2n—1
=— - A, - arccosa - p~”

1

1 .
2n—1 ’ n(S) 2—7; : A1 -arccos a - .()2

. Cy - A, - arccos a - (mr?) "7V (mp?)*"" ' - 0,(F, — P)

4
= ¢(a) - log(4C;/(8¢)) """ - 0,(F, — P).

This proves part (d) of Lemma 1. Finally, if |z] < R then Re(1 — <z, zf>)
<1-—Rforj=1,2,...,N(r). Because of the inequalities mr? > 1, (10)
and (6), we have

u(z)| < N(r)- e "0 < G, - ,zrlz—l L emmA=R)

_ —m(1l— -2n~-1)/2
— C2 - m@n=D/2 p=m1-R) -(mrz) 2n-1)/
< C2 . m(2n——1)/2 . e—m(l—R) <.

This proves part (d) of Lemma 1 and ends the proof.

LEMMA 2. Let v be a continuous map v: S™ — C™ such that |||vllls < b
<1 for some & < C;. Let § > ¢ > 0, R < 1. Then there exists a holomor-
phic map u: C" — C™ and a closed set K C F; such that:

@ Mo+h-ulls<bd+e;

()  lullz < e

()  |o(z) +h(z) u(z)]>b—¢

@) 0,(K) =2 0,(F) e

(€ |u(z)<e forzesS"—F;

() u;=0 forj=1,2,....m—1,whereu = (uy, u,,...,u,).

Proof. Let a = b — 3¢ and choose a sequence {¢;} satisfying the
assumptions of Lemma 1 and such that 617_;¢; < e We can assume
g, =A-exp{—(7-j)*?""V}, 4 =2C/0 and 7 is some large number.
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Apply Lemma 1 to the data a, ¢, R, v, P = & to produce a holomorphic
map u;: C" - C™ and a closed set K; C F; such that:

(@), Mo+ h-uwlls <b+ 3e;

®) Nollx < &
(c)y  |o(z) +h(z)-u(z)| =a— 3¢ forzeKi;

(@), e« =0,(K,) = g(a)-[log(4/e)] *" V- 0,(F);
(€, |w(z)]<g forze S" - Fy;

(fh uj=0 forj=1,2,...,m~ 1, whereu, = (ul, ub,... ub).

m

Suppose that holomorphic maps uy, u,,...,u,_; (u;: C" = C™ for j =
1,2,...,p — 1) have been chosen together with closed sets K, K, ... K,
such thatif W, =U’_, K thenK,,, N W, = @ and 0,(K,) = a,, K, C F;.
A map u,: C" — C™ and a closed set K, is then obtained by applying
Lemma 1 to the data a — 32/ ' e, ¢,, R, v+ h(z) - (uy +uy + -+ +
u,_1), W,_;. This produces a sequence {v,} of holomorphic maps (v;:
C"—> C™ for k=1,2,...) and a sequence { K, } of disjoint closed sets
such that K, C F;, 0,(K,) = a, and:

p p
(a)p “|U+h'Zuk|||33b+3'28k<b+e;
k=1 k=1
P p p
(b), Youl < X lludg < 2 g <&
k=1 IR k=1 k=1
P p
(c)p v(z)+h(z) Y u(z)|=a-3-3 ¢
k=1 k=1

za—3e=b—¢ forze W,

(d)P a, = on(Kp)

p—1 PRECEZ p—1
B R CATAE
k=1

k=1 P
:I-(2n—1)/2

> ota)-oe 2| () - T

P P P
@ | L w) L (o)< Le<e forzes -k
k=1 k=1 k=1
(£), uf=0 fork=1,2,....pandj =1,2,....m — 1,

where u, = (uf, uk,...,u%).
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If X¢_,a, <o,(F;), (d) shows that there is a constant C, such that for
every positive integer k,

—-2n-1)/2 C
2/2n-1)] —2n—1)/2
] [ (rpyrer ] o L G

T

a, > C, -[log;;

This is impossible, because then X7_; @, = co and a, are the measures of
the disjoint sets. Hence, we may assume that X7_; o, = o,( F;). It follows
that for p sufficiently large and P = W, we haveo,(P) = L{_,a;, > 1 — ¢,
which is part (d)’ of Lemma 2. Letting & = X}_, u,, parts (a)’, (b)’, (¢,
(e), (f) are just (a),,, (b),, (), (€),, (f),. So we have proved the assertion
of Lemma 2.

Assume now that g and 4 satisfy the assumptions of the Theorem.
Then |ligllls < 1 — 8. To prove the Theorem, take a sequence §,, 8,,... of
positive numbers such that §, < C;and §,,; < §,/2andleta, = b, =1 —
30,, & = min(g, 16,), R, = 3. Apply Lemma 2 to the data g, = g, b,, §,,
R, to get a map u; and a set K; C F; such that, forp =1and g, = g:

(), g, +h-ulls, <b +e, <1;
(ii) , ”up”Rp < g,
(iii) , ‘gp(z)+h(z)'up(z) >b,—¢, forze K,

(i), 0,(K,)20,(F,) e,
V), 1-=lg,(2) +h(z) u,(z)
> (1 - ilsi)lh(z)[ forz e " - Fy;

(vi), w’=0 forj=1,2,....,m — 1whereu, = (uf,ub,...,ub).

Inequality (v) follows from (e)’ of Lemma 2, because for z € §" — F, we
have |u,(z)] < ¢, so

1=fo(z) + h(z) - w(2)| 2 1 = o(2)] = |uy(2) - h(2)]
2[h(z)[ =& -|h(z)[= (1 = &) -[h(z)].

Since g, + & - u, is a continuous map on B", there exists an R, such that
$+ 3R, <R,<1land forp =1,

(Vii)P ’gp(Rp+1 ) Z) + h(Rp+1 ’ Z) ) up(R;H—l ) Z)l > bp - 2£p

forz Kp.
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Suppose we have inductively found holomorphic maps u,, u,,...,u

p’
closed sets K, Kj,...,K,, real numbers Ry, R,,...,R, .y, by, by,...,b,,
€5 €,-.-,€, such that  + 3R, <R, &>0 for i=12,...,p and

X7 ,e<1/8. Let us assume g ., =g+ h-X/ u; and conditions
(i) j~(vii), are satisfied for j = 1,2,...,p. We also assume that 1 — 1/j <
b<bt+te<1lIfze (FBM - Fsp) then according to (v),, we have

1—|g,.1(2)]= (1 - ée') Jh(2)] = 1

since |h(z)| > p+1 This, together with (i), shows that [llg,llls,,, < 1.
Take any b, ., —1/(p + 1) and ¢, satisfying the inequalities 1 >
by + &, > b 1 > g, allls,,, and Zp“s < 1/8. Since the map g, .,
is continuous on B”, we can find a number R, , such that  + 3R, <
R, ., <1 and such that condition (vii) . ; is satisfied. Now we can apply
Lemma 2 to the data g, 1, b, 1, €,.1, R, ;. We get some map u,,,, and a
set K, ;. It follows from Lemma 2 that conditions (i),,,~(iv),., and
(Vi) are satisfied. For z € §" — FapH, by the virtue of (¢)” and (v) ,, we
have

1 ~lgp+1(z) +h(z)- up+1(z)|
21 —g,(2) +h(z) u,(2)] =|h(2) - u,.,(2)]

(1 - Ze () ~I(2)] - e

(1 z) h(2).

i=1

So we have also proved that condition (v),,, is satisfied. Conditions (ii),
(p=123...) and the definition of g, say that the sequence {g,} is
convergent uniformly on every ball R, - B”, and since lim,_,; R, = 1, this
sequence is pointwise convergent to some holomorphic map f on the ball
B". From conditions (i), and (v), it follows that each map g, is bounded
by 1 on B". So, also ||f|l,, <1. For§ >0 let L, = F,NN ., K, Then,
for g large enough, Fy C F; forp > q. We have

o(E) = (L) =0, U (£~ (0 K,)

< Yo R-(FNnK)) < Yok -K)< Xe,.

J>q J>q j>q
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Hence lim _, , 0,(L,) = 0,(F}). It is obvious from (iii), and the equality
lim,, b, =1 that limg_,, f(Rz) =1 for z € L, provided this limit
exists. Since § was arbitrary, this proves that the map f is inner, since

0,(N,(S" — Fa,, )) = 0. Now it is easy to check that f satisfies the Theorem.

COROLLARY 3. Let m < nandlet g € A, (B™),||gll.,, < 1. There exists
an inner map f:. B" — B™ such that

f(z,25500.,2,,0,0,...,0) = g(zy, 25,...,2,,).
Proof. Let ®: B™ — B™ be an automorphism of B™ such that

®(2(0,...,0)) = (0,...,0). Take & B™ — B™, §(z) = ®(g(zy, Zss--+12,)),
h(z) = 1 - z2. By virtue of Schwartz’s lemma,

- 2 2 21/2
2(z) < (I +lzof + - +12,0°) 7
So we have

+%-|z,,|2 <1

()| +n(2) < (1 =z

We can apply the Theorem for g and A to get an inner map f. The inner
map f = ®!(f) will satisfy Corollary 3.

COROLLARY 4. There exists an inner function f: B" — D such that

af _
7 (0,0,...,0) = 1.

Proof. Take m = 1 in Corollary 3 and a function g: B' —» D, g(z) = z.

ReMARk. The assumption g € 4,,(B™) in Corollary 3 is not neces-
sary: we can take any holomorphic map g: B” — B™. Then the map £,
defined as before, can be prolonged to a continuous map on B" — A4,
where 4 € S” and o0,(A4) = 0. One can check that the Theorem is still
valid for such maps.
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