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RECURSIVELY ENUMERABLE SETS
AND VAN DER WAERDEN'S THEOREM

ON ARITHMETIC PROGRESSIONS

CARL G. JOCKUSCH, JR. AND IRAJ KALANTARI

Subsets of the set ω of nonnegative integers which possess some
algebraic structure are interesting since they are most likely to give
number-theoretic information. Arithmetic progressions are one of the
simplest structures to observe. Effectiveness of any kind of information
is of course an important factor. It seems that a study of possible
interrelationships between combinatoric and number-theoretic properties
of recursively enumerable (r.e.) subsets of ω might be interesting. In this
paper we study van der Waerden's theorem on arithmetic progressions in
this light.

1. Introduction. Schur, while working on the distribution of
quadratic residues in Z^, had conjectured that: if ω is split into two
disjoint sets, then an arithmetic progression of any desired length may be
found in at least one of the sets (see [1].)

Baudet, a student at Gottingen, had mentioned this conjecture to van
der Waerden. In 1927, van der Waerden published an elementary but
insightful proof of the conjecture to which he referred as Baudet's conjec-
ture (see [5].)

Van der Waerden [6] gives an interesting account of how in an
afternoon of 1926, he, Artin and Schreier discussed the conjecture and
found a proof for it. In [5] (and [6]), van der Waerden gives a proof of a
more general form of the conjecture: if ω is equal to the disjoint union of
the sets Al9...9An9 then given an arbitrary k, at least one Aι contains an
arithmetic progression of length k. Moreover, for a proof he demonstrated
the existence of a function / such that given n (the number of cells in the
partition) and k (the desired length of arithmetic progression), then a mere
partitioning of {0,1,...,/(«, k)} into n cells in any manner, yields an
arithmetical progression of length k in at least one of the cells. Further-
more, the given function / is indeed a recursive one. For our purposes we
state

VAN DER WAERDEN'S THEOREM. Let A c ω. Pick k. Then either A or
ω — A has an arithmetic progression of length k.
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From a recursion theoretic point of view it is reasonable to ask
whether van der Waerden's theorem holds when only r.e. sets are consid-
ered. This question may not at first appear to make sense because ω — A
need not be r.e. even when A is r.e. To remedy this difficulty, we let the
role of co — A be taken over by arbitrary r.e. sets disjoint from A. To avoid
trivialities we also require that a set have infinitely many pairwise disjoint
arithmetic progressions of length k rather than just a single such pro-
gression. In §3 we use the finite form of van der Waerden's theorem
mentioned above to show that for any r.e. set A, either A contains
arbitrarily long arithmetic progressions or for each k there is an r.e. set Bk

disjoint from A which contains infinitely many pairwise disjoint arith-
emtic progressions of length k. One might hope that this result could be
strengthened to show that for any r.e. set A, either A or some r.e. set
disjoint from A contains arbitrarily long arithmetic progressions. Our
main result, proved in §4 using the priority method, refutes this conjecture
by giving an example of an r.e. set which contains no arithmetic progres-
sion of length three and yet intersects every r.e. set which contains
arbitrarily long arithmetic progressions. Section 5 gives a corollary based
on Szemeredi's generalization of van der Waerden's theorem. Section 2
contains the key definitions and §6 generalizes our main result. Finally
some open questions are listed in §7.

2. Definitions and some notation. By the length of an arithmetic
progression we mean the number of the terms in it. Let A c co.

DEFINITION 1. A is thick if A contains arithmetic progressions of any
length fcGω.

DEFINITION 2. Let k e co. A is k-thin if A does not contain an
arithmetic progression of length k. (This notion will also be used for
subsets of rationals.)

DEFINITION 3. Let k e co. A is k-thick if there is no finite set F c ω
such that A — F is A:-thin.

DEFINITION 4. A is thin if A is fc-thin for some k e co.
Some trivial observations about these notions will be useful:
(a) A is thick iff A is k-thick for all A: e co.
(b) A is thick iff A is not &-thin for any k e co.
If a, b e ω, then (a, b] denotes the set of elements of co between a

and b together with b. The set of rational numbers is denoted by Q. For
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any finite sequence ql9... 9qn of rational numbers define

Δfc = fc+i - ft ΐoτl <i<n

and

Δ\ = Δ^ + 1 - Δft = ήf/+2 - 2qi+ι + qt for 1 < / < π - 1.

These are the usual first and second difference operators. Note that Δ and
Δ2 are linear in the obvious sense. ^(Q) denotes the collection of all
subsets of Q while ^ f i n(Q) denotes the collection of all finite subsets of Q.
For C c Q , define the operator

by

Φ c(B) = < Σ cibi\ci G c a n c * bl9... ,bn are distinct elements of B
l

Φ c is finitely based if C is finite. Note that finitely based operators map
finite sets to finite sets.

Finally, We denotes the eth r.e. subset of ω in an acceptable enumera-
tion of all such sets. For all other background on recursion theory, we
refer the reader to Rogers [3].

3. The positive direction.

THEOREM 5. If A is r.e. and not thick, then for each k there is an r.e.,
k-thick set Bk which is disjoint from A.

Proof. Suppose A is fl-thin. It suffices to construct Bk for k > n. Fix
k > n. By van der Waerden's theorem, there is a bound bk such that
whenever (0, bk] is partitioned into two sets, one of the sets is not fc-thin.
For each /, let

So JF0, Fl9... are pairwise disjoint translates of FQ = (0, bk]. Thus whenever
any Ft is partitioned into two sets, one of the sets is not Λ -thin.

Let

mk = the largest number m such that

\A Π JF}| = m for infinitely many i.

Note that mk exists because \A Π Ft\ < \Ft\ = bk for all /.
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Choose ik such that

i>ik=>\A ΠFι\<mk.

(Of course mk and ik are not obtained uniformly in k, but this is no

obstacle since we are not claiming that Bk is r.e. uniformly in k.)

Let As be a recursive enumeration of A and define

Bk = {b\3s(3i > ik)[\As CΛF\ = mk&b^Fι-As]}.

Clearly, Bk is r.e. Also, Bk Π A = 0 since otherwise \A CΛ Ft\> mk

for some / > ik contrary to the choice of ik.

To show that Bk is /c-thick, it suffices to show that Bk Π Ft is not

/c-thin whenever \A Π Ft\ = mk and / > /Λ, since there are infinitely many

such i by the choice of mk. To see this, let \A Π F t | = mk and i > ι\. Then

A Π Fi and 2?̂  Π Fi partition Ft into two sets, one of which is not /c-thin

by the choice of bk. However, A is rt-thin, k > n, and A Π Ft Q A; hence

^ Π f; is A:-thin. Therefore Bk Π Ff is not &-thin. D

We observe an interesting corollary. Recall A is simple if 4̂ is r.e. and

coinfinite, but it meets every infinite r.e. set.

COROLLARY 6. Every simple set is thick.

Corollary 6 may also be proved easily without using van der Waerden's

theorem. The observation needed is that for any recursive sequence {Fι}

of pairwise disjoint finite sets of uniformly bounded cardinality and any

simple set A, Ft^ is a subset of A for infinitely many /. (See [2], pp.

116-117.)

4. The negative direction. We now prove our main result using a

priority construction. The construction is a finite injury one in the sense

that each positive requirement contributes at most one element to the r.e.

set A being constructed. However, it is a bit unusual because an individual

negative requirement may (permanently) restrain infinitely many numbers

from A. The positive requirements are satisfied nonetheless because any

finite set of negative requirements together restrain only a thin set of

numbers from^4.

THEOREM 7. There is a 3-thin r.e. set A which intersects every thick r.e.

set.
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Proof. It is necessary and sufficient to satisfy the following require-

ments in the construction of the r.e. set A:

N_λ: A is 3-thin;

Pe: We is thick -> A n We Φ 0 .

To satisfy N_l9it suffices to keep out of A, with highest priority, any

numbers which form an arithmetic progression of length 3 with numbers

already in A (and add at most one new element to A at a time).

Let

A* = {n I A U {n} is not 3-thin}.

Hence, to satisfy N_λ we must arrange A Π A* = 0. Now since A is r.e.,

A* is also an r.e. set; say A* = W}. Clearly, to satisfy Pj it is necessary that

A* = W be A:-thin for some k. The following proposition shows that we

may not choose k = 3.

PROPOSITION 8. If A is r.e. and 3-thin and A intersects every thick r.e.

set, then A* is 3-thick.

Proof. Clearly A has to be infinite. Suppose α, b e A, a < b < 2a and

b - a is even. Then the numbers 2b - a, (a + b)/2 and 2a - b are all in

^4* and form an arithmetic progression of length 3. Thus if A* is not

3-thick, there are only finitely many pairs (α, b) as above. But then

W= [b\{3a £ΞA)[a < b < 2a & b - a is even]}

is a thick r.e. set having only finite intersection with A. This is a

contradiction. Hence A* is 3-thick.

In view of the above proposition it is reasonable to ask whether,

under the same hypothesis, it can be shown that A* is thick (which would

refute the theorem we are trying to prove). The answer is no. The

explanation lies in the fact that every element of A* may be written as

cγax + c2a2 where aλ and a2 are distinct elements of A and cx and c2 are

elements of the fixed finite set C = { — 1,^,2}. The arithmetic progres-

sions of length 3 in A* arise only because C contains an arithmetic

progression of length 3. On the other hand, if we consider the fact that

every element of A* may be written as ΣΓi=λcιaι where al9...9an are

distinct elements of A and cv...9cn are elements of the fixed finite set

C U {0}, it would be possible to keep A* 4-thin because C U {0} does not

contain an arithmetic progression of length 4. (Actually, because of the
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way the priorities are about to be arranged, A* will only be &0-thin, where

k0 is obtained by recursive approximations.)

Keeping A* k0-thin is a new negative requirement No. The negative

requirements N_x and No together will keep a certain set of numbers out

of A; clearly, we must introduce a new negative requirement Nλ that this

set be λ^-thin for a suitable number kv Continuing inductively, we obtain

negative requirements Nθ9Nl9.... We rank the requirements with priori-

ties as follows: N_l9 Pθ9 N09 Pv Nl9 —

The strategy for each positive requirement Pe is the obvious one:

if As Π W* = 0 and W* contains an element x not restrained
from A at s by any Ni9 / < e, e is the least such, put the least
such x into A at s.

If the negative requirement Ne succeeds in keeping the set of numbers held

out of A by the requirements Nt with i < e ke-thin9 and if We is thick, then

Pe will eventually receive attention and be satisfied permanently.

In order to form a strategy for the negative requirements, we need

some preliminary notions. In terms of the operator Φ c of §2, if Co =

{-1,0, i ,2}, then A* c ΦCQ(A). Next, in order to keep track of what is

kept out of A, we shall inductively define finite sets Co c Q c so

that every number kept out of A by any Ni9 - 1 < / < e9 is in ΦC(A).

Then Ne will require ΦC(A) to be ke-thin for a certain number ke. For any

operator Ψ: 0>(Q) -* 0*(Q) and any k G ω, let

is fc-thin

) is not A:-thin}.

The following lemma will be used to obtain Ce+ι from Ce effectively.

LEMMA 9. Let B, C c Q. 7ftm? w α recursive function F: ^ f i n ( Q )

swc/i rtor if Cisfinite, k-thin andO G C, ^ΛCT Φ^k)(B) c

Proof. Let C be a given /c-thin finite set of rational numbers contain-

ing 0. Suppose # e Φ(

c

k)(B); hence Φ c ( 5 ) is fc-thin, but ΦC(J? U {q}) is

not A:-thin. We now carry out some elementary computations to express q

as a linear combination of elements of B with the coefficients from a finite

set F(C) not dependent on q or B. Let rλ^..,rk be a (nonconstant)

arithmetic progression of length kinΦc(B U {q}). Hence each rf may be

written as

η = fy + cz<y where ^ e Φ c ( 5 ) and ς e C.
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(Note that here the fact that 0 e C allows us to cover the case that
η e Φ c (B)\ also note that ft/s are not necessarily distinct.) Since rl9...9rk

is an arithmetic progression and Δ2 is linear, we have

(1) 0 = Δ2r, = Δ 2 ^ + qΔ2Cj for 1 < / < k - 1.

First assume for the sake of a contradiction that Δ2c, = 0 for all /,
1 < i < k — 1. Then cx = c2 = = ck since otherwise cl9...9ck would
be an arithmetic progression of length k in C. Next, since rl9... 9rk is not a
constant sequence, neither is bl9...9bk. But Δ2fez = 0 for 1 < / < k — 1
from (1) and by our hypothesis that Δ2c, = 0. Therefore bl9...9bk is an
arithmetic progression of length k in ΦC(B), which is the desired con-
tradiction.

Fix i, 1 < i < q - 1, so that Δ2c7 Φ 0. From (1) we have

(2) q= - Δ 2 V Δ 2 c Γ

Since bj e Φ c ( 5 ) , i <j < i + 2, there are distinct numbers α l 9 . . . ,an e J5
such that ^ = Σ " = 1 c 7 ? β / for i <j < i + 2 and certain numbers c,, e C.
(Here, we use the fact that 0 e C to make ^ l 9 . . . ,an independent of j . ) By
linearity of Δ2,

(3) Δ26, = t *A2clt

where

(4) Δ2c/,r = ci+2tt - 2c l + l t / + c/V.

Since we are in search of F(C) in order to have q e Φ^k)(B) c Φ F ( C ) ( J B ) ,

(2), (3), and (4) suggest that we may take F(C) to be the set of all
numbers of the form - u/v where υ Φ 0 and w, *; are each of the form
c - Id + e with c, </, e e C. •

Let

Q = {-1,0,1,2} and C e + 1 = Ce U F(Ce)

where Z7 is the function from Lemma 9. We enumerate A in stages by
defining As for any s. At the end of stage s we define ks

e so that Q and
Φc(^45) are /^-thin. During the construction we need to satisfy the
positive requirements Pe.

DEFINITION. Pe requires attention at stage s + 1 if there exists x such
that

(l) As n we

s= 0 ,
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(2) x<ΞWe

s- ΦCe(As).

Construction.

Stage 0. To initialize, let

A0 = 0, and, for each e,

k°e = the least k such that Ce is fc-thin,

Stage s + 1. If no Pe requires attention, let

As+ι = As and ks

e

+ι = £* for all e

and go on to the next stage. Otherwise, lety be the least e such that Pe

requires attention and choose the least corresponding x. Let

and

[K iίe<j
ks+ι = / the least k such that

[ Q and Φc(As+1) are /t-thin if j < e.

(Note that the k in the second case exists because Ce and ΦCe(As+1) are

finite sets.)

Since A is clearly r.e., if the requirements N _ 1 ? P o, Nθ9... are satis-

fied, the theorem is established. In the following we state and prove some

lemmas which show that the requirements are indeed satisfied.

LEMMA 10. A is 3-thin.

Proof. Note that

(A>)* c ΦCo(A*) c ΦCJLA>)

for all e and s, so no element of (As)* enters A at s and |^45 + 1 — As\ < 1.

Hence as remarked before the constructions, it follows that A is 3-thin.

LEMMA 11. For each e, lim5 k
s

e exists.

Proof. If ks

e Φ ks

e

+ι, then some Pj with j < e must have needed
attention at stage s + 1. But each Pj receives attention at most once.
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LEMMA 12. For each e ands, Ce and ΦCe(As) are ks

fthin.

Proof. This is proved by induction on s. It is clear if s = 0. Suppose

Ce and ΦC(AS) are ks

e-thin. Consider stage s + 1; if no Pe requires

attention then the result for s + 1 is immediate. Otherwise, assume Pj

requires attention at stage s + 1 via x. By construction, x is the unique

element of As+ι - As. If e > j 9 then Ce and ΦCe(As+ι) are &*+1-thin by the

choice of ks

e

+1. Suppose e <j. For the sake of a contradiction, assume

that ΦCg(As+ι) is not λ;*+1-thin, and hence not A;*-thin. Therefore x e

Φ^\AS). Since ΦCe(As) and Ce are fc^-thin, it follows by choice of Ce+ι

that x e ΦCe+ι(As).eBut e + 1 <y, so C e + 1 c Cy and hence x e Φ ς ( ^ 5 ) ?

contrary to the construction.

LEMMA 13. // We is thick, then A Π WeΦ 0 .

Proof. Let /:e = lim s /̂ .̂ From Lemma 12 and the monotonicity and

continuity of Φ c , it follows that ΦCe(A) is fc^-thin. Assume e is such that

We is thick anάA Π We= 0. Then Ŵ e £ ΦQ(^1), so choose x G Wς -

Φc(y4). By monotonicity, x ^ W* — ΦC(AS) for all sufficiently large s, so

P e will require attention at all sufficiently large stages and will eventually

receive it, since each Pi9 i < e, receives attention at most once.

This completes the proof of the theorem. D

5. A corollary. To see a corollary consider:

DEFINITION 14. Let B c ω. B is said to have positive upper density if

lim sup —\B Π { 1 , . . . , Λ } | > 0.

It can be seen that a thick set does not have to have positive upper

density. However, Erdόs-Turan conjectured a phenomenon, later proved

intricately by Szemeredi [3], one of whose consequences is that every set of

positive upper density is thick.

Now, clearly the van der Waerden Theorem is a special case of

Szemeredi's theorem since if a set B is Λ -thin for any k then it is not thick

and therefore not of positive upper density. Hence it can be seen that

ω — B has to be of positive upper density and hence it must have a thick

subset.

Theorem 7 and Szemeredi's theorem may be used to give a counter-

example to effectiveness of the Szemeredi's theorem.
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COROLLARY 15. There exists an r.e. set A which is thin but intersects
every r.e. set of positive upper density.

6. Generalization. It may be the case that Theorem 7 can be
generalized in different ways. In this section we give one version which
has a proof structurally the same as our proof of Theorem 7.

DEFINITION 16. Let A c ω and k, d e ω. A is k-thin for degree d if
there is no nonconstant polynomial p(x), with coefficients in Q and of
degree < d with/?(0),... ,p(k - 1) e A.

Before we give the theorem, we state some useful facts. Clearly A is
/c-thin for degree 1 iff A is fc-thin. Also, if A is fc-thin for degree d and A
has more than 1 element, then k > d + 2. This is because Lagrange's
Interpolation Formula applied to given pairs (xQ9 yo),...,{xch yd) with
distinct xo,...9xd produces a polynomial p of degree < d such that
P(*i) =7/forO < i < d.

DEFINITION 17. A is sparse for degree d if for all d' < d, 0 < d\ A is
(df + 2)-thin for degree df. Note that A is sparse for degree 1 iff A is
3-thin, and if A is sparse for degree d and d' < d, then A is sparse for
degree d'.

DEFINITION 18. A is thick for degree d if A is not λ -thin of degree d for
any k.

Finally we are able to generalize Theorem 7 whose intuitive content is
'there are sparse r.e. sets which meet every thick r.e. set'.

THEOREM 19. For each d, there is an r.e. set A which is sparse for

degree d and intersects every r.e. set which is thick for degree d.

We leave the proof to the reader with a hint: in proof for Theorem 7,
replace Δ2 by Δ^+1 and modify Co appropriately.

Observe that Theorem 19 reduces to Theorem 7 when d = 1 and that
the strength of Theorem 19 increases as d increases.

7. Open questions. Upon further reflection, it becomes clear that
Theorems 5 and 7 are about "controlling" thinness. This raises the
following questions:

(1) Is there a recursive function / and a 3-thin r.e. set A such that
A Π We Φ 0 whenever We is /(e)-thick? By Theorem 5, / may not be
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chosen to be constant. By Theorem 7, there is such an / recursive in 0', i.e.
f(e) = ke.

In Theorem 19 we stated a generalized form of Theorem 7. In that
light

(2) Is there an r.e. set A which is sparse for all degrees d and which
meets every r.e. set which is thick for any degree dΊ
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