RECURSIVELY ENUMERABLE SETS AND VAN DER WAERDEN'S THEOREM ON ARITHMETIC PROGRESSIONS

Carl G. Jockusch, Jr. and Iraj Kalantari

Abstract

Subsets of the set ω of nonnegative integers which possess some algebraic structure are interesting since they are most likely to give number-theoretic information. Arithmetic progressions are one of the simplest structures to observe. Effectiveness of any kind of information is of course an important factor. It seems that a study of possible interrelationships between combinatoric and number-theoretic properties of recursively enumerable (r.e.) subsets of ω might be interesting. In this paper we study van der Waerden's theorem on arithmetic progressions in this light.

1. Introduction. Schur, while working on the distribution of quadratic residues in \mathbf{Z}_{p}, had conjectured that: if ω is split into two disjoint sets, then an arithmetic progression of any desired length may be found in at least one of the sets (see [1].)

Baudet, a student at Göttingen, had mentioned this conjecture to van der Waerden. In 1927, van der Waerden published an elementary but insightful proof of the conjecture to which he referred as Baudet's conjecture (see [5].)

Van der Waerden [6] gives an interesting account of how in an afternoon of 1926, he, Artin and Schreier discussed the conjecture and found a proof for it. In [5] (and [6]), van der Waerden gives a proof of a more general form of the conjecture: if ω is equal to the disjoint union of the sets A_{1}, \ldots, A_{n}, then given an arbitrary k, at least one A_{t} contains an arithmetic progression of length k. Moreover, for a proof he demonstrated the existence of a function f such that given n (the number of cells in the partition) and k (the desired length of arithmetic progression), then a mere partitioning of $\{0,1, \ldots, f(n, k)\}$ into n cells in any manner, yields an arithmetical progression of length k in at least one of the cells. Furthermore, the given function f is indeed a recursive one. For our purposes we state
van der Waerden's Theorem. Let $A \subset \omega$. Pick k. Then either A or $\omega-A$ has an arithmetic progression of length k.

From a recursion theoretic point of view it is reasonable to ask whether van der Waerden's theorem holds when only r.e. sets are considered. This question may not at first appear to make sense because $\omega-A$ need not be r.e. even when A is r.e. To remedy this difficulty, we let the role of $\omega-A$ be taken over by arbitrary r.e. sets disjoint from A. To avoid trivialities we also require that a set have infinitely many pairwise disjoint arithmetic progressions of length k rather than just a single such progression. In $\S 3$ we use the finite form of van der Waerden's theorem mentioned above to show that for any r.e. set A, either A contains arbitrarily long arithmetic progressions or for each k there is an r.e. set B_{k} disjoint from A which contains infinitely many pairwise disjoint arithemtic progressions of length k. One might hope that this result could be strengthened to show that for any r.e. set A, either A or some r.e. set disjoint from A contains arbitrarily long arithmetic progressions. Our main result, proved in $\S 4$ using the priority method, refutes this conjecture by giving an example of an r.e. set which contains no arithmetic progression of length three and yet intersects every r.e. set which contains arbitrarily long arithmetic progressions. Section 5 gives a corollary based on Szemerédi's generalization of van der Waerden's theorem. Section 2 contains the key definitions and $\S 6$ generalizes our main result. Finally some open questions are listed in §7.
2. Definitions and some notation. By the length of an arithmetic progression we mean the number of the terms in it. Let $A \subset \omega$.

Definition 1. A is thick if A contains arithmetic progressions of any length $k \in \omega$.

Definition 2. Let $k \in \omega . A$ is k-thin if A does not contain an arithmetic progression of length k. (This notion will also be used for subsets of rationals.)

Definition 3. Let $k \in \omega . A$ is k-thick if there is no finite set $F \subset \omega$ such that $A-F$ is k-thin.

Definition 4. A is thin if A is k-thin for some $k \in \omega$.
Some trivial observations about these notions will be useful:
(a) A is thick iff A is k-thick for all $k \in \omega$.
(b) A is thick iff A is not k-thin for any $k \in \omega$.

If $a, b \in \omega$, then $(a, b]$ denotes the set of elements of ω between a and b together with b. The set of rational numbers is denoted by \mathbf{Q}. For
any finite sequence q_{1}, \ldots, q_{n} of rational numbers define

$$
\Delta q_{i}=q_{i+1}-q_{i} \quad \text { for } 1 \leq i<n
$$

and

$$
\Delta^{2} q_{l}=\Delta q_{i+1}-\Delta q_{i}=q_{i+2}-2 q_{i+1}+q_{i} \quad \text { for } 1 \leq i<n-1
$$

These are the usual first and second difference operators. Note that Δ and Δ^{2} are linear in the obvious sense. $\mathscr{P}(\mathbf{Q})$ denotes the collection of all subsets of \mathbf{Q} while $\mathscr{P}_{\text {fin }}(\mathbf{Q})$ denotes the collection of all finite subsets of \mathbf{Q}. For $C \subseteq \mathbf{Q}$, define the operator

$$
\Phi_{C}: \mathscr{P}(\mathbf{Q}) \rightarrow \mathscr{P}(\mathbf{Q})
$$

by

$$
\Phi_{C}(B)=\left\{\sum_{i=1}^{n} c_{i} b_{i} \mid c_{i} \in C \text { and } b_{1}, \ldots, b_{n} \text { are distinct elements of } B\right\}
$$

Φ_{C} is finitely based if C is finite. Note that finitely based operators map finite sets to finite sets.

Finally, W_{e} denotes the e th r.e. subset of ω in an acceptable enumeration of all such sets. For all other background on recursion theory, we refer the reader to Rogers [3].

3. The positive direction.

Theorem 5. If A is r.e. and not thick, then for each k there is an r.e., k-thick set B_{k} which is disjoint from A.

Proof. Suppose A is n-thin. It suffices to construct B_{k} for $k>n$. Fix $k>n$. By van der Waerden's theorem, there is a bound b_{k} such that whenever $\left(0, b_{k}\right]$ is partitioned into two sets, one of the sets is not k-thin. For each i, let

$$
F_{i}=\left(b_{k} i, b_{k}(i+1)\right]
$$

So F_{0}, F_{1}, \ldots are pairwise disjoint translates of $F_{0}=\left(0, b_{k}\right]$. Thus whenever any F_{i} is partitioned into two sets, one of the sets is not k-thin.

Let

$$
\begin{aligned}
& m_{k}=\text { the largest number } m \text { such that } \\
& \qquad\left|A \cap F_{i}\right|=m \text { for infinitely many } i
\end{aligned}
$$

Note that m_{k} exists because $\left|A \cap F_{l}\right| \leq\left|F_{i}\right|=b_{k}$ for all i.

Choose i_{k} such that

$$
i \geq i_{k} \Rightarrow\left|A \cap F_{l}\right| \leq m_{k}
$$

(Of course m_{k} and i_{k} are not obtained uniformly in k, but this is no obstacle since we are not claiming that B_{k} is r.e. uniformly in k.)

Let A^{s} be a recursive enumeration of A and define

$$
B_{k}=\left\{b \mid \exists s\left(\exists i \geq i_{k}\right)\left[\left|A^{s} \cap F_{i}\right|=m_{k} \& b \in F_{t}-A^{s}\right]\right\} .
$$

Clearly, B_{k} is r.e. Also, $B_{k} \cap A=\varnothing$ since otherwise $\left|A \cap F_{i}\right|>m_{k}$ for some $i \geq i_{k}$ contrary to the choice of i_{k}.

To show that B_{k} is k-thick, it suffices to show that $B_{k} \cap F_{i}$ is not k-thin whenever $\left|A \cap F_{i}\right|=m_{k}$ and $i \geq i_{k}$, since there are infinitely many such i by the choice of m_{k}. To see this, let $\left|A \cap F_{l}\right|=m_{k}$ and $i \geq i_{k}$. Then $A \cap F_{i}$ and $B_{k} \cap F_{i}$ partition F_{i} into two sets, one of which is not k-thin by the choice of b_{k}. However, A is n-thin, $k>n$, and $A \cap F_{t} \subseteq A$; hence $A \cap F_{i}$ is k-thin. Therefore $B_{k} \cap F_{l}$ is not k-thin.

We observe an interesting corollary. Recall A is simple if A is r.e. and coinfinite, but it meets every infinite r.e. set.

Corollary 6. Every simple set is thick.

Corollary 6 may also be proved easily without using van der Waerden's theorem. The observation needed is that for any recursive sequence $\left\{F_{t}\right\}$ of pairwise disjoint finite sets of uniformly bounded cardinality and any simple set A, F_{i} is a subset of A for infinitely many i. (See [2], pp. 116-117.)
4. The negative direction. We now prove our main result using a priority construction. The construction is a finite injury one in the sense that each positive requirement contributes at most one element to the r.e. set A being constructed. However, it is a bit unusual because an individual negative requirement may (permanently) restrain infinitely many numbers from A. The positive requirements are satisfied nonetheless because any finite set of negative requirements together restrain only a thin set of numbers from A.

Theorem 7. There is a 3-thin r.e. set A which intersects every thick r.e. set.

Proof. It is necessary and sufficient to satisfy the following requirements in the construction of the r.e. set A :

$$
\begin{array}{ll}
N_{-1}: & A \text { is 3-thin; } \\
P_{e}: & W_{e} \text { is thick } \rightarrow A \cap W_{e} \neq \varnothing
\end{array}
$$

To satisfy N_{-1}, it suffices to keep out of A, with highest priority, any numbers which form an arithmetic progression of length 3 with numbers already in A (and add at most one new element to A at a time).

Let

$$
A^{*}=\{n \mid A \cup\{n\} \text { is not 3-thin }\}
$$

Hence, to satisfy N_{-1} we must arrange $A \cap A^{*}=\varnothing$. Now since A is r.e., A^{*} is also an r.e. set; say $A^{*}=W_{j}$. Clearly, to satisfy P_{j} it is necessary that $A^{*}=W_{J}$ be k-thin for some k. The following proposition shows that we may not choose $k=3$.

Proposition 8. If A is r.e. and 3-thin and A intersects every thick r.e. set, then A^{*} is 3-thick.

Proof. Clearly A has to be infinite. Suppose $a, b \in A, a<b \leq 2 a$ and $b-a$ is even. Then the numbers $2 b-a,(a+b) / 2$ and $2 a-b$ are all in A^{*} and form an arithmetic progression of length 3. Thus if A^{*} is not 3-thick, there are only finitely many pairs (a, b) as above. But then

$$
W=\{b \mid(\exists a \in A)[a<b \leq 2 a \& b-a \text { is even }]\}
$$

is a thick r.e. set having only finite intersection with A. This is a contradiction. Hence A^{*} is 3-thick.

In view of the above proposition it is reasonable to ask whether, under the same hypothesis, it can be shown that A^{*} is thick (which would refute the theorem we are trying to prove). The answer is no. The explanation lies in the fact that every element of A^{*} may be written as $c_{1} a_{1}+c_{2} a_{2}$ where a_{1} and a_{2} are distinct elements of A and c_{1} and c_{2} are elements of the fixed finite set $C=\left\{-1, \frac{1}{2}, 2\right\}$. The arithmetic progressions of length 3 in A^{*} arise only because C contains an arithmetic progression of length 3 . On the other hand, if we consider the fact that every element of A^{*} may be written as $\sum_{i=1}^{n} c_{t} a_{t}$ where a_{1}, \ldots, a_{n} are distinct elements of A and c_{1}, \ldots, c_{n} are elements of the fixed finite set $C \cup\{0\}$, it would be possible to keep $A^{*} 4$-thin because $C \cup\{0\}$ does not contain an arithmetic progression of length 4. (Actually, because of the
way the priorities are about to be arranged, A^{*} will only be k_{0}-thin, where k_{0} is obtained by recursive approximations.)

Keeping $A^{*} k_{0}$-thin is a new negative requirement N_{0}. The negative requirements N_{-1} and N_{0} together will keep a certain set of numbers out of A; clearly, we must introduce a new negative requirement N_{1} that this set be k_{1}-thin for a suitable number k_{1}. Continuing inductively, we obtain negative requirements N_{0}, N_{1}, \ldots We rank the requirements with priorities as follows: $N_{-1}, P_{0}, N_{0}, P_{1}, N_{1}, \ldots$

The strategy for each positive requirement P_{e} is the obvious one:
if $A^{s} \cap W_{e}^{s}=\varnothing$ and W_{e}^{s} contains an element x not restrained from A at s by any $N_{i}, i<e, e$ is the least such, put the least such x into A at s.

If the negative requirement N_{e} succeeds in keeping the set of numbers held out of A by the requirements N_{i} with $i<e k_{e}$-thin, and if W_{e} is thick, then P_{e} will eventually receive attention and be satisfied permanently.

In order to form a strategy for the negative requirements, we need some preliminary notions. In terms of the operator Φ_{C} of $\S 2$, if $C_{0}=$ $\left\{-1,0, \frac{1}{2}, 2\right\}$, then $A^{*} \subseteq \Phi_{C_{0}}(A)$. Next, in order to keep track of what is kept out of A, we shall inductively define finite sets $C_{0} \subseteq C_{1} \subseteq \cdots$ so that every number kept out of A by any $N_{i},-1 \leq i<e$, is in $\Phi_{C_{e}}(A)$. Then N_{e} will require $\Phi_{C_{e}}(A)$ to be k_{e}-thin for a certain number k_{e}. For any operator $\Psi: \mathscr{P}(\mathbf{Q}) \rightarrow \mathscr{P}(\mathbf{Q})$ and any $k \in \omega$, let

$$
\begin{aligned}
\Psi^{(k)}(B)= & \{q \in \mathbf{Q} \mid \Psi(B) \text { is } k \text {-thin } \\
& \& \Psi(B \cup\{q\}) \text { is not } k \text {-thin }\} .
\end{aligned}
$$

The following lemma will be used to obtain C_{e+1} from C_{e} effectively.
Lemma 9. Let $B, C \subseteq \mathbf{Q}$. There is a recursive function $F: \mathscr{P}_{\text {fin }}(\mathbf{Q}) \rightarrow$ $\mathscr{P}_{\text {fin }}(\mathbf{Q})$ such that if C is finite, k-thin and $0 \in C$, then $\Phi_{C}^{(k)}(B) \subseteq \Phi_{F(C)}(B)$.

Proof. Let C be a given k-thin finite set of rational numbers containing 0 . Suppose $q \in \Phi_{C}^{(k)}(B)$; hence $\Phi_{C}(B)$ is k-thin, but $\Phi_{C}(B \cup\{q\})$ is not k-thin. We now carry out some elementary computations to express q as a linear combination of elements of B with the coefficients from a finite set $F(C)$ not dependent on q or B. Let r_{1}, \ldots, r_{k} be a (nonconstant) arithmetic progression of length k in $\Phi_{C}(B \cup\{q\})$. Hence each r_{i} may be written as

$$
r_{i}=b_{i}+c_{i} q \quad \text { where } b_{i} \in \Phi_{C}(B) \text { and } c_{i} \in C
$$

(Note that here the fact that $0 \in C$ allows us to cover the case that $r_{i} \in \Phi_{C}(B)$; also note that b_{i} 's are not necessarily distinct.) Since r_{1}, \ldots, r_{k} is an arithmetic progression and Δ^{2} is linear, we have

$$
\begin{equation*}
0=\Delta^{2} r_{i}=\Delta^{2} b_{i}+q \Delta^{2} c_{i} \quad \text { for } 1 \leq i<k-1 \tag{1}
\end{equation*}
$$

First assume for the sake of a contradiction that $\Delta^{2} c_{i}=0$ for all i, $1 \leq i<k-1$. Then $c_{1}=c_{2}=\cdots=c_{k}$ since otherwise c_{1}, \ldots, c_{k} would be an arithmetic progression of length k in C. Next, since r_{1}, \ldots, r_{k} is not a constant sequence, neither is b_{1}, \ldots, b_{k}. But $\Delta^{2} b_{i}=0$ for $1 \leq i<k-1$ from (1) and by our hypothesis that $\Delta^{2} c_{i}=0$. Therefore b_{1}, \ldots, b_{k} is an arithmetic progression of length k in $\Phi_{C}(B)$, which is the desired contradiction.

Fix $i, 1 \leq i<q-1$, so that $\Delta^{2} c_{i} \neq 0$. From (1) we have

$$
\begin{equation*}
q=-\Delta^{2} b_{l} / \Delta^{2} c_{l} \tag{2}
\end{equation*}
$$

Since $b_{j} \in \Phi_{C}(B), i \leq j \leq i+2$, there are distinct numbers $a_{1}, \ldots, a_{n} \in B$ such that $b_{J}=\sum_{t=1}^{n} c_{j, t} a_{t}$ for $i \leq j \leq i+2$ and certain numbers $c_{j, t} \in C$. (Here, we use the fact that $0 \in C$ to make a_{1}, \ldots, a_{n} independent of j.) By linearity of Δ^{2},

$$
\begin{equation*}
\Delta^{2} b_{t}=\sum_{t=1}^{n} a_{t} \Delta^{2} c_{i t} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta^{2} c_{i, t}=c_{i+2, t}-2 c_{t+1, t}+c_{i, t} . \tag{4}
\end{equation*}
$$

Since we are in search of $F(C)$ in order to have $q \in \Phi_{C}^{(k)}(B) \subseteq \Phi_{F(C)}(B)$, (2), (3), and (4) suggest that we may take $F(C)$ to be the set of all numbers of the form $-u / v$ where $v \neq 0$ and u, v are each of the form $c-2 d+e$ with $c, d, e \in C$.

Let

$$
C_{0}=\left\{-1,0, \frac{1}{2}, 2\right\} \quad \text { and } \quad C_{e+1}=C_{e} \cup F\left(C_{e}\right)
$$

where F is the function from Lemma 9 . We enumerate A in stages by defining A^{s} for any s. At the end of stage s we define k_{e}^{s} so that C_{e} and $\Phi_{C_{e}}\left(A^{s}\right)$ are k_{e}^{s}-thin. During the construction we need to satisfy the positive requirements P_{e}.

Definition. P_{e} requires attention at stage $s+1$ if there exists x such that

$$
\begin{equation*}
A^{s} \cap W_{e}^{s}=\varnothing \tag{1}
\end{equation*}
$$

(2)

$$
x \in W_{e}^{s}-\Phi_{C_{e}}\left(A^{s}\right)
$$

Construction.

Stage 0. To initialize, let

$$
\begin{aligned}
& A^{0}=\varnothing, \quad \text { and, for each } e \\
& k_{e}^{0}=\text { the least } k \text { such that } C_{e} \text { is } k \text {-thin, }
\end{aligned}
$$

Stage $s+1$. If no P_{e} requires attention, let

$$
A^{s+1}=A^{s} \quad \text { and } \quad k_{e}^{s+1}=k_{e}^{s} \quad \text { for all } e
$$

and go on to the next stage. Otherwise, let j be the least e such that P_{e} requires attention and choose the least corresponding x. Let

$$
A^{s+1}=A^{s} \cup\{x\}
$$

and

$$
k_{e}^{s+1}=\left\{\begin{array}{l}
k_{e}^{s} \quad \text { if } e<j \\
\text { the least } k \text { such that } \\
\quad C_{e} \text { and } \Phi_{C_{e}}\left(A^{s+1}\right) \text { are } k \text {-thin if } j \leq e
\end{array}\right.
$$

(Note that the k in the second case exists because C_{e} and $\Phi_{C_{e}}\left(A^{s+1}\right)$ are finite sets.)

Since A is clearly r.e., if the requirements $N_{-1}, P_{0}, N_{0}, \ldots$ are satisfied, the theorem is established. In the following we state and prove some lemmas which show that the requirements are indeed satisfied.

Lemma 10. A is 3-thin.

Proof. Note that

$$
\left(A^{s}\right)^{*} \subseteq \Phi_{C_{0}}\left(A^{s}\right) \subseteq \Phi_{C_{e}}\left(A^{s}\right)
$$

for all e and s, so no element of $\left(A^{s}\right)^{*}$ enters A at s and $\left|A^{s+1}-A^{s}\right| \leq 1$. Hence as remarked before the constructions, it follows that A is 3-thin.

Lemma 11. For each $e, \lim _{s} k_{e}^{s}$ exists.
Proof. If $k_{e}^{s} \neq k_{e}^{s+1}$, then some P_{J} with $j \leq e$ must have needed attention at stage $s+1$. But each P_{j} receives attention at most once.

Lemma 12. For each e and s, C_{e} and $\Phi_{C_{e}}\left(A^{s}\right)$ are k_{e}^{s}-thin.

Proof. This is proved by induction on s. It is clear if $s=0$. Suppose C_{e} and $\Phi_{C_{e}}\left(A^{s}\right)$ are k_{e}^{s}-thin. Consider stage $s+1$; if no P_{e} requires attention then the result for $s+1$ is immediate. Otherwise, assume P_{j} requires attention at stage $s+1$ via x. By construction, x is the unique element of $A^{s+1}-A^{s}$. If $e \geq j$, then C_{e} and $\Phi_{C_{e}}\left(A^{s+1}\right)$ are k_{e}^{s+1}-thin by the choice of k_{e}^{s+1}. Suppose $e<j$. For the sake of a contradiction, assume that $\Phi_{C_{e}}\left(A^{s+1}\right)$ is not k_{e}^{s+1}-thin, and hence not k_{e}^{s}-thin. Therefore $x \in$ $\Phi_{C_{e}}^{\left(k_{e}^{s}\right)}\left(A^{s}\right)$. Since $\Phi_{C_{e}}\left(A^{s}\right)$ and C_{e} are k_{e}^{s}-thin, it follows by choice of C_{e+1} that $x \in \Phi_{C_{e+1}}\left(A^{s}\right)$. But $e+1 \leq j$, so $C_{e+1} \subseteq C_{j}$ and hence $x \in \Phi_{C_{j}}\left(A^{s}\right)$, contrary to the construction.

Lemma 13. If W_{e} is thick, then $A \cap W_{e} \neq \varnothing$.

Proof. Let $k_{e}=\lim _{s} k_{e}^{s}$. From Lemma 12 and the monotonicity and continuity of $\Phi_{C_{e}}$, it follows that $\Phi_{C_{e}}(A)$ is k_{e}-thin. Assume e is such that W_{e} is thick and $A \cap W_{e}=\varnothing$. Then $W_{e} \nsubseteq \Phi_{C_{e}}(A)$, so choose $x \in W_{e}-$ $\Phi_{C_{e}}(A)$. By monotonicity, $x \in W_{e}^{s}-\Phi_{C_{e}}\left(A^{s}\right)$ for all sufficiently large s, so P_{e} will require attention at all sufficiently large stages and will eventually receive it, since each $P_{i}, i<e$, receives attention at most once.

This completes the proof of the theorem.
5. A corollary. To see a corollary consider:

Definition 14. Let $B \subseteq \omega . B$ is said to have positive upper density if

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{n}|B \cap\{1, \ldots, n\}|>0
$$

It can be seen that a thick set does not have to have positive upper density. However, Erdös-Turán conjectured a phenomenon, later proved intricately by Szemerédi [3], one of whose consequences is that every set of positive upper density is thick.

Now, clearly the van der Waerden Theorem is a special case of Szemerédi's theorem since if a set B is k-thin for any k then it is not thick and therefore not of positive upper density. Hence it can be seen that $\omega-B$ has to be of positive upper density and hence it must have a thick subset.

Theorem 7 and Szemerédi's theorem may be used to give a counterexample to effectiveness of the Szemerédi's theorem.

Corollary 15. There exists an r.e. set A which is thin but intersects every r.e. set of positive upper density.
6. Generalization. It may be the case that Theorem 7 can be generalized in different ways. In this section we give one version which has a proof structurally the same as our proof of Theorem 7.

Definition 16. Let $A \subset \omega$ and $k, d \in \omega$. A is k-thin for degree d if there is no nonconstant polynomial $p(x)$, with coefficients in \mathbf{Q} and of degree $\leq d$ with $p(0), \ldots, p(k-1) \in A$.

Before we give the theorem, we state some useful facts. Clearly A is k-thin for degree 1 iff A is k-thin. Also, if A is k-thin for degree d and A has more than 1 element, then $k \geq d+2$. This is because Lagrange's Interpolation Formula applied to given pairs $\left(x_{0}, y_{0}\right), \ldots,\left(x_{d}, y_{d}\right)$ with distinct x_{0}, \ldots, x_{d} produces a polynomial p of degree $\leq d$ such that $p\left(x_{i}\right)=y_{i}$ for $0 \leq i \leq d$.

Definition 17. A is sparse for degree d if for all $d^{\prime} \leq d, 0<d^{\prime}, A$ is ($d^{\prime}+2$)-thin for degree d^{\prime}. Note that A is sparse for degree 1 iff A is 3-thin, and if A is sparse for degree d and $d^{\prime} \leq d$, then A is sparse for degree d^{\prime}.

Definition 18. A is thick for degree d if A is not k-thin of degree d for any k.

Finally we are able to generalize Theorem 7 whose intuitive content is 'there are sparse r.e. sets which meet every thick r.e. set'.

Theorem 19. For each d, there is an r.e. set A which is sparse for degree d and intersects every r.e. set which is thick for degree d.

We leave the proof to the reader with a hint: in proof for Theorem 7, replace Δ^{2} by Δ^{d+1} and modify C_{0} appropriately.

Observe that Theorem 19 reduces to Theorem 7 when $d=1$ and that the strength of Theorem 19 increases as d increases.
7. Open questions. Upon further reflection, it becomes clear that Theorems 5 and 7 are about "controlling" thinness. This raises the following questions:
(1) Is there a recursive function f and a 3 -thin r.e. set A such that $A \cap W_{e} \neq \varnothing$ whenever W_{e} is $f(e)$-thick? By Theorem $5, f$ may not be
chosen to be constant. By Theorem 7, there is such an f recursive in 0^{\prime}, i.e. $f(e)=k_{e}$.

In Theorem 19 we stated a generalized form of Theorem 7. In that light
(2) Is there an r.e. set A which is sparse for all degrees d and which meets every r.e. set which is thick for any degree d ?

Acknowledgement. We wish to thank Michael Ingrassia and Jeff Remmel for helpful conversations.

References

[1] R. Graham, B. Rothchild and J. Spencer, Ramsey Theory, Wiley, 1980.
[2] A. Y. Khinchin, Three Pearls of Number Theory, Graylock Press, Rochester, New York 1952.
[3] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGrawHill, New York 1967.
[4] E. Szemerédi, On sets of integers containing no k elements in arithmetic progressions, Acta Arith., 27 (1975), 299-345.
[5] B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk, 15 (1927), 212-216.
[6] __ How the Proof of Baudet's Conjecture Was Found, Studies in Pure Mathematics (edited by L. Mirsky), Academic Press, pp. 251-260 (1971).

Received December 21, 1982. Research of the first author was partially supported by the National Science Foundation.

University of Illinois
Urbana, IL 61801

AND
Western Illinois University
Macomb, IL 61455

