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BIMEASURE ALGEBRAS ON LCA GROUPS

CoLIN C. GRAHAM AND BERTRAM M. SCHREIBER

For locally compact abelian groups G, and G,, with character
groups I'; and T’,, respectively, let BM(G,, G,) denote the Banach space
of bounded bilinear forms on Cy(G,) X Cy(G,). Using a consequence of
the fundamental inequality of A. Grothendieck, a multiplication and an
adjoint operation are introduced on BM(G,, G,) which generalize the
convolution structure of M(G X H) and which make BM(G |, G,) into a
KZ-Banach *-algebra, where K is Grothendieck’s universal constant.
The Fourier transforms of elements of BM(G,, G,) are defined and
characterized in terms of certain unitary representations of I', and I’,.
Various aspects of the harmonic analysis of the algebras BM(G,, G,) are
studied.

Introduction. Let S be the space of all doubly-indexed, bilateral,
complex sequences of the form (U"§, Uy'n), where U, and U, are unitary
operators on a Hilbert space H and &, n € H. In [17] it was shown that,
under coordinatewise addition and multiplication, S is an algebra contain-
ing all sequences of Fourier-Stieltjes coefficients of complex Borel mea-
sures on the torus T2, It was also show that if

V=C(T)® c(T)

denotes the projective tensor product of the space C(7') with itself, then
there is a natural embedding of S in the dual V* of V. Namely, if
(a,,,) € S there is a unique element ¥ € V™ such that

amn=<e“"0®e‘i’”“’,u>, —0o<m,n< .

The question whether every element of V* arises from S in this way
was left open in [17]. However, it was pointed out to us by G. Pisier that a
positive answer to this question follows easily from the Fundamental
Theorem of the Metric Theory of Tensor Products (Theorem 1.2 below) of
A. Grothendieck. (See Theorem 2.4(i).) It is a pleasure to express our
gratitude to him here for having communicated this fact to us and to T.
Ito for a number of helpful conversations with the second author. The
purpose of this paper is to extend these ideas to the context of all locally
compact abelian (LCA) groups and to examine some of their ramifica-
tions. That is, we wish to initiate the study of the harmonic analysis of the
space [Cy(G,) ® Co(G,)]* of bimeasures on a pair G,, G, of LCA groups.
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We shall begin with some preliminary observations about bimeasures
on locally compact spaces and spaces of Fourier-Stieltjes transforms. In
particular, we introduce in §1 the concepts of discrete and continuous
bimeasures and show that every bimeasure is the sum of its discrete and
continuous parts. These results are related to those of [25], although our
methods differ from those of Saeki. The Fourier transform a bimeasure on
the LCA group G, X G, is also introduced here. We prove in §2 that if G,
and G, are LCA groups, then the space of bimeasures on G, X G, has a
natural Banach-algebra structure which agrees with convolution on the
space of measures on G, X G,. There follows a short section on sub-
groups, quotients and so on. The main result obtained in §3 is an
extension to the present context of the well-known result of W. F.
Eberlein characterizing Fourier-Stieltjes transforms on a LCA group I as
the continuous functions on I' which are Fourier-Stieltjes transforms on
the discrete group T,. In §4 we study the closure of L'(G, X G,) as a
subalgebra of the bimeasure algebra on G, X G,. Section 5 is devoted to
the subject of idempotent bimeasures and homomorphisms between bi-
measure algebras, as well as some consequences of the fact (Theorem 5.8)
that when G, = G, = G and A denotes the diagonal in the dual of G X G,
then every bounded, uniformly continuous function on A is the restriction
of the Fourier transform of a bimeasure. We conclude in §6 with a short
discussion of Sidon sets in the context of bimeasures.

A number of authors have studied tensor products in the context of
Banach algebras. See [1], [2], [8], [9], [11] and [20] and the references cited
in those papers. However, it should be observed that it is an easy
consequence of our Theorem 5.8 cited above that, at least when G, = G,
= @, the space of bimeasures on G X G does not arise as the completion
of M(G) ® M(G) with respect to any tensorial norm. Our approach to the
algebra structure on the space of bimeasures on G, X G, is via generaliza-
tion of the arguments appearing in [17].

NortaTION. The symbols G, G,, G, will always stand for LCA groups.
The character group and the Bohr compactification of G, G, will be
denoted by T, I, and bG, bG,, respectively, and T';, I, denote T', I, with
the discrete topology. As is customary, L'(G), M(G), A(G), B(T) and
PM(T') denote, respectively, the group and measure (*-)algebras of G and
the algebras of Fourier transforms, Fourier-Stieltjes transforms and
pseudo-measures on I'. For p € M(G), the Fourier-Stieltjes transform of p
is given by fi(y) = [;(—x, v) du(x). X and Y will represent locally com-
pact spaces, and for such a space X, £*(X), C(X), C(X) and Cy( X) are
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the spaces of bounded functions on x which are, respectively, Borel
measurable, continuous, continuous with limit zero at infinity, and con-
tinuous with compact support. The norm in C(X) is denoted by || || 4

1. Tensor algebras and bimeasures.

DEFINITION 1.1. Given locally compact spaces X and Y, let ¥, =
Vo( X, Y) = Cy(X) ® Cy(Y) be the projective tensor product of the indi-
cated spaces of functions. Elements of the dual space of Vy(X, Y) have
been referred to traditionally as bimeasures on X X Y. Following [28], for
examplf:, we denote the dual of V(X,Y) by BM(X,Y). Let V(X,Y) =
C(X) ® C(Y) and set

NX,Y)={feEC(XXY):fgeVy(X,Y)forallg € V,(X,Y)}.

The version of the Fundamental Theorem of Grothendieck which we

need is the following one. For proofs and applications in a contemporary

setting, we refer the reader to [18], [8], [9], and [11]. In particular, see [11,
Theorem 3.1].

THEOREM 1.2. Let u € BM( X, Y). There exist regular Borel probability
measures A y on X and Ay on Y and C > 0 such that

where the L*-norms refer to L*(X,Ay) and L*(Y, \y), respectively. Let
lulll = inf{C: (1) holds for some X y, Ny}. Then there is a universal constant

K such that
lull < llulll < Kgllull, u€BM(X,Y).

Thus u can be extended to a bounded linear functional on LY X, \y) ®
L¥(Y, Ay).

If u, Ay and A, are as in Theorem 1.2, we shall refer to Ay, Ay as a
Grothendieck measure pair for u and denote the norm in L*( X, A x) @
L*(Y, Ay) by |||, Similarly, we denote the norm in £°(X) ® £°(Y) by

I loo.c0-

COROLLARY 1.3. If u € BM( X, Y) there is a unique extension of u to
R*(X) ® £°(Y) such that for every pair A y, Ay of Grothendieck measures
for u with constant C as in (1),

l<¢®\b’u>lSC”¢”2”¢”2’ ¢’EBOO(X)31P€BOO(Y)'
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Proof. Let A y, Ay and Ay, A}y be two Grothendieck measure pairs for
u. Set py = (A y + ANy) and py = 2(Ay + A%). Then there is a constant
C > 0 such that (1) holds with reference to L*( X, p,) and LX(Y, py).
Given ¢ € £°(X) and ¢ € £°(Y), choose { f,}-, C C,(X) and {g,}7-,
C C(Y) such that f, > ¢ in L*(X, puy) and g, > ¢ in L*(Y, py). Then
[,®g, »¢®y in both LX(X,Ay) ® LAY, A,) and LX(X,\y) ®
L*(Y, \}), and the corollary follows.

Our first application of Theorem 1.2 concerns bimeasures with com-
pact support. Recall that the support of a bimeasure u on X X Y is the
smallest closed set F in X X Y for which ( f, u)= 0 for all f € Vy( X, ¥)
such that f = 0 on a neighborhood of F.

LEMMA 1.4. The bimeasures with compact support are dense in
BM(X,7Y).

Proof. For ¢, € L*(X), ¢, EL(Y),u € BM(X,Y) and ¢ = ¢, ®
¢y, we define
(f,ou)=(of,u), [EV(X,Y).

Since ¢f € £2°(X) ® £*(Y), Corollary 1.3 applies, and (¢f, u) is well
defined. Thus ¢u € BM( X, Y). If ¢, and ¢ are continuous, then

loull <loxlx llovlly llul-

Let u € BM(X,Y), and let A, A, be a Grothendieck measure pair
for u. Given & > 0, choose a compact set K, C X such that A ,(K§) < &
and ¢y € Cyy(X) such that 0 <¢, =<1 and ¢, =1 on K,. Similarly
choose K, and ¢,. Then ¢u has support in the compact set (supp ¢) X

(supp ¢v), and
lu—oul= sup [(f,u—ou)|= sup [{f— ¢f, u)l

1A, =1 1Al =<1
=C sup [[(1=¢)f]2=Cl1 — ¢|12
1Al =1

< C2A(K5)'"? + Ay (K$)'?) < 3Ce.
The lemma follows.

LEMMA 1.5. Let E and F be closed subsets of X and Y, respectively.
There is a projection of norm one from BM( X, Y) onto BM(E, F).
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Proof. For u € BM(X,Y), let v = (xg ® xr)u, X and x  being the
characteristic functions of E and F and the product defined as in Lemma
1.4. Then v is supported on E X F, and it is clear that the mapping u - v
is a linear projection onto BM( E, F). To see that that mapping has norm
at most one, choose a Grothendieck measure pair A y, A, for u. For each
positive integer n, choose an open set U, in X such that E C U, and
A y(U,) <A4(E) + n~" and choose a function f, € C(X) such that f, = 1
onE,f,=0on Uf and 0 <f, < 1. Then f, - x in L*( X, A ). Similarly
choose {g,}2-, C C(Y) so that g, —» x in L*(Y, Ay). Then ||(f, ® g,)ul|
<|lull, n =1, and (f, ® g,)u = v weak-* in BM( X, Y). Thus ||v|| = ||u||,
and the lemma is proved.

DEFINITION 1.6. Let E and F be closed subsets of X and Y, respec-
tively. If v € BM( X, Y), then the image of u under the projection of
BM( X, Y) onto BM(E, F) will be called the restriction of u to £ X F and
denoted u |, . Note that there is a natural isometric isomorphism be-
tween BM(E, F) and the subspace of BM( X, Y) of bimeasures supported
on E X F. If u € BM(X,Y) satisfies u |, = 0 for all finite subsets E of
X and F of Y, then we shall call u a continuous bimeasure. If there exist
increasing sequences { E,} and {F,} of finite subsets of X and Y, respec-
tively, such that u = lim,,_ , 4|, »r (norm limit), then we call u a discrete
bimeasure. The spaces of all continuous and all discrete bimeasures on
X X Y will be denoted, respectively, by BM (X, Y) and BM (X, Y).

LEMMA 1.7. Let & be the family of all finite sets of the form E X F,
where E C X and F C Y, and let & be directed by inclusion. Let u €
BM(X,Y). Thenu € BM,(X,Y) if and only if u = im gy pcg U |px p in the
norm topology.

Proof. If u = limg, pcg U|pxp, then it is clear that u € BM,( X, Y).
The opposite implication follows from the observation that if £ C E” and
F C F’ then

(2) ||u - ulE'XF’” = 3”“ - ulEXF”'

To see that this is true,setA = E' N E,B=F N Fandv = u — u|gyp.
Then

U= Ulpp = U= Ulpyr = Ulgr — Ulpxp

=0~ Ulyxr~ Vlpxp



96 COLIN C. GRAHAM AND BERTRAM M. SCHREIBER

Since restrictions are norm decreasing, the inequality (2) holds. The proof
of our lemma is complete.

THEOREM 1.8. (1) BM(X,Y) and BM,( X, Y) are closed linear sub-
spaces of BM( X, Y).

(2) There is a norm-reducing projection from BM( X, Y) onto BM (X, Y)
whose kernel is BM ( X, Y'). Thus topologically,

BM(X,Y)=BM/(X,Y)®BM,(X,Y).

Proof. (1) That BM (X, Y) is a closed linear subspace follows at once
from Lemma 1.5. That BM (X, Y) is a linear space follows easily from
Lemma 1.7. To show that BM,( X, Y) is closed, we argue as follows. Let
{u,} CBM,(X,Y)besuchthatu, - u € BM(X, Y). Given e > 0, choose
n, so that ||lu, — u|| < e and finite sets E, C X and F, C Y such that

|un0 — unOIEXF“ <& whenever E, C E, F, C F.

Then for such E and F,

“” - uIEXF.. <llu — “n()” +u,, — Uy, |E><F” +“un0|E><F - ulEXF”

< 2llu = u, | + |y, — o r|| < 3e

sou € BM,(X,Y).

(2) Let u € BM( X, Y) with Grothendieck measure pair A, and A,.
Let E={x € X: Ay({x}) >0} and F={y € Y: A, ({y}) > 0}. Let E|
C E, C --- C E be finite sets whose union is E, and similarly choose
FI/CFC---CF.Seto=(xg®xpuandv, = (xg, ® Xg)¥ = vl xr-
Given ¢ > 0, choose » so that

AM(ENES) <&, A(FNE)<e
Then a calculation similar to that in the proof of Lemma 1.4 gives

o= v, = | Sufl I<f(XE ®Xr— Xg, © XF,,)’ “>l

iy, =1
< Cllxy, ® xr — X, ® X5, < 3Ce.

Thus v € BM,( X, Y) and ||v|| <||u|. If P and Q are finite sets in X and
Y, respectively, such that ENP=FN Q = &, then ulp,, = 0. It is
now easy to check that w =u —v € BM (X, Y). So it remains only to
check that

BM(X,Y) N BM,(X,Y) = {0},
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which follows immediately from the definitions. This ends the proof of
Theorem 1.8.

ExaMPLE 1.9. It is not true in general that if ¥ € BM(X,Y) and
v € BM,(X,Y) then |ju + v|| = ||lu|]| + ||v]|. Suppose X supports a con-
tinuous probability measure u. We may assume supp p is not all of X.
Choose x € X\supppand y,,y, € Y. Forf € C)(X) and g € C(Y), set

(f®gu)=(g(r) - g(yz))fxfdu

and
(f®g,0)=f(x)(g(y)+g().

Then u € BM(X,Y), v € BM,(X,Y), |jull = |jv]| = 2, but [|u + o] =
23/2 as straightforward calculations show.

DeriNITION 1.10. Let G, and G, be LCA groups with character
groups I', and I}, respectively. Set G = G, X G, and I' =TI’ X I,. Let
u € BM(G,, G,). We define the Fourier transform i of u by the formula

a(y,8) =(y®8,u), yel,del,.

That the formula for # makes sense follows from Corollary 1.3, which also
implies

”ﬁ”l‘,xl‘z = KG”u” .

However, since the compactly-supported bimeasures are dense in
BM(G,, G,), it is easy to see that

”ﬁ”lerz S“uua uc BM(GI’ GZ)’

since, when u has compact support, each character agrees on the support
of u with some f® g € V},, where || f® gl|,, = 1.

REMARKS 1.11. (1) Preserving the notation of Definition 1.10, let us
recall the relationships between the spaces of Fourier transforms and
Fourier-Stieltjes transforms on I' and the spaces introduced above.
Namely:

(i) A(T) C Vy(T,, Ty).

(it) B(I') C N(T',, ).
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Moreover, each of these containments represents an embedding of norm
one. Indeed, it is a well-known result of Grothendieck [13] that isometri-
cally

LY(G) = L(G,; L'(G,)) = L(G,) & L'(G,).

Soif f € L'(G) and € > 0 are given, then there exist { f,}°., C L(G,) and
{g,} C L\(G,) such that

flx, y) = 2 5(x)g.(y a.e.on G
and
3 bl < (1 + 7l
Thus
§ (v)8.(8 y€T,8 €T,

sof € Vo(T}, I,), and we have

171 = 2 1Alle, 18l = (1 + €)lIf -

Assertion (i) follows.

To see that (ii) holds, let {f,} be an approximate identity in L'(G)
such that for each compact set K CT, £, =1 on K for some a and
Nl = 1. For each a as above and p € M(G), (f, * u) € Vy(T,, T,) and
£, * 1)y, = llill by (0). Since Coo(T,) ® Coo(Ty) is dense in V(T Ty, it
follows easily that i € N(I}, I,) with ||fi|| y =||p|l. (The norm on N is the
multiplier norm of operators on V(T I5).)

(2) Suppose G is compact, and let P: C(G X G) — C(G) be the Herz
P-mapping, namely,

=ff(y—x,x)dx, y €G.
G

Then, as is well known, P maps C(G X G) onto C(G), and if A(G) is
given its usual norm via /'(T') then the restriction of P to V(G,G) is a
norm-reducing map of V(G, G) onto A(G). In this case, PM(G) = A(G)*
= [*(T"). The following observation will be used in several places in the
present work to transfer statements about PM(G) to analogous assertions
concerning BM(G, G) when G is compact. The details are straightforward
using, say, [12, 11.1.1] and will be left to the reader.



BIMEASURE ALGEBRAS ON LCA GROUPS 99

LEMMA 1.12. Let G be compact and P: V(G,G) — A(G) be the Herz
P-map. Then P*: PM(G) - BM(G,G) is an isometric embedding on
PM(G) carrying M(G) into M(G X G) and L\(G) into L'(G X G), and
1P Bl sy = Illarcay i € M(G). More specifically, for S € PM(G),

(Prs)(ro) = {500 70

We conclude this section with another lemma which we shall need
later.

LEMMA 1.13. Let u € BM(G,, G,). There is a net {u,} of finitely-sup-
ported bimeasures on G, X G, such that ||u || < ||u||,

li‘fn(f, u )= {f,u)y, feEV(G,G,),
and i, — @ uniformly on compact sets in I'; X I,.

Proof. By Lemma 1.4, Theorem 1.2 and Corollary 1.3, we may assume
u has compact support contained in K = K, X K,, where K, is compact in
G, i=1,2. Let E be a compact subset of I' =T', X I,. Then {vy|,:
y € E} has compact (norm) closure in V(K,, K,). Thus to prove our
lemma it will suffice to prove the (more general) assertion that given
u € BM(K,, K,) there exists a net {u,} of finitely-supported bimeasures
such that ||u,|| <||u|| for all a, and u, — u in the topology of uniform
convergence on compact sets of V(K,, K,).

A standard two-epsilon argument shows that it will suffice to find a
net {u,} of finitely supported bimeasures such that ||u || = |lu|| for all «
and such that for each finite set {f,....f,} C V(K|, K,), {(f,u,)~
(f,»u),j=1,...,n. The existence of such a net {u,} is the content of [12,
Lemma 11.1.6]. The proof of the lemma is complete.

2. Bimeasure algebras and unitary representations.

DEFINITION 2.1. If T, and I, are LCA groups, let S(I';, I',) be the set
of all functions « on I', X T, of the form

(3) aly, 8) = (m(v)&, m(8)n),

where 7, and 7, are strongly-continuous unitary representations of I', and
I, respectively, on a Hilbert space H and &, n € H. Clearly S(T',, I},)
consists of bounded, uniformly continuous functions on I', X I,.
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Lemma 2.2. S(T',, I,,) is a conjugate-closed algebra of functions on
I X T,

Proof. Clearly S(T',, I,) is closed under complex conjugation and
scalar multiplication. Let a« € S(I'}, I’,) be given by (3) on the Hilbert
space H and 8 € S(I'},, ) be given as in (3) by representations 7| and ,
and vectors ¢’ and 7’ in the Hilbert space K. On the Hilbert space H © K,
the representations 7, © «, and 7, © =, are unitary, and

a(y,8) + B(y,8) = (m(v)§, m(8)n) 5 + (m(v)&, m3(8)7')
= ((m(y)& 7{(¥)€), (m(8)n, m3(8)n')) nex
= ((m ® 7)(¥)(£, &), (m, ® 73)(8)(m, 0)) wex-
Thus a + B € S(I'}, I5,). To show S(I}, I,) is closed under multiplication,

consider the Hilbert-space tensor product H ® K of H and K. The
representations m; ® «, and 7, ® 7, are unitary on H ® K, and

a(v,0)B(y,8) = (m(y)&, m(8)n) y (m{(v)&, m5(8)n')
- <771 €@ m(v)E, my(8)n © m3(8)n’ >H®K
= ((m @) (Y)(E®E), (m, @ m3)(8)(n ®W)) nak

so af € S(T',, I,). That ends the proof of Lemma 2.2.

The following lemma is a special case of a well-known result about
representations of *-algebras. (See [19, p. 147].)

LEMMA 2.3. Let m be a strongly-continuous unitary representation of I’
on the Hilbert space H, and let f — @w( f) be the induced *-representation of
LY(T), namely

7(f)é =frf(v)ff(v)£ dy, feL(T),¢€H.

Then ||w( )l =11 fll> f € L'(T),

Proof. Let A denote the closure of {n(f): f € L(T')} in B(H). Then
A is a commutative C*-algebra; let 91U denotes its maximal ideal space.
Therg is a natural continuous embedding @ of QTL into G such that
m(f)($) = [(®($)), $ € M. Thus |l7( /)| = ll7(f)llw =l /llg, and our

lemma is proved.
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THEOREM 2.4. (i) If u € BM(G,, G,), then i € S(I'},, I,).

(i) If « € S(I'}, I,), then there exists a unique u € BM(G,, G,) such
that i = a.

(i) If « € S(I'}, I,) is represented as in (3) and u € BM(G,, G,) is
such that & = a, then ||u|| =< [|£]|l|]]-

Proof. (i) We may assume u 0. Let A, A, be a Grothendieck
measure pair for u, so that (1) holds. Then there is an operator

T: LX(G, N) = LGy, A,)

such that ( f® g, u)= (Tf, g). Let m, and 7, be the representations on
L*(G,, \)) and L*(G,, \,) given, respectively, by

m(v)f = ¥f, '”2(8)8 = dg.

Then =, and 7, are strongly-continuous unitary representations of I', and
I, respectively, and

a(y,8) = <?®8—, u)y=(Ty,8)= <Twl(y)1,w2(8)l>.

Let H be the Hilbert space L*(G,, A,) ® L*(G,, A,), and let the extension
of T to H with matrix (%) also be denoted by 7. Following [17, p. 638],
let ¢ = ||T|| and let W be a unitary dilation of ¢™'T on the Hilbert space K
containing H. Writing

K=LYG,,\,) ® L*(G,, \,) ® H*,

set
=1, @IDI,
m=WxIDm,®I)W,
¢=(c-1,0,0)
and
n = W*(0,1,0).
Then in K,

12(‘}’, 8) = <CW(71(Y)1’090)’ (O’ ﬂ'2(6)1’0)>
= (¢(m(¥)1,0,0), W*(0, 7,(5)1,0))
= (# ()&, %,(8)n).
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(iD)~(iii). Let @ € S(I, I). For f € A(G)), g € A(G,), let ¢ € L'(T),
¥ € L(T,) be such that = fand § = g. Define
(1@ g uy=[ [ o(-v)¥(-8)a(v,5)dvds.
L, /T,
If «a is represented as in (3), then by Lemma 2.3,

(r@ 8 wl=|[ [ o198} (m()E m()n) dyda]

='<fr¢(—7)ﬂ(v)£dv,frWﬂz(fs)n d8>.

“,(771 5 (Y *)"7>,
<[ (¢*)] 1l llma () Il <1€0 Il 1/ 16 18]G

Since u is clearly bilinear on A(G,) X A(G,) and A(G,) is dense in Cy(G,)
(i = 1,2), u extends to a bimeasure on G, X G, of norm at most ||&||||n]|,
yielding (iii) once (ii) is proven.

Extend u to £%(G,) ® £%(G,) via Corollary 1.3. We now show that
#=a Lety, €T, 8, €T,. Fori = 1,2 and for each neighborhood U, of
0 in T,, let ¢, be a nonnegative function in L(T,) such that ¢, =0
outside U, ¢, = ¢7;, and [, ¢y(v)dy = 1. If A;, A, is a Grothendieck
measure pair for u, then foro € I,

((¢g),)(x) = (x,0)9y(x) > (x, 0)

uniformly on compact sets in G, hence in L*(G, \,). (Here ¢,(y) =
¢(y — 0).) For x, { € H, the strong continuity of 7, and , gives

'j; L¢U,(Y)¢Uz(3)<71(7)x,'”2(8)§> dydd — <Xa§>

S/ f¢U.(Y)¢uz(5)l<m(7)x,w2(8)§>— (x,¢)|dyds

= sup sup [{m(y)x,m(8)¢)— (x. )|

YEU, 6€U,
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which tends to 0 as U, and U, decrease to {0} in I'; and I’,. Thus, setting
U= (Ula U2)>

(7@ 8, u)= (tim ((90).,)'® ((90,),) )
- h{]n <((¢UI)%)~® ((‘PUZ)—%)A’ “>

= lim fr fr (60,)-,,(V)($1,)4, (-0)a(y, 8) dy b
=tim [ ¢ulto = v)0u(8 = 0)(m(1)é, m(8)n) dyas

= hm/ f¢u,(7 ¢U2(8 80)('”1(7)6, ”72(6)77> dyds

-—11mf f¢UI(y)¢U2 8)(m(y)m(vo)&, m,(8)my(85)m ) dydé

= <771 Y0)€, m(8, ’7>: a(vy, &)

Suppose u,, u, € BM(G,, G,) are such that 4, =4,. Let A;;, A, be a

Grothendieck measure pair for u, and A,,, A,, be a Grothendieck measure

palr for u,. As in the proof of Corollary 1.3, let A, = (A, + A,)),
= 1,2. Then

L¥(G;, \) = L*(G, A) N LG, Ay,), 0= 1,2,

50 both u, and u, can be extended to L*(G,, \,) ® L*G,, A,). Since the
trigonometric polynomials are dense in L*(G,,A,), i = 1,2, we have
u, = u, on LYG,, \,) ® L*(G,, \,), so in particular on V,(G,, G,), which
proves the uniqueness assertion.

The proof of Theorem 2.4 is complete.

DEerFINITION 2.5. For u, v € BM(G,, G,), define u * v € BM(G,, G,)
by (u * v) = 26. By Lemmas 2.2, 2.3 and Theorem 2.4, this defines a
commutative algebra structure on BM(G,, G,) which extends the algebra
structure of M(G, X G,). When G is compact and PM(G) is embedded in
BM(G, G) as in Lemma 1.12, then PM(G) may be considered as a closed
ideal in BM(G, G). In fact, BM(G,, G,) is a K}-Banach algebra, as the
following theorem asserts.

THEOREM 2.6. For u,v € BM(G,, G,),
lu = of| < KZ[lul o]
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Proof. For u € BM(G,, G,), let A|, A, be Grothendieck measures for
u such that (1) holds with C = K. If T is the operator defined in the
proof of Theorem 2.4(i), then (1) implies ||T|| = K;||u||. Now let 7, 7,, &,
71, w be as in the proof of Theorem 2.4(i). Then

6= Kol and [l <|w*] = 1.

Thus, applying Theorem 2.4(ii) and (iii), there exists a Hilbert space H,,,
unitary representations 7 (i = 1,2) on H, and ¢, n, € H,, such that

a(y,8) = <771u(7)§u>'”2u(6)’7u>, yET,d €L,

and

(4) el <11 HIm.lf = Kl

Let u, v € BM(G,,G,). f we set H=H,® H,, ¢ =¢,®¢, n=
m,®n, and w, = 7 ® 7 (i = 1,2), then as in the proof of Lemma 2.2,
a = 40 can be represented as in (3) by means of 7, 7,, §,1 on H. So by (4)
and Theorem 2.4,

e = ol <[l&] lInll = 1€ €N Il lmoll = KElull o]l

Theorem 2.6 is proved.

COROLLARY 2.7. BM(G,, G,) is a closed subalgebra of BM(G,, G,). If
u € BM,(G,,G,) andv € BM(G,, G,), thenu * v € BM (G|, G)).

Proof. By Theorem 1.8, BM (G, G,) contains any bimeasure which is
the limit of bimeasures (measures) with finite support. It now follows
easily from Theorem 2.6 that BM (G, G,) 1s closed under multiplication.
It is also easy to see from Definition 2.5 and the injectivity of the Fourier
transform that if » is the bimeasure defined by evaluation at a point of
G, X G, and v € BM(G,, G,), then u * v is a translate of v. Since the
translate of a continuous bimeasure is clearly continuous, the second
assertion of our corollary follows also.

REMARK 2.8. It is also true that the product of two continuous
bimeasures on G, X G, is again continuous, i.e., BM (G, G,) is an ideal
in BM(G,, G,), as in the case for the analogous classes of measures on
G, X G,. The proof will appear in the forthcoming paper by J. E. Gilbert,
T. Ito and B. M. Schreiber [10]. It is easy to see via Theorem 2.10 below
that the product is continuous when at least one of the factors is in the
closure of M(G, X G,). However it is not true, in general, that the
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continuous measures on G, X G, are dense in BM (G|, G,). (See Corollary
5.10 below.)

DEFINITION 2.9. For f € V|(G,, G,) and u € BM(G,, G,) set
<f’ 12)2 (f(~x,~y), u>

and
f* u('x7 y) = <f('x - ‘x,’ y ——y,)’ u(x',y')>7

where u ., means that u is to be applied to the function (x’, y’) »
f(x — x’,y — y’), which is clearly in V(G,, G,) and has the same V;-norm
as f. Clearly, ||| = ||u]|-

THEOREM 2.10. Let f € Vi(G,,G,) and u, v € BM(G,, G,). Then
f* uc I/()(GI,G2)9

(5) 1+ wllvy = Kallf ve Nl

and

6) (fiuxv)y=(fxu,v)= <<f(x +x',y+y), u(x,’y,)>,v(x’},)>.

Proof. Suppose first that f € A(G, X G,), and write f = ¢ for ¢ €
LY(T, X T,). Then

feu(x, ) = ([o(-y,-8)(x, ¥)(y, )l w)
= [ [ o1 D) 1)(r. 8)alv.8) dy dd

=[o(y, 8)a(-y,-8)[(x, y).

So f * u € V,(G,, G,) by Remark 1.11(1)(i). Since i (y, §) = a(~y, -8), we
see that

~

fru=(on).
Thus
(fri,o)=((¢a),0)= f]r /r ¢(v, 8)a(y, 8)0(y, 8) dy ds
=(f,uxv).
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By Theorem 2.6,
If * ully, = sup [(f*u,0)|= sup |[(f, iixv)|

lloli=1 floli=1

<[l % SUP 15 * ol = KGllf 1z Nl
Finally, let f € Vy(G,, G,) and choose {f,} C A(G,, G,) such that
|/, = flly, = 0. Then since (5) holds for f & A(G,, G,), {f,* u} is a
Cauchy sequence in Vy(G,, G,) whose limit is clearly f * u. Hence (5) and
(6) follow for f also. That completes the proof of Theorem 2.10.

There are a number of observations regarding pseudo-measures which
can be translated using Lemma 1.12 into assertions about bimeasures.
Theorem 2.11 is one such observation; Corollary 2.12 its bimeasure
version. Theorem 2.13 contains another observation and its bimeasure
version.

THEOREM 2.11. Let G be compact and infinite. For each integer n = 1
there exists S € PM(G) such that S, S%,...,S" & M(G)and S""' € L'(G).

Proof. Fix n=1. For each j=1 let g; and h; be trigonometric
polynomials on G such that

) ledl, =2, 1=k=n,

(8) g, =27

(9) ln), <2, O=<h =<1,
(10) h;=1 onsuppg,,

(11) (supph,) N (supp ;) = & ifi .

The g; can be constructed by adapting, for example, [12, 9.5.3]; the
existence of the A ; is well known, since the g ; are constructed to have
disjoint supports.

By (8), || gj||F 1. Therefore there exists S € PM(G) such that $ =
2,8, Fork=1,...,n+ 1,(10) and (11) give

(12) h % Sk — g]
So (7) implies that if S* € M(G) for some k < n we would have
2 <[y 84, =l 8% = 20154
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so that ||S¥|| =2/ for all j. Thus S* & M(G). On the other hand, since
2,187l < oo, we see from (12) that

0 00
Sn+l — 2 gntl *hj: 2 g;1+l ELl(G)
j=1 j=1

The proof of Theorem 2.11 is complete.

If we now set u = P*S, where P* is as in Lemma 1.12, we obtain the
following corollary.

COROLLARY 2.12. Let G be a compact, infinite abelian group. For each
integer n =1 there exists u € BM(G,G) such that u, u®,...,u" &
M(G X G) and u"*' € L'(G X G).

Our final application of Lemma 1.12 in this section concerns the
relationship between the maximal ideal spaces IM(M(G X G)) and
NMN(BM(G, G)) for G compact. Let

o' M(BM(G,G)) » M(M(G X G))
and

p: M(M(G)) - M(PM(G)) = BT

be the canonical (restriction) mappings induced by the corresponding
algebra embeddings P*. Let 9(G) and 9'(G) denote the Silov boundary of
M(G) and M(G X G), respectively. The symbol ~ will denote a Gelfand
transform.

THEOREM 2.13. Let G be compact and infinite. Then the image of p does
not contain 0(G) and hence the image of p’ does not contain 9'(G).

Proof. Let p € M(G) be such that |||l =1 and the spectral radius
NAllonmeay = 2. Then ||fllog pacey = 1, but there exists ¢ € 9(G) such
that |i(¢)|= 2. Hence ¢ & p(IM(PM(G))). If P* is the map defined in
Lemma 1.12, then P* is an isometric algebra isomorphism of PM(G) and
M(G) onto closed ideals in BM(G, G) and M(G X G), respectively. Thus

CP* ) lorcanaxon =2, [1(P*1) loncama.on =1

also, so the second assertion of our theorem follows.
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3. Subgroups, quotients and Bohr compactifications.

THEOREM 3.1. Let A, be a closed subgroup of I, i = 1,2. Then
S(A, Ay) = {alAlez: a € S(I, Fz)}-

Proof. If & € S(T',, T,), then clearly
a|A,><A2 € S(A, A,).

Let H = A;,i= 1,2, and pick u € BM(G,/H,, G,/H,). We must show
there exists v € BM(G,, G,) such that

(13) Olp,xa, = @
By Lemma 1.13 there is a net
{u,} C BM(G,/H,, G,/H,)
such that each u, has finite support and norm bounded by ||u||, and

im(f,u)=(f.u), fEV(G/H\. G/H,).

If
$: G, X G, _’(Gl/Hl) X (G,/H,)

is the canonical map, for each a let F, = F,, X F,, be a finite set in
G, X G, such that ¢(F,) = supp #, and F,, = G,/H, is one-to-one. Then
it 1s easy to see that there is a bimeasure (measure) v, on G, X G, with
support F, such that||v || = ||u,|| and

(14) (frug)=(feod.v.), [EV(G/H, G/H,).

Let v be a weak-* limit point of {v,} so ||v|| =||u||. If # has compact
support, then we may assume all the F lie in some compact set in G, X G,
and, hence, v has compact support. (Cf. Def. 1.6.) In this case (14) persists
with u and v replacing u, and v,, and then (13) follows.

In general, it follows from Lemma 1.4 that there is a sequence {u,} of
bimeasures with compact supports such that

o) 0
u=Su, and 3 [u,]<oco.
n=1 n=1

For each n choose v, € BM(G,, G,) such that v, has compact support,
(14) holds with u, and v, replacing u, and v,, and ||v,|| <|u,|. Set
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v = Zv,. The it follows from Corollary 1.3 and Theorem 1.2 that

0

(fro)y=2 (f.0.)s fEV(G,,G,).

n=1

Thus we can again replace u, and v, in (14) by 4 and v and obtain (13).

LEMMA 3.2. The canonical embedding of G, X G, in bG, X bG, induces
an isometric algebra embedding of BM(G,, G,) into BM(bG,, bG,).

Proof. If u € BM(G,, G,) then
lull = supl{ £, )],

the supremum being taken over all trigonometric polynomials f such that
Il fllo.o = 1. This follows easily from Corollary 1.3 and Lemma 1.4. The
remainder of the argument needed to prove the Lemma is clear.

The following theorem is the extension to the present context of the
well-known characterization of Fourier-Stieltjes transforms due to W. F.
Eberlein [6], [24, Thm. 1.9.1].

THEOREM 3.3. Let u € BM(bG,, bG,). Then u € BM(G,, G,) if and
only if @i is continuous on I'; X T',. Equivalently,

(15) S(T,T,) = 8(T,, I, N C(T, X I).

Proof. If u € BM(G,, G,), then & is continuous and ¥ may be con-
sidered as an element of BM(bG,, bG,) by Lemma 3.2. Hence the
left-hand side of (15) is contained in the right-hand side. (This may also
be observed by neglecting the continuity of representations at first.) The
reverse containment remains to be established.

Let u € BM(bG,, bG,) be such that 4 is continuous on I', X I',. We
shall show that for f € L'(T,) and g € LY(T),

Flla, 18lla. lul.-

(16)

[ 10602, dvas) <
T,
It will then follow that there exists an element v € BM(G,, G,) such that

<f,v>=fr frf(v,S)ﬁ(v,S)dyda
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for all f € L'(T, X T,). Since A(G, X G,) is dense in Vy(G,, G,), © = 4,
so u € BM(G,, G,) as asserted. It remains to establish (16).

Note that if p and g are trigonometric polynomials on G, and G,,
respectively, then

[(p®q,u)l=lpla lgle, ul,

since u € BM(bG,, bG,). Of course, since g 1s a trigonometric polynomial
and @ is continuous, the function y - (y ® g, u) is continuous. By
Eberlein’s Theorem, there exists a regular Borel measure p, on G, such
that

Qq,u)= d
(p®q,u) fG P,
for all trigonometric polynomials p on G,. Therefore, if f € L'(T,), then

(17) ‘ 1 (v) av

ff(Y) 2 4(8)a(y, 8) dv|=

ser,
l IR

For f € L'(T)) and 8 € T, set

gl llull-

¢,(8) = /F f(v)aly, 8) dy.

Then ¢, is continuous on I, by a standard argument based on the fact that
6 — (v, 6) is equicontinuous over compact sets of y € I',. Furthermore,
the function g — ;5 §(8)¢,(8) is linear on trigonometric polynomials on
G,, and by (17),

|24(8)4,(5)| =l lal .

Hence we may apply Eberlein’s Theorem again to obtain a measure
v; € M(G,) such that for all trigonometric polynomials g on G,,

§a<a>¢f(6) = /G gdv,

and

vl =07l Nl
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Therefore, if g € L'(T},), then

f ff(v)g(S)ﬁ(v,S)dvd8|:|f g(8)ﬁf(8)d81
I T, I,

=<lgllc. v | =<ll&lc. |7, 1]

5 dv
'/.ng /
This establishes (16), and Theorem 3.3 is proved.

COROLLARY 3.4. Let H, be a closed subgroup of G, and A, = H-C T,,
i =1,2. Let u € BM(G,|, G,). Then u is supported on H, X H, if and only
if 1 is constant on cosets of A; X A,.

Proof. If u € BM(H,, H,) and u is considered as a bimeasure on
G, X G,, then clearly 7 is constant on cosets of A; X A,. On the other
hand, assume # € BM(G,, G,) and # is constant on cosets of A; X A,. If
G, and G, are compact, then clearly « defines a bimeasure @ on H, X H,
by

(1©8,i)=(y®8,u),

where ¥ and § are the restrictions of y to H, and 8 to H,, respectively. If
G, and G, are not both compact, we pass to the Bohr compactifications.
Since the embeddings bH, <> bG,, i = 1,2, induce an embedding of
BM(bH,, bH,) in BM(bG,, bG,), we shall consider u# as an element of
BM(bG,, bG,) such that 4 is continuous on I'y X I', and is constant on
cosets of A, X A,. Let i be the induced bimeasure, as above, on bH,| X
bH,. Then & is continuous on (T,/A,) X (I,/A,), so & € BM(H,, H,)
by Theorem 3.3, and the Corollary is proved.

4. The closure of L'.

DEFINITION 4.1. Let BM (G, G,) denote the closure of L'(G, X G,)
(considered as the space of absolutely continuous measures on G, X G,)
in BM(G,, G,). Elements of BM,(G,, G,) might be called “absolutely
continuous bimeasures”, for as we shall see below, BM (G|, G,) plays a
role in BM(G,, G,) similar to that played by L'(G, X G,) in M(G, X G,).
For f € L'(G, X G,), let u  denote the bimeasure determined by integra-
tion against f.
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REMARKS 4.2. (i) Clearly BM (G,, G,) is the closure of each of the
spaces Cy(G, X G,), Cpo(G,) ® Cpo(G,), L'(G, X G,) or the trigonomet-
ric polynomials when G, and G, are compact.

(i) BM (G, G,) is a closed subalgebra of BM(G,, G,) on which the
Gelfand transform is the Fourier transform and whose maximal ideal
space is I'; X T, with its usual topology. All this is easy to see from the
results in §2. For example, each character in I', X I’, defines a nonzero
complex homomorphism on BM(G,, G,) by the definition of the multipli-
cation on BM(G,, G,), and every nonzero complex homomorphism on
BM (G,, G,) is nonzero on L'(G, X G,) and hence is given by a char-
acter.

(iii) From (ii) we have 4 € C(I', X I,) for all u € BM (G|, G,).

LEMMA 4.3. Let v € BM(G,, G,) and ¢ € V(G,, G,) both have com-
pact support. Then ¢ * v € Cyo(G, X G,) and

Ug ¥ D= Uy, .

Proof. By Theorem 2.10, ¢ * v € V(G,, G,). Definition 2.9 easily
implies that ¢ * v = 0 off support ¢ + support v, s0 @ * v € Cpo(G, X
G,). It is a straightforward calculation to check that

(uy. o) = o0 = (1 * o),
from which the Lemma follows by Theorem 2.4(ii).
THEOREM 4.4. BM (G,, G,) is a (closed) ideal in BM(G,, G,).
Proof. By Lemma 1.4 and Remark 4.2(i) it suffices to check that

u, * v € BM,(G,, G,)

for ¢ € Cy(G,) ® Cy(G,) and v with compact support. But then u, * v
= u, for ¢ € Cp(G, X G,) by Lemma 4.3, and the Theorem follows.

THEOREM 4.5. Let u € BM(G,, G,). Then u € BM (G, G,) if and only
if the function (x, y) — u,, ,, (translation) is norm-continuous.
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Proof. Since translation by (x, y) induces an isometry on BM(G,, G,),
and translation is continuous on LG, X G,) in the L'-norm which
dominates the bimeasure norm, it is clear that translation is continuous on
elements of BM (G|, G,). Thus let v € BM(G,, G,) be such that (x, y) -
0., 18 norm-continuous. Given & > 0, choose a neighborhood U of 0 in
G, X G, with compact closure such that v — v, I <eif (x,y) €U,
and let ¢ € Cyo(G,) @ Cy(G,) be such that ¢ = 0, ¢ vanishes off U, and

j;; _/;;cb(x,y)dxdy: 1.

Then considering functions f € Cyy(G,) @ Cyo(G,),

“v—uqs*U”:: sup l<f,v—u¢*u>
1Ay, =1
N ’ ’ dx d
s [ (1)) dnt
_<f ff“x‘—y)‘i’(x’ y) dXdy,v>
G, ’G,
= ’ _ . . o
o L K00 e 0)]o(x, ) yl
) Hf?ll:opsl G, fcl (fi0=v,))¢(x, y) dx dyl

<[ o= viplle(x, y) drdy <.

By Theorem 4.4, v € BM(G,, G,).

Our next result is the analog of the multiplier theorem of Helson and
Edwards [15], [7], [24, Thm. 3.8.1].

THEOREM 4.6. Let T: BM(G,, G,) » BM(G,,G,) be a multiplier.
Then there exists v € BM(G,, G,) such that Tu=wu=xv for all u €
BM (G, G,), and ||v|| =||T|I.

Proof. There is a continuous function ¢ on I', X T}, such that (Tu) =
¢u for all u € BM(G,, G,). Given f € Cy(I', I;,) and € >0, choose
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h € L'(G, X G,) such that A = 1 on supp fand ||A|, < 1 + &. Then

fr fr 11, 8)A(v,8)e(y,8) dyds

fr /Ff(}',S)(p(y, 8) dydslz

fF fr f(v,ﬁ)ﬁh(v,8)¢(7,8)dvd8l

L f(y,a)(ruh)‘u,smds[ =[(7: Ty )| <7l 1T

=71 Il Wl <IF 1w T + &)

Thus there exists v € BM(G,, G,) with 6 = ¢ and ||v|| =||T|. Theorem
4.6 is proved.

There is one significant way in which the role played by BM (G, G,)
in BM(G,, G,) differs from its analog in M(G, X G,). Namely, as the
following theorem shows, there is, in general, no decomposition of
BM(G,, G,) into what might be called “absolutely continuous” and
“singular” bimeasures.

THEOREM 4.7. Let G be a nondiscrete LCA group. There is no bounded
projection from BM(G, G) onto BM (G, G).

Proof. Suppose first that G is compact. If P*: PM(G) - BM(G, G) is
the map considered in Lemma 1.12, then P*(L'(G)) C BM/(G, G). Of
course, for § € PM(G), § € C(T) if and only if S € L'(G) (cf. Thm.
5.8). Suppose there exists a bounded projection

(18) Q: BM(G,G) - BM,(G, G).
For S € PM(G), set
O($)(y) = (eP*S)(v,v), v€T.

Then it is easy to see from Lemma 1.12 and our previous observation that
Q is a bounded projection from /*(T") onto c,(T'). But by [21] no such
projection exists, so no Q as above could exist.

If G is neither discrete nor compact, then the Main Structure Theorem
for LCA groups says that there exists an open subgroup H of G such that
H =R" X K for some n =0 and compact group K. If «: BM(H, H) -
BM(G, G) is the natural injection of BM(H, H) onto the bimeasures
supported on H X H, and p: BM(G, G) - BM(H, H) is the operator of
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restriction to H X H, then p o ¢ = Ipyy 5. It follows that if Q, as in
(18), is a projection, then pQ: is a bounded projection from BM(H, H)
onto BM (H, H). Thus to prove that no such Q exists, we may assume
G=R'XK.

If n = 0 then we are in the first case above. Otherwise, we shall show
next that it suffices to prove our assertion for the case G = R". For
f € Vy(G, G), let us suppress some parentheses and write

(19)  (of)(&,m) = /K fK f(& k,n, k) didk’, & mER,

It is well known that if f, g € C,(G) then o(f® g) = ¢ ® Y, where ¢,
¥ € GR"), lloll =]l and ||¥]| =||gll. Hence one can verify directly that
¢ is a norm-reducing operator from Vi (G, G) to Vy(R",R"). On the other
hand, if g € V,(R",R"), define 7(g) = g by

(20) g~(€! k’ n’ k/) :g(g’ n)’ g’n ER"’ k’ k, EK‘

Then 7(g) € Vy(G, G) with

I7(&)lvic.0) =llgllvaerr .-

Consider o*: BM(R",R") - BM(G, G). If g € L'(R*"), let § be de-
fined by (20) so that § € L'(G X G). For ¢, ¢ € C(G), a straightforward
computation shows that

(684, 0%(u))= [ [ o(o@¥)(& n)g(¢ n) dedn

= [ [o(x)¥(1)a(x. y) dxdy = (6 ® ¥, u5),
GYG

so that 0*(u,) = u;. In particular,
o*(BM,(R",R")) C BM,(G,G).

Now consider 7*: BM(G,G) - BM(R",R"). On M(G X G)7* is the
classical norm-reducing operator onto M(R®"); in particular, if f €
L'(G X G) then 7*(u,) = u,, where g € L'(R*"), and is given by the
integral in (19). Thus if g € L'(R*"), then

T*0*(u,) = m*(uz) = u,.

Hence if Q as in (18) is a bounded projection, then 7*Qo* is a bounded
projection from BM(R",R") onto BM (R",R"). Thus we have shown that
we may assume G = R”".

We shall show that for G = R” no projection as in (18) exists. To
accomplish this we shall show that if Q is such a projection, then Q
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induces a projection from BM(T”,T") onto BM (T",T"). An appeal to
the compact case discussed above then completes the proof of Theorem
4.7.

Let I" denote the closed unit cube, and define y: I" - T" by

U(xp,...,x,) = (e2™,...,e*™*),
LetJ" = {x € I": x, % 1 for all i}. Then ¥ |,. is injective; let us denote its
inverse by ¢!, If f € V(G, G) then
foly™! Xy™) €R™(T") &L=(T").
So appealing to Corollary 1.3, if v € BM(T",T") there is a unique

bimeasure ¥(u) € BM(G, G) supported on /" of norm at most K |u||
such that

(£, ¥w)y=(fo (¥ Xy, u), [EV(G,G).

The bimeasure u lies in BM (T", T") if and only if ¥(u) € BM (G, G),
and the restriction ® of ¥ to BM (T”, T") is a Banach-space isomorphism
onto {u € BM,(G,G): u is supported on I" X I"}. If p denotes the
operator of restriction of bimeasures on G X G to I” X I", then it is clear
that ®'pQW¥ is the required projection on BM(T”, T"), and our Theorem
is proved.

S. Ildempotents, homomorphisms and restriction to diagonals. We
begin this section by showing that the connection between homomor-
phisms between measure algebras and idempotents observed by P. J.
Cohen [3], [24, Thm. 4.4.3] also holds for homomorphisms between
bimeasure algebras. However, one must use some care in defining the
“graph” associated with a given homomorphism.

DEFINITION 5.1. Let ¥: BM (G,, G,) - BM(G}, G;) be an algebra
homomorphism. Since BM(G, G;) is semi-simple, ¥ is bounded. Let

Ny ={(y,8) €T] X T;3: ¥(u)(y',8") # 0 for some u € BM(G,, G,)},
so Ny is an open set in I'] X I7. Let

¥*: N, - T, X T,
be the continuous map defined by

Q1) Y(u)(v,8) = a(¥*(y',¥)),
u€ BM,(G,,G,), vy €T},8 €T;.
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LEMMA 5.2. Let ¥ be as in Definition 5.1. There is a (unique) extension
of ¥ to a homomorphism of BM(G,, G,) into BM(G}, G3) with norm at most
KZ\|\Y|| such that (21) holds for all u € BM(G,, G,).

Proof. The proof follows lines similar to those exploited in the proof
of Theorem 4.6. Let u € BM(G |, G,), and set
12 ° \I,*(Y,’ 8,)5 (‘Y,a 8,) € N s
(22) o(y,8) = 5N @ N
0’ (Y > 6 ) % Nq,-

Given f € Cy(T| X ;) and &€ >0, choose h € L'(G, X G,) such that
7 =1 on ¥*(N, Nsupp f) and ||A||, <1+ e Let v =u=*u,. Thenv €
BM (G, G,), and

B0 Wy, 8) = ho ¥r(y,8)9(y,8), v €T €L
Thus

[ [/ 8)e(v,8) dyds
r; /Iy
= [ L1800 ¥*(y',8) dy'dd’ = (], ¥(0)).

So by Theorem 4.6,

[ [ A )e(r,8) dy do| <[ (o)] |7
<[]l lofl [ Alv, < K21+ ) flull 7]

Letting e — 0 we see there exists w € BM(G1, G;) such that w = ¢ and
[wll < K2||¥]|||u|l, which proves our Lemma.

Vo

COROLLARY 5.3. N, is an open and closed subset of I'] X I'; which is the
support of the Fourier transform of an idempotent in BM(G/, G3).

Proof. We already observed that Ny is open, which is clear from its
definition. On the other hand, ¥(§,) is an idempotent in BM(G}, G3)
which acts as the identity for ¥(BM(G,, G,)), from which it follows that

Ny, = {(Y', §) ET) X Ty: \I,(S(O,O))A(Y,, ') # 0}-

Since ¥(§, ) is continuous, N, is closed.
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THEOREM 5.4. Let ¥ be as in Definition 5.1. There is a (unique)
extension of ¥ to a homomorphism of BM(bG,, bG,) into BM(bG1, bG?3) of
norm at most K2||¥|| such that (21) holds for all u € BM(bG,, bG,).

Proof. Let u € BM(bG,, bG,) and let ¢ be defined by (22). Note that,
since G, is dense in bG;, i =1, 2, the points x,,...,x, € bG, and
Yis-- Vs € bG, in the proof of Lemma 1.13 could in this case be chosen
in G, and G,, respectively. Hence given € > 0 and (v;, 8),...,(v,,9,) €
I', there exists v € BM(G,, G,) with ||v|| = ||u|| such that if { is defined as
in (22) for v then

lo(v/,8)) —(v/,8))|<e, 1=<i=<n.

By Lemma 5.2, y € S(I",I") C S(I'{,, I7,) and ¢ =W, where w €
BM(G;, G3) with ||w|| < K2||¥||||lu|l. Since e is arbitrary, it is easy to see
(by considering trigonometric polynomials on bG| and bG;) there exists
z € BM(bG}, bG,) such that 2 = ¢ and ||z|| < KZ||'¥||||u|l, completing the
proof.

DEFINITION 5.5. Let G, G,, G| and G; be compact groups, and let ¥:
BM(G,, G,) -» BM(G1, G;) be an algebra homomorphism. Let ¥* and N,
be defined as in Definition 5.1. By the graph of ¥* we shall mean the set

{(7’ Y, 9, 8') el X[ XTI, XI5 (Y,s 8) € Ny, (Y, 8) = ‘I’*(Y', 3')}.

Forx € G,,y € Gy, setu(x, y) = ¥(§,,,))- Then u(x, y) € BM(G}, G3),
llu(x, p)lI =¥ and

((x, ), ¥*%(v',8)), (v, 8) €N,

u(x, y)(v',8) = {0 (v/,8) &€ N,.

THEOREM 5.6. Let G, G,, G, G; and ¥ be as in Definition 5.5, and let
X denote the characteristic function of the graph of Y*. Then there exists
u € BM(G, X G}, G, X G}) such that ||u]| < KZ||'¥|| and & = x.

Proof. The proof is an adaptation of the argument on pp. 84-85 of
[24]. Let p be a trigonometric polynomial on G| X Gj5. Consider p as a
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trigonometric polynomial on G, X G| X G, X G; which does not depend
on the first and third variables. So now

plv,v',8,8) =p(v,8).
Forx € G,x' € G|,y € G,,y’ € G, set

¢(x, x,y,y)= X POY,8N(x, »), ¥ (v, ))(x", v)(»', ).

(7” BI)EN\P

Then ¢ is a trigonometric polynomial whose Fourier transform is px.
Defining u(x, y) as in Definition 5.5, we see from Definition 2.9 that

¢(xa xl’ Y y’) = 2 2 p(Y,s 8')()6', Y,)(y,’ 6’)u(~x, _y)ﬂ(y,’ 6,)
8'erl; y el

= 2 2 pA(‘Y,’ 8’)(()6' -5, 'Yl)(y, -, 8I)’ u(_x’ _y)(s’.t’)>

8’€Ty y'ET]

=pxu(-x,y)(x’, y).
Applying Lemma 4.3, we see that

Upwu-x-y) — Up* u(-=x,-y)

as elements of BM(G1, G;). Hence in BM(G1, G3)
Ity + uexpoll = Kell I 121 = KNI -

Lety,....v, €Ty, v, €11, 0,...,6, €15, 681,...,8, € I}, and
letay,...,a,, b,,...,b, be complex numbers. Set

m

a(x, x") = 2 a;(—x, v,)(=x",v/)

i=1

and

0y, y) = § b(-»,8)(~". &)

j=1
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Given € > 0, let p be a trigonometric polynomial on G| X G} such that
lplly <1+ eand p(y/,8)) = 1,1 <i=<m,1=<j=<n.Then

> Xabx(v.,v/.8,8)

Jj=11=1

n m

=2 Zabp(v.v.8.8)x(v.v.8.8)

J=1 i=1

= 2 Eaibj&)(Yia.Yzaaj,(Sj)

j=1 =1

=L [ e )00 30wy ) ' ' dyd
1 2 1 2

Il

f f ai(x, x') ® g5(y, ), ( p*u(—,x,—_y))(xg_,u)>dydx

l 2

S/Glfc “‘Ix(xa ')”G; ”“p* u(-,v,_‘,,)ﬂdy dx

<llgll6,<c; 19216, x5 K EIl Pl
<llgillg,xc; 192Nl G, x5 KNFN(1 + &).

Since ¢ is arbitrary, our Theorem is proved.

REMARKS 5.7. Theorem 5.6 tells us that in order to characterize
homomorphisms between bimeasure algebras, it behooves us to identify
the supports of the Fourier transforms of idempotent bimeasures. How-
ever, our next results shows that, in fact, this is not an easy task. For if I’
is totally disconnected, then BM(G, G) has many idempotents which are
not measures.

For any LCA group T, let A denote the diagonalin I' X T, i.e,,

A={(v,v):y€T}.

For the group Z, the following theorem appears in [17]. In fact, when
' is discrete, it is just a restatement of Lemma 1.12.

THEOREM 5.8. Given any bounded uniformly continuous function f on T,
there exists a € S(I', ') such that

(23) a(y,y) =f(y), ~re€T.
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There exists u € BM (G, G) such that o = @ satisfies (23) if and only if
f € Cy(I). If T is discrete, we can also require that a(y, 8) = 0if (v, 8) & A.

Proof. Let C(T') denote the bounded uniformly continuous functions
on T'. By [16, (32.45)(b)], L'(T') * L=(T) = C(T). So if f € C(T), choose
g€ LYT) and h € L*(T) such that f= g=*h. Write g* = g,g, with
2,8, € LX(T). Let #(y) be the operator of translation by y on L*I):
7(v)P(8) = ¢(6 — v), v, 6 €T, and let M, denote the operator of multi-
plication by 4: M, = h¢. Then forally € T,

f(v) =g=h(y) = fr h(8)g(y — 8) dd = fr h(8)g*(8 — v)db

= /F h(8)8,(8 — v) 82(6 — v)d6 = (Mym(v)g,, 7(v)8,)-

Proceeding as in the proof of Lemma 2.6, we can pass to a Hilbert space
containing L*(T') and a unitary dilation of ||A||;'M, to obtain a function
a € S(T, T') satisfying (23).

If T is discrete, then since A is a subgroup of I' there is an idempotent
measure i on G such that fi is the characteristic function of A. Thus fi« is
the desired function in this case. However, a more direct proof in case I’ is
discrete comes from consideration of the function

a(y,N) = (M;m(v)8, 7(X)8, ),

which has the desired properties.

Returning now the general case, let f € Cy(I'), and write f = 2, f,,
where f, € Cy(TI') and 25_,]i f,]| < 0. By the Open Mapping Theorem
there exists C > 0 and u, € BM(G, G) such that 4,(y,y) =f(y), YET
and ||u,|| < C||f,Il, n = 1,2,.... For each n, let h, € L'(G X G) such that
Ikl <2 and A, (y,y) =1 if f(y) #0. Set v, =u,*u,. Then v, €
BM(G, G), ||u,|l < 2CKZ||£,]l, and 6,(v, ¥) = £,(¥), ¥ € T Thus

o0
v= Y v, € BM,(G,G),
n=1
and a = ¢ satisfies (23).
COROLLARY 5.9. Let I be a LCA group, and U an open and closed

subset of I" such that the characteristic function x , is uniformly continuous on
I'. Let

U={(y,v):y €U} CA.
Then there exists an idempotent o € S(T', T') such that a|y, = x ;.
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Proof. Note that the uniform continuity of x, is equivalent to the
existence of an open subgroup A of I' such that U is a union of cosets of
A. For U and U° must be unions of cosets of the identity component of T,
so it suffices to consider the case when T is totally disconnected. In this
case it is easy to see that uniform continuity means there is a compact
open subgroup A of I' such that U is a union of cosets of A.

If : I' - I' /A is the canonical homomorphism, then

= Xoxox0) € S(T/A,T/A)

Q|

by Theorem 5.8. Now, if we set

a(y,8) =a(¢(y), 9(8)), v,8€T,

then a € S(I', T), > = @, and a |, = x;-

COROLLARY 5.10. If G is nondiscrete, then M(G X G) is not dense in
BM(G, G), neither in the BM-norm topology, nor in the topology of uniform
convergence of Fourier-Stieltjes transforms on T’ X T..

Proof. If p € M(G X G), then since A is a closes subgroup of I' X T,
fi|s € B(A). But not every bounded uniformly continuous function on A
lies in the uniform closure B(A)~ of B(A). Since

lallexrk <|lul, € BM(G,G),

our assertion follows from Theorem 5.8.

REMARK 5.11. A characterization of the space B(I')” for any LCA
group appears in [22].

As an application of Corollary 5.10 we can obtain a proof of the
following theorem of Saeki [2S, Thm. 3] in the spirit of the present work.

THEOREM 5.12. Let X and Y be locally compact spaces. Then
M(X XY)=C(X X Y)*is dense in BM(X, Y) if and only if either X or
Y contains no nonvoid perfect set.

Proof. Suppose both X and Y contain nonvoid perfect sets. Let
D, = (Z,)” denote the Cantor group. Then there exist compact perfect
sets E C X and F C Y and surjective continuous maps

¢: E - D,, V: F-D,.
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Define

®: BM(E, F) - BM(D,, D,)
by
(f,@u))=(fo(sX¥),u), fE€V(D,,D,).

Then @ is easily seen to be a norm-reducing linear map which maps
M(E X F) onto M(D, X D,). If M(X X Y) is dense in BM( X, Y), then
M(E X F) is dense in BM(E, F) (cf. Definition 1.6), which then implies
M(D, X D,) is dense in BM(D,, D,). But Corollary 5.10 says this is not
the case.

Conversely, suppose, say, X contains no nonvoid perfect sets. Since
the support of a continuous regular Borel measure is obviously a perfect
set, we see that every regular Borel measure on X is discrete. In particular,
if u € BM(X,Y) and A, Ay are a Grothendieck measure pair for u, then
A i is discrete. So given € > 0 and C > 0 as in (1), it follows easily from (1)
that there is a finite set £ C X such that

lu = ulgxy | < Ce,

and u|gy is clearly a measure.

6. Some thin sets associated with bimeasures. Throughout this sec-
tion we shall restrict our attention to compact groups G, and G, and their
discrete duals and study the notion of a Sidon set relative to the bimea-
sure algebra. Extensions to noncompact groups G, and G,, including the
notion of a BM-Helson set, may be supplied by the informed reader.

DEFINITION 6.1. A subset E of I', X T, is called a BM-Sidon set if for
every bounded, complex-valued function f on E there exists u €
BM(G,, G,) such that # = fon E, Note that, as in the case of measures, if
E is a BM-Sidon set, there exists C > 0 such that, given f as above, the
bimeasure u can be chosen so that ||u|| = C|| f|| ;. The smallest such C is
called the BM-Sidon constant of E.

Just as in the case of measures, there is a series of conditions on a set
E which are equivalent to the assertion that E is a BM-Sidon set. The
proof of the following theorem rests on standard arguments such as may
be found in [24, §5.7] and ideas developed earlier in this work. We shall
omit the details. Recall that a function f € L'(G, X G,) is called an
E-function if f(y, 8) = 0 for all (y, 8) & E [24, 5.7.1].
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THEOREM 6.2. The following conditions on a subset E of I') X T, are

equivalent.
(i) E is a BM-Sidon set with BM-Sidon constant C.
(i1) For every trigonometric E-polynomial f on G, X G,,

(24) > (v, 8)=clfly.

(v.8)€EE

(ii1) Condition (24) holds for every E-furzction f € VG, Gy).
(iv) For every E-function f € £°(G|) ® £%(G,),

2 1 8)=Clif o oo

(v.8)EE

Moreover, E is a BM-Sidon set if and only if there exists C' > 0 such that
for every f € C( E) there exists u € BM (G|, G,) such that i = f on E and
lull = C'\ fllg- If K is the infimum of all such numbers C’, and E satisfies
(i), then C < K < 2K2C.

We know from Lemma 1.12 or Theorem 5.8 that if I' = I, = I then
the diagonal A in I" X T' is a BM-Sidon set with BM-Sidon constant 1. We
shall now extend this result, thereby exibiting more BM-Sidon sets that
are not M(G, X G,)-Sidon sets.

THEOREM 6.3. Let ¢: I', - T, be any mapping such that

2 -1(8)| = .
(25) max |671(8)]=n < o0

Then the graph E = {(v,9(v)): Y EL}\} of ¢ is a BM-Sidon set with
BM-Sidon constant at most n'/?.

Proof. We shall verify condition (i) of Theorem 6.2. Let f be a
trigonometric E-polynomial and let ¢ > 0 be given. Choose trigonometric
polynomials g,...,8, on C, and h,,...,h, on G, such that f = 3" g, ® h;
and

S e, I, < (1 + )17l
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It follows from (25) that ||, o ¢||, < n'/?||4}||,. Thus

S oS S lgWlio)

(v,8)€EE J=1 (v.)€EE
m m ~
=3 3 5= S 18,4 - ¢,
j=1 yeT, J=1
= 2 n'/zlng“ “h “2 =n'/? 2 “gJ“Gu ” “Gz
j= =1

<n'2(1 + &) flly,

and our Theorem follows.

ExaMPLES 6.4. (i) Let @ and b be nonzero integers, and set E =
{(m, n): m,n € Z, am + bn = 0}. Then by Theorem 6.3 E is a BM-Sidon
set in Z2.

(i) If T', and T, are infinite, then it is easy to see that for any y, € I,
and 6, € I3, {(v,0,): vy €T} and {(v,,9): 6 €I’} are not BM-Sidon
sets. For if u € BM(G,, G,), then it is clear that the functions ¢(y) =
a(y, 6,) and (&) = 4(y,, 0) are Fourier-Stieltjes transforms. Hence some
condition like (25) is necessary if the conclusion of Theorem 6.3 is to be
valid.

REMARK 6.5. We conclude our discussion of BM-Sidon sets with some
remarks regarding the union of such sets. It is a straightforward exercise
to modify the argument of Drury [4], [S, §5.5] by substituting bimeasures
for measures; we shall omit the details. If this is done and the fact that
M(G, X G,) is a Banach algebra is replaced by Theorem 2.6, one arrives
at the quantitative result embodied in the following theorem. A standard
argument then leads to Corollary 6.7 below. We have explored the
possibility of adapting to the context of bimeasures Rider’s proof [23] of
the union theorem for Sidon sets, which proof uses the notion of “almost
surely continuous” functions. If that adaptation could be accomplished, a
better estimate (on the order of C?) of the norm in Theorem 6.6 would
follow. However, there are several places in the proof of Rider where such
an adaptation appears difficult to achieve.

THEOREM 6.6. Let E be a BM-Sidon set in I') X I, with BM-Sidon
constant C. There exists u € BM(G,, G,) such that t = 1 on E, |#|<1/2
outside E, and ||u|| < 128KSC*.
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COROLLARY 6.7. If E and F are BM-Sidon sets in I, X I,, then E U F
is a BM-Sidon set.
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