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STABLY IRREDUCIBLE SURFACES IN S§*

CHARLES LIVINGSTON

It is shown by example that there are embedded surfaces in S*
which cannot be decomposed as the connected sum of a knotted surface
of lower genus and an unknotted surface. In addition it is shown that
there are distinct embeddings of surfaces into S* such that the comple-
ments of the surfaces have the same fundamental groups. The results are
generalized to a stable setting. All groups that appear are classical knot

groups.

1. Introductory comments. In this paper we will construct examples
of knotted surfaces in §* which cannot be decomposed as the connected
sum of an unknotted torus and a knotted surface of lower genus. These
will generalize examples given by other authors [3,4,5,6] in several
respects. These past examples were restricted to knotted tori. Knotted
surfaces of arbitrary genus will be constructed here. The proofs used in
earlier examples depended on showing that the fundamental group of the
complement of the surface was not the fundamental group of the comple-
ment of any knotted 2-sphere. All the groups involved in the following
examples will be the groups of knotted 2-spheres. In fact, all the groups
will be classical knot groups. Finally, the results will hold with the notion
of irreducible replaced by stably irreducible. A corollary of these results is
the existence of many distinct surfaces having the same complementary
group. We should also remark that the techniques used yield examples of
distinct knotted tori with the same complementary groups and peripheral
group structure. See the third remark in §5 for a description of these
examples.

Although not mentioned explicitly in his paper, Asano [2] has also
constructed examples of irreducible knotted surfaces of arbitrary genus.
Using the same approach used here it can be shown that those surfaces
are stably irreducible. His construction is in some sense a generalization of
that used in this paper and is originally due to Price and Roseman [9]. The
added complexity of the construction results in the complementary groups
no longer being classical knot groups and the surfaces cannot immediately
be used to construct distinct surfaces with the same complementary

groups.
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2. Preliminaries. All manifolds referred to will be smooth, closed,
and orientable, except where specifically noted. Maps will be smooth.
Homology is always taken with integer coefficients. Reference to the
basepoints for fundamental groups of spaces will be dropped.

A knotted surface, F, will refer to a pair (S*, F) with F embedded in
S*. T will always refer to the unknotted torus in S*, obtained by taking
the standard embedding of T2 in S> and including S° in S*.

Given knotted surfaces F and G it is possible to form an embedded
surface F#G. Remove small balls about points p and p” on F and G, to
form (B*, F’; 3, S') and (B*, G’; S°, S*). Take the union of these via an
orientation reversing map of (S, S?) to construct (S*, F#G).

DEerINITION. The knotted surfaces F and G are equivalent if there is an
orientation preserving diffeomorphism between (S*, F) and (S*, G). F
and G are stably equivalent if F#, T is equivalent to G#,, T for some m
and n.

DEFINITION. A knotted surface F is irreducible if it is not equivalent to
G#T for any g. It is stably irreducible if it is not stably equivalent to a
surface of lower genus.

Notice that if a surface is stably irreducible then it is irreducible.

Given a knotted surface, F, a standard obstruction theory argument
implies that there is, up to homotopy, a unique section s of the normal
sphere bundle to F in S* which satisfies the condition: sy (a) =0 €
H,(S*— F)=Z for all a € H(F). The map s induces a map s,:
m(F) - m(S* = F).

DEFINITION. For a € m(F) set & = s4(a). For any space X and
a € m(X) let|a| denote the image of & in H;( X).

LEMMA 2.1.|&| = 0 € H\(S* — F) for any a € m,(F).
Proof. This is just a restatement of the defining property of s.

PROPOSITION 2.2. (a) H)(S* — F) = Z for any F.
(b)m(S* - T) = Z.
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(©) m(S* — (F#G)) = m(S* — F)%4m(S* — G), with the image of the
generator of Z generating H,(S* — F) and H,(S* — G).

Proof. (a) By Alexander duality, H,(S* — F) = H*(F) = Z.

(b) Consider T < R*= S*— 1 point. With respect to a standard
height function on R*, T has a single minimum. Hence the complement is
built with a single 1-handle. It follows that 7,(S* — T') is generated by a
single element. As H,(S* — T)is Z, m(S* — T) is also Z.

(c) Using the description of the connected sum given above,
m(S* — (F#G)) can be computed with Van Kampen’s Theorem to give
the above description.

3. Construction of spun tori. Let K be a knot in S°. In analogy to
the construction of spun knots [1] we can form the spun torus. Removing
a small ball from S gives a pair (B>, K).

DEFINITION. F(K) is the knotted torus (S*, K X S') contained in
(B3, K) X §* U,S? X B2 S(K) denotes the classical spin of K.

Note. There are essentially two choices in the identification of the
boundaries of B®> X S and S? X B?, corresponding to the elements of
m(SO;(R)) = Z,. We will not specify now how that choice is to be made,
as it does not affect any of the following results. However, the choice does
affect the surface produced, as will be described in the final remark of §5.

DEFINITION. Generators of m,( F(K)) are given by /= { p} X S' € K
X St and m=KX {p} Cc KX S". m(F(K,)# --- #F(K,)#S) then
has a set of generators induced from those of each F(K)), {/,, m,;},
i =1,...,n, where S is an arbitrary knotted 2-sphere.
PRrOPOSITION 3.1. (a)
'771(S4 - F(K)) = 771(S4 - S(K)) = m (8> - K).
(b)
'”1(54 — #Fiolm F(Ki)#i=m+1,..
= 7’1(53 - #io Ki)

S(K,))

..m+n
.m+n

(©)I=1€m(S*— F(K)) and m + 1 € m(S* — F(K)) if K is non-
trivial in S>.

()1, =1€m(S*— #,_,._, F(K,)#S) for any knotted S*, S, in S*.
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Proof. (a) The complement of F(K) is constructed from (B> — K) X
S* (which has as fundamental group m,(S°> — K) @ Z) by attaching an
S? X B%. By Van Kampen’s Theorem this has the effect of eliminating the
Z summand. The result for S(K) is contained in [1] and follows from an
argument similar to the one just given.

(0) 7,(S* = (Fi1, m FK)#,_ a1, _men S(K))) can be calculated
by repeated application of Proposition 2.2c. m(S® — #;_; .., K;) can
be computed using Van Kampen’s Theorem to give the same group.

(c) 7=1 is immediate from the construction. (/ generates the Z
summand of m,((B®> — K) X §*).) If m =1 € m(S* — F(K)), then /1 =
1 € (S’ — K). This would imply that the map of =, (3(»(K))) —
7,(S® — K) has a nontrivial kernel. A Dehn’s Lemma argument then
implies that K is unknotted.

(d) This foliows from c.

COROLLARY 3.2. If K is a nontrivial knot in S*, F(K) is irreducible.

Proof. For any surface of the form S#7, where S is some knotted
2-sphere, & = 1 for any a € m(S#T). (By Proposition 2.2a H,(S* — T)
=7(S*—T) and by Lemma 2.1, |&|=0€ H(S*—T).) If K is a
nontrivial knot, 1 # 1, by 3.1c.

4. Main Theorem.

THEOREM 4.1. Let K, i = 1,...,n, be nontrivial knots in S and let S be
an arbitrary knotted 2-sphere in S*. The surface #,_, _, F(K,)#S is stably
irreducible.

Before proving Theorem 4.1 we will have to prove some algebraic
results. In what follows (, ) will denote a skew symmetric bilinear form on
L", with L = Z or Q.

DEFINITION. ( , ) is called symplectic if, with respct to some basis of
L", the matrix representing ( , ) is of the form

el 4l

Any basis for which the matrix is of this form will be called a symplectic
basis.
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LEMMA 4.2. Let {a; b} i=1,...,m, satisfy (a;,a;) = (b;;b,)=0
and (a;, b)) = &,,. Then the set { a,, b;} is linearly independent.

Proof. If x = La,a; + LB,b; = 0, then (x, a;) = -B; = 0 and (x, b;)
=a; = 0.

LEMMA 4.3. Let V C Z" have rank m. Assume that (v, x) = 0 for all
v €V and x € Z". Then any symplectic submodule U of Z" has rank at

mostn — m.

Proof. Let {v,}, i =1,...,m, be a basis of V. Tensoring with Q we
can consider V a subspace of Q". (, ) extends to a form, also denoted by
(,)on Q" Extend {v;} to a basis of Q", {v;}, i=1,...,m, {w},
i=m+1,...,n. Let w, span the subspace W. Then Q" =V & W. Let p
denote the projection Q" — W.

Now, assuming that U is a symplectic submodule of Z” of rank j, U
also defines a symplectic subspace of Q”", again of rank j. Let {a,, b,},
i=1,...,j/2, be a symplectic basis of U. Write each a, and b, uniquely as
v+ w with v € V and w € W. Then for any pair v + w and v’ + w’,
(v+w, v +w)=(w,w),as(v,x)=0forallv € Vand x € Q". Hence
that the { p(a;), p(b;,)},i =1,...,j/2, is a symplectic subset of W and, by
Lemma 4.2, spans a subspace of rank j. As dim(W) = n — m, it follows
thatj < n — m.

Proof. (Of Theorem 4.1.) For a surface F#k(T), there are ele-
ments &, B,,...,0,, B, € m(F#k(T)), such that & =f, =1¢€
(S * — (F#k(T)) and {|e,}, |B,l}, i = 1,...,k, form a symplectic basis
for a subspace of H,(F#k(T)) of rank 2k with respect to the usual
intersection form on this group.

If #,_, ,F(K,)#S = F is not stably irreducible, then, by defini-
tion, F#k(T) is equivalent to G#(k + j)T) for some k and j > 0. It
then would follow that 7, ( F#k(T')) has a collection of elements { a;, 8;},

= 1,...,k + J, satisfying:

(A & =B, =1¢€m(S*— (F#K(T)) ;

(B) {|a,.| 1B}, i =1,...,j + k, is a symplectic subset of H,( F#k(T))
The proof is completed by showing that no such subset exists.

Let a € m(F#k(T)) satisfy & = 1. Write a as the product of m,’s
and /;’s,i = 1,...,n + k. We claim the exponent sum of m,,i < n,in a is
0.

To see this, consider & € Gyx Gy* --- * G,*, G=H where G, =
7,(S* — F(k;)) and G = 7 (S* — S). Fozr a fixed i there is a homomor-
phism of H onto G, given by abelianizing all the other factors of the
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amalgamated product. The image of & under this homomorphism is 7%,
where ¢, is the exponent sum of m, in . Hence mf = 1 € G,. Then, as in
the argument given in the proof of Proposition 3.1c, or using the fact that
knot groups are torsion free [8], it follows that ¢, = 0.

As the exponent sum on m;, i < n, in a was originally 0 for each such
i, it follows that |a| is in the span of {/;},_; i YU {mM;}icpi1.  nvke
Letting V' = span{/,},_,, Lemma 4.3 implies that the maximal rank of
a symplectic submodule of span({/;},_1  ,ix> {M;}icns1, . nrk) 18
((n + k) + k) — n=2k. However, by condition B there would be a
symplectic subset of this space of rank 2(k + j) with j > 0. This com-
pletes the proof of Theorem 4.1.

COROLLARY 4.4. The surface #,_, , F(K,)#S cannot be described as
G#T for any knotted G in S*.

Proof. Stable irreducibility implies irreducibility.

COROLLARY 4.5. The surfaces

G = #1’=1,.. 'F(Ki)#i=j+1,...,n S(K,)#S#(n - JjUT),

J -

with S an arbitrary, fixed knotted 2-sphere in S*, are (stably) distinct for
j=0,...,n, and satisfy m(S* — G,) is independent of j. Ifm(S* - S)=Z,
then m(S* — G)) = m(S° — #,_, , K).

Proof. The surfaces are distinct by the preceeding Theorem. The
statements about the groups follow from Proposition 3.1.

5. Remarks.

(a) There is an infinite number of examples for the above results. To
see this, note that there are knots K,, i = 1,... with distinct, irreducible
Alexander polynomials. (The n-twisted double of the unknot has poly-
nomial nt? — (2n — 1)t + n, which is irreducible for 4n + 1 not a perfect
square, which is true when 7 is not of the form k? + k.) As Alexander
polynomials multiply under connected sum of knots, and as these poly-
nomials depend only on the group involved, the polynomials will dis-
tinguish a multitude of examples. For one example, F( K, ) #F(K,)#F(K,)
is stably distinct from F(K,)#F(K,)#F(K,) as the associated polynomi-
als are distinct.

(b) Andrew Casson pointed out that even in the case m(S> — K;) =
m(S? — K,), if $* — K; is not diffeomorphic to S* — K, it remains true
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that F(K,) is inequivalent to F(K,). To prove this we will show that such
an equivalence would imply the original knots had the same peripheral
group structure. Waldhausen’s results [10] would then imply the knots had
the same complement.

Assume that there is a diffeomorphism

f:(8*= F(K;)) = (8* - F(K,)).
We have the following commutative diagram.
Zoz 5 zezez B zezez 3 zez
i N l i \L I3 4 Igq

G I G

iy, 5, i3, and i, are the peripheral group maps for K, F(K,), F(K,), and
K, respectively. f, and f, are induced by f. The homomorphisms e, and
e, are chosen to make the right and left triangles commutative. There are
many choices for e,. Hence the pair of homomorphisms (e, © fy° €1, f4)
give an equvalence of the perpheral group structures of K, and Kj,
(Z® Z>G)and(Z® Z - G),

(c) Using the construction of this paper it is possible to construct
knotted tori in S* with the same complementary groups and the same
peripheral group structure. In the note following the definition of F(K) it
is explained that there are in fact two ways to construct F(K). Call the
result Fi(K) and F,(K). It is straight forward to show the complementary
groups and peripheral group structures are the same.

To show that F|(K) and F,(K) are not isotopic, if K is nontrivial
proceed as follows: On each surface there is a unique curve (up to
homotopy), /, and /,, such that /, = 1. An isotopy must carry /, and /,.
The normal bundle to /; is naturally framed by the normal to /; in F,(K)
and a null homologous push off of /, into $* — F,(K). These two framings
are distinct as framings of the normal bundle to a S* in S*.

Addendum. Litherland’s examples (Quaterly Journal of Math., Oxford
32 (1981)) of knotted tori in S* can also be used to construct examples of
stably irreducible surfaces in S*.
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