FINITE GROUP ACTION AND EQUIVARIANT BORDISM

S. S. Khare

Abstract

Conner and Floyd proved that if \mathbf{Z}_{2}^{k} acts on a closed manifold M differentiably and without any fixed point, then M is a boundary. Stong gave a stronger result proving that if (M, θ) is a closed \mathbf{Z}_{2}^{k}-differential manifold with no stationary point, then (M, θ) is a \mathbf{Z}_{2}^{k}-boundary. In the present note, we discuss this problem for a finite group in detail. Let G be a finite group. By the 2 -central component $G_{2}(C)$ of G, we will mean the subgroup of G consisting of the identity element and all the elements of order 2 in the center of G. We prove in this note that the fixed data of the 2 -central component $G_{2}(C)$ of G determines G-bordism.

1. Preliminaries. Throughout the note we will take G to be a finite group. By a G-manifold we will mean a differential compact manifold with a differential action of G on it. A family \mathscr{F} in G is a collection of subgroups of G such that if $H \in \mathscr{F}$, then all the subgroups of H and all the conjugates of H are in \mathscr{F}. Let $\mathscr{F}^{\prime} \subset \mathscr{F}$ be families in G such that \exists a central element a in G of order 2 such that
(i) $a \notin H, \forall H \in \mathscr{F}-\mathscr{F}^{\prime}$
(ii) $H \in \mathscr{F}^{\prime} \Rightarrow[H \cup\{a\}] \in \mathscr{F}^{\prime}$
(iii) The intersection S of all members of $\mathscr{F}-\mathscr{F}^{\prime}$ is in $\mathscr{F}-\mathscr{F}^{\prime}$. We call such a pair $\left(\mathscr{F}, \mathscr{F}^{\prime}\right)$ of families an admissible pair of families in G with respect to $a \in G$.

Example 2.1. Let G be a finite group. We can write the 2 -central component $G_{2}(C)$ as $\mathbf{Z}_{2}^{r}=\left[t_{1}, \ldots, t_{r}\right]$, where t_{1}, \ldots, t_{r} are generators of \mathbf{Z}_{2}^{r} with $t_{i}^{2}=$ the identity element and $t_{i} t_{j}=t_{j} t_{i}$. Let \mathscr{F}_{k} be the family of all subgroups of G not containing $\mathbf{Z}_{2}^{k}, 0<k \leq r$, where \mathbf{Z}_{2}^{k} denotes the subgroup of G generated by the first k generators t_{1}, \ldots, t_{k}. Then $\left(\mathscr{F}_{k+1}, \mathscr{F}_{k}\right)$ is an admissible pair with respect to $t_{k+1}, 0<k<r$.
2. Stationary point free action of $G_{2}(C)$ and G-bordism. The object of this section is to show that if (M, θ) is a G-manifold with the stationary point free action of $G_{2}(C)$ then (M, θ) is G-boundary. Following the notation of Stong [2], let $\mathfrak{R}_{*}\left(G ; \mathscr{F}, \mathscr{F}^{\prime}\right)$ denote the ($\left.\mathscr{F}, \mathscr{F}^{\prime}\right)$-free G bordism group for a pair ($\left.\mathscr{F}, \mathscr{F}^{\prime}\right)$ of families in G. For a given family \mathscr{F}
in G and an element g in G, let \mathscr{F}_{g} denote the smallest family in G consisting of all subgroups $[H \cup\{g\}], H \in \mathscr{F}$.

TheOREM 3.1. If $\left(\mathscr{F}, \mathscr{F}^{\prime}\right)$ is an admissible pair of families in G with respect to a in G, then an $\left(\mathscr{F}, \mathscr{F}^{\prime}\right)$-free element in $\mathfrak{R}_{*}\left(G, \mathscr{F}, \mathscr{F}^{\prime}\right)$ is zero in $\mathfrak{N}_{*}\left(G ; \mathscr{F}_{a}, \mathscr{F}_{a}{ }^{\prime}\right)$.

Proof. Let $[M, \theta]$ be in $\mathfrak{R}_{*}\left(G, \mathscr{F}, \mathscr{F}^{\prime}\right)$. Let F denote the fixed points set of S in M, S being the intersection of all the members of $\mathscr{F}-\mathscr{F}^{\prime}$. Since $\mathscr{F}-\mathscr{F}^{\prime}$ is invariant under conjugation, S is normal in G and hence the action θ on M induces an action on F which we denote once again by θ. Let $\boldsymbol{\nu}$ be the normal bundle of the imbedding of F in the interior of M and $D(\nu)$ be its disc bundle with the action θ^{*} of G on $D(\nu)$ induced by the real vector bundle maps covering the action θ on F. Since F is fixed point set of $S, a \notin H, \forall H \in \mathscr{F}-\mathscr{F}^{\prime}$ and no point of F is fixed by the subgroup $[S \cup\{a\}$] generated by $S \cup\{a\}, a$ will act freely on F and hence on $D(\nu)$. Let $F^{\prime}=F /[a]$ and $D^{\prime}(\nu)=D(\nu) /[a]$. Since a is central the actions θ and θ^{*} on F and $D(\nu)$ induce actions θ^{\prime} and $\theta^{* \prime}$ on F^{\prime} and $D^{\prime}(\nu)$ respectively. Let C_{1} and C_{2} be the mapping cylinders of the equivariant double covers $q_{1}: F \rightarrow F^{\prime}$ and $q_{2}: D(\nu) \rightarrow D^{\prime}(\nu)$ respectively and ψ_{1} and ψ_{2} be the induced actions on C_{1} and C_{2} respectively. We have the following commutative diagram

where $\alpha: C_{2} \rightarrow C_{1}$ is the map induced from $\nu^{\prime}: D^{\prime}(\nu) \rightarrow F^{\prime}$ by going to mapping cylinders. Clearly ∂C_{1} is homeomorphic to $F, \alpha^{-1}\left(\partial C_{1}\right)$ is homeomorphic to $D(\nu)$ and the action ψ_{1} on $\alpha^{-1}\left(\partial C_{1}\right)$ is isomorphic to the action θ^{*} on $D(\nu)$. Consider

$$
W=(M \times[0,1]) \cup C_{2} / \sim,
$$

where \sim is the equivalence relation in W obtained by identifying $D(\nu) \times$ $\{1\}$ with $\alpha^{-1}\left(\partial C_{1}\right)$. Let the action ϕ of G on W be given by $\phi \mid M \times[0,1]$ $=\theta \times 1$ and $\phi \mid C_{2}=\psi_{1}$. Take V to be $(\partial M \times[0,1]) \cup(M \times\{1\}-$ $\left.(D(\nu) \times\{1\})^{\circ}\right) \cup\left(\partial C_{2}-\left(\alpha^{-1}\left(\partial C_{1}\right)\right)^{\circ}\right)$, where ${ }^{\circ}$ denotes the interior operator. Since S is the intersection of all the members of $\mathscr{F}-\mathscr{F}^{\prime}, V$ will be $\left(\mathscr{F}_{a}^{\prime}, \mathscr{F}_{a}^{\prime}\right)$-free. Also W is $\left(\mathscr{F}_{a}^{\prime}, \mathscr{F}_{a}^{\prime}\right)$-free and ∂W is homeomorphic to $M \cup V$ by identifying ∂V with ∂M. This shows that $[M, \theta]$ is zero in $\mathfrak{\Re}_{*}\left(G ; \mathscr{F}_{a}, \mathscr{F}_{a}{ }^{\prime}\right)$.

Let \mathfrak{A} denote the family of all subgroups of G and \mathscr{F}_{0} denote the empty family. Then following the notations of Example 2.1 and using the above Theorem, one immediately gets the following.

Corollary 3.2. For every $k, 0 \leq k<r$, the homomorphism $\mathfrak{\Re}_{*}\left(G ; \mathscr{F}_{k+1}, \mathscr{F}_{k}\right) \rightarrow \mathfrak{R}_{*}\left(G ; \mathfrak{A}^{\prime}, \mathscr{F}_{k}\right)$ induced from the inclusion map $\left(\mathscr{F}_{k+1}, \mathscr{F}_{k}\right) \rightarrow\left(\mathfrak{H}, \mathscr{F}_{k}\right)$ is zero.

Proof. Since $\left(\mathscr{F}_{k+1}, \mathscr{F}_{k}\right)$ is admissible pair of families with respect to t_{k+1} for $0 \leq k<r$ and no point of the submanifold V in the above construction is fixed by \mathbf{Z}_{2}^{k}. Theorem 3.1 gives the Corollary immediately.

Corollary 3.3. Let \mathbf{P} be the family of all subgroups of G which do not contain $G_{2}(C)$. Then the homomorphism $\mathfrak{\Re}_{*}(G ; \mathbf{P}) \rightarrow \mathfrak{\Re}_{*}(G ; \mathfrak{Y})$ induced from the inclusion map $\mathbf{P} \rightarrow \mathfrak{A}$ is the zero homomorphism.

Proof. By Corollary 3.2, one gets that

$$
\mathfrak{N}_{*}\left(G ; \mathscr{F}_{k+1}, \mathscr{F}_{k}\right) \xrightarrow{i_{*}} \mathfrak{N}_{*}\left(G ; \mathfrak{A}^{(}, \mathscr{F}_{k}\right)
$$

is the zero homomorphism, $0 \leq k<r$. Consider the exact bordism sequence for the triple

$$
\begin{aligned}
\left(\mathfrak{A}^{\left(\mathscr{F}_{k+1}, \mathscr{F}_{k}\right)}\right. & \rightarrow \cdots \mathfrak{R}_{*}\left(G ; \mathscr{F}_{k+1}, \mathscr{F}_{k}\right) \xrightarrow{i_{*}} \mathfrak{\Re}_{*}\left(G ; \mathfrak{U}^{\prime}, \mathscr{F}_{k}\right) \\
& \xrightarrow[\rightarrow]{i_{*}} \mathfrak{R}_{*}\left(G ; \mathfrak{A}, \mathscr{F}_{k+1}\right) \rightarrow \cdots
\end{aligned}
$$

where j_{*} is the homomorphism induced from the inclusion $j:\left(\mathfrak{U}, \mathscr{F}_{k}\right) \rightarrow$ ($\mathfrak{A}, \mathscr{F}_{k+1}$). Since i_{*} is the zero homomorphism, j_{*} will be a monomorphism. Therefore the composite

$$
\mathfrak{N}_{*}\left(G ; \mathfrak{A}^{\prime}, \mathscr{F}_{o}\right) \rightarrow \mathfrak{N}_{*}\left(G ; \mathfrak{A}_{1}, \mathscr{F}_{1}\right) \rightarrow \cdots \rightarrow \mathfrak{N}_{*}\left(G ; \mathfrak{A}, \mathscr{F}_{r}\right)
$$

is a monomorphism and hence by the exact bordism sequence of the triple $\left(\mathfrak{U}, \mathscr{F}_{r}, \mathscr{F}_{0}\right)$, one get that $\mathfrak{R}_{*}\left(G ; \mathscr{F}_{r}, \mathscr{F}_{0}\right) \rightarrow \mathfrak{N}_{*}\left(G ; \mathfrak{A}^{\prime}, \mathscr{F}_{0}\right)$ is the zero homomorphism. This completes the proof since $\mathscr{F}_{r}=\mathbf{P}$ and $\mathscr{F}_{0}=\varnothing$.

Corollary 3.4. If $G_{2}(C)$ acts on M under θ without any stationary point then (M, θ) is a G-boundary.
3. The stationary points set $F_{G_{2}(C)}$ and the normal bundle. In the last section we dealt with the case when $F_{G_{2}(C)}$ is empty. In this section we consider the case when $F_{G_{2}(C)} \neq \varnothing$. For this we introduce the concept of
equivariant trivial normal bundle and use this concept to settle the case $F_{G_{2}(C)} \neq \varnothing$ in the form of Theorem 4.2.

Let $\left(M^{n}, \theta\right)$ be a closed G-manifold. Consider the decomposition of $F=F_{G_{2}(C)}\left(M^{n}\right)$ as $F=\bigcup_{l=0}^{n} F^{l}$, where F^{l} denotes the l-dimensional component of F. Let $\mathscr{D}\left(\nu_{l}\right)$ be the normal disc bundle of F^{l} in M^{n} with the induced action θ_{l} of G on $\mathscr{D}\left(\nu_{l}\right)$.

Definition 4.1. F is said to have an equivariant trivial normal bundle in M^{n}, if $G / G_{2}(C)$ acts trivially on F and \exists some positive dimensional G-representations $\left(W_{l}, \phi_{l}\right), 0 \leq l \leq n$, such that in $\mathfrak{N}_{*}(G ; \mathfrak{A}, \mathbf{P})$

$$
\left[D\left(\nu_{l}\right), \theta_{l}\right]=\left[F^{l}\right]\left[D\left(W_{l}\right), \phi_{l}\right]
$$

$D\left(W_{l}\right)$ being the unit disc of W_{l}.
Let $\left\{V_{k}, \psi_{k}\right\}_{1 \leq k \leq m}$ be the finite set of all irreducible representations of G. Let \mathbf{Z}^{+}be the set of all non-negative integers. Then any G-representation can be written as $(V(f), \psi(f))$ for some map $f:\{1, \ldots, m\} \rightarrow \mathbf{Z}^{+}$ where $V(f)=\oplus_{k=1}^{m}\left(V_{k}, \psi_{k}\right)^{f(k)},\left(V_{k}, \psi_{k}\right)^{f(k)}$ being the direct sum of $f(k)$ copies of $\left(V_{k}, \psi_{k}\right)$. Let us denote the unit disc and the unit sphere of $V(f)$ by $D(f)$ and $S(f)$.

Theorem 4.2. If F has an equivariant trivial normal bundle in M^{n}, then F is a boundary and $\left(M^{n}, \theta\right)$ is a G-boundary.

Proof. Since F has an equivariant trivial normal bundle in M^{n}, we have

$$
\left[\mathscr{D}\left(\nu_{l}\right), \theta_{l}\right]=\left[F^{l}\right]\left[D\left(W_{l}\right), \theta_{l}\right]
$$

for some positive dimensional G-representations $\left(W_{l}, \phi_{l}\right), 0 \leq l \leq n$. Also $\left(W_{l}, \phi_{l}\right)=\left(V\left(f_{l}\right), \psi\left(f_{l}\right)\right)$ for some map $f_{l}:\{1, \ldots, m\} \rightarrow \mathbf{Z}^{+}$. Therefore

$$
\left[\mathscr{D}\left(\nu_{l}\right), \theta_{l}\right]=\left[F^{l}\right]\left[D\left(f_{l}\right), \psi\left(f_{l}\right)\right]
$$

Let $i_{*}: \mathfrak{R}_{*}(G ; \mathfrak{U}) \rightarrow \mathfrak{N}_{*}(G ; \mathfrak{Y}, \mathbf{P})$ be the homomorphism induced by the inclusion map $i:(\mathfrak{U}, \phi) \rightarrow(\mathfrak{U}, \mathbf{P})$. Then

$$
i_{*}\left[M^{n}, \theta\right]=\sum_{l=0}^{n}\left[\mathscr{D}\left(\nu_{l}\right), \theta_{l}\right]=\sum_{l=0}^{n}\left[F^{l}\right]\left[D\left(f_{l}\right), \psi\left(f_{l}\right)\right] .
$$

Therefore

$$
\partial_{*} i_{*}\left[M^{n}, \theta\right]=\sum_{l=0}^{n}\left[F^{l}\right]\left[S\left(f_{l}\right), \psi\left(f_{l}\right)\right]=0
$$

in $\mathfrak{R}_{*}(G ; \mathbf{P})$, where $\partial_{*}: \mathfrak{R}_{*}(G ; \mathfrak{A}, \mathbf{P}) \rightarrow \mathfrak{N}_{*}(G ; \mathbf{P})$ is the boundary homomorphism. Therefore \exists a \mathbf{P}-free G-manifold (D, η) such that

$$
\begin{equation*}
(\partial D, \eta)=\bigcup_{l=0}^{n}\left(F^{l} \times\left(S\left(f_{l}\right), \psi\left(f_{l}\right)\right)\right) \tag{1}
\end{equation*}
$$

Since $\left(W_{l}, \phi_{l}\right)$ is positive dimensional G-representation, $\forall l, \exists$ a member $k(l)$ in the set $\{1, \ldots, m\}$ such that $f_{l}(k(l)) \neq 0$. Consider the irreducible G-representation $\left(V_{k(l)}, \psi_{k(l)}\right)$. Let $\left(\tilde{V}_{k(l)}, \tilde{\psi}_{k(l)}\right)$ be an irreducible component of the $G_{2}(C)$-representation induced by the G-representation $\left(V_{k(l)}, \psi_{k(l)}\right)$. Then \exists a subgroup $H_{k(l)}$ of G isomorphic to \mathbf{Z}_{2}^{r-1} which fixes $\tilde{V}_{k(l)}, G_{2}(C)$ being \mathbf{Z}_{2}^{r}. Let us fix some $\beta, 0 \leq \beta \leq n$.

From the equation (1), we get

$$
F_{H_{k(\beta)}}(\partial D, \eta)=F_{H_{k(\beta)}}\left(\bigcup_{l=0}^{n}\left(F^{l} \times\left(S\left(f_{l}\right), \psi\left(f_{l}\right)\right)\right)\right)
$$

Let $F_{H_{k(\beta)}}(D)=F^{*}$ and $\mathbf{Z}_{2, \beta} \approx \mathbf{Z}_{2}$ be the complement of $H_{k(\beta)}$ in $G_{2}(C)$ $=\mathbf{Z}_{2}^{r}$. Then one gets

$$
\left(\partial F^{*}, \eta \mid \mathbf{Z}_{2, \beta}\right)=\bigcup_{l=0}^{n}\left(F^{l} \times\left(S^{\Delta(l, \beta)-1}, a\right)\right)
$$

where a is the antipodal involution and the integer $\Delta(l, \beta)$ is the nonnegative integer depending on l and β. Since $H_{k(\beta)}$ fixed $\tilde{V}_{k(\beta)}$ and $f_{\beta}(k(\beta)) \neq 0$, one infers that $\Delta(\beta, \beta) \geq 1$. Since D is \mathbf{P}-free, $\mathbf{Z}_{2, \beta}$ will act freely on F^{*} and therefore $\left[\partial F^{*}, \eta \mid \mathbf{Z}_{2, \beta}\right.$] is zero in $\Re_{*}\left(\mathbf{Z}_{2, \beta} ; \mathscr{F}_{1}\right), \mathscr{F}_{1}$ being the family consisting of only trivial subgroup of $\mathbf{Z}_{2, \beta}$. This gives

$$
\sum_{l=0}^{n}\left[F^{l}\right]\left[S^{\Delta(l, \beta)-1}, a\right]=0
$$

in $\mathfrak{R}_{*}\left(\mathbf{Z}_{2, \beta} ; \mathscr{F}_{1}\right)$. But $\mathfrak{R}_{*}\left(\mathbf{Z}_{2, \beta} ; \mathscr{F}_{1}\right)$ is free \mathfrak{R}_{*}-module with a set $\left\{\left[S^{n}, a\right], n \in \mathbf{Z}^{+}\right\}$of generators. This together with the fact that $\Delta(\beta, \beta)$ ≥ 1 gives $\left[F^{\beta}\right]=0$ in \Re_{*}. By varying β, one gets $\left[F^{\beta}\right]=0, \forall \beta=0, \ldots, n$. Hence $[F]=0$ in \mathfrak{N}_{*}. Therefore

$$
i_{*}\left[M^{n}, \boldsymbol{\theta}\right]=\sum_{l=0}^{n}\left[F^{l}\right]\left[D\left(f_{l}\right), \psi\left(f_{l}\right)\right]=0 \quad \text { in } \mathfrak{\Re}_{*}(G ; \mathfrak{A}, \mathbf{P})
$$

But from Corollary 3.3, one infers that $i_{*}: \mathfrak{R}_{*}(G, \mathfrak{H}) \rightarrow \mathfrak{M}_{*}(G ; \mathfrak{H}, \mathbf{P})$ is an injection. Therefore [M^{n}, θ] is zero in $\mathfrak{R}_{*}(G ; \mathfrak{H})$.

References

[1] P. E. Conner, and E. E. Floyd, Differentiable periodic maps, Springer-Verlag, Berlin, 1964.
[2] R. E. Stong, Equivariant bordism and $\left(\mathbf{Z}_{2}\right)^{k}$ actions, Duke Math. J. 371970.

Received June 17, 1983 and in revised form July 29, 1983. The present work was partially supported by D. A. E. Grant.

Department of Mathematics
North-Eastern Hill University
Bijni Campus, Shillong 793003
Meghalaya, India

