
PACIFIC JOURNAL OF MATHEMATICS
Vol 117, No. 2,1985

GENERALIZED COMPLETE MAPPINGS, NEOFIELDS,
SEQUENCEABLE GROUPS AND BLOCK DESIGNS. II

D. F. Hsu AND A. D. KEEDWELL

In part I we introduced the concepts of generalized complete
mapping and generalized near complete mapping of a group and used
them to characterize left neofields. In §5 of this second part we describe
how (K, λ) complete mappings and near complete mappings may be used
to provide new constructions of block designs of Mendelsohn type; and
in §6 we describe various methods of obtaining generalized complete
mappings.

For the convenience of the reader we again give the definitions of

these concepts, but for all other matters we refer to part I. We denote the

sections of this paper by 5 and 6 (those of the earlier paper being 1 to 4)

and use decimal notation for the numbering of theorems and definitions.

A reference to Theorem 2.1 is therefore a reference to the first theorem in

§2 of part I. However, bibliographical references for this second part are

independent of those in part I.

A number of examples illustrative of the various concepts which we

introduce will be found in the Appendix. We shall refer to them by

number.

Definitions of a (K,λ) complete mapping and (K,λ) near complete

mapping (Definition 2.4 of part I).

A (K, λ) complete mapping, where K = {k v k2,... ,ks) and the kt are

integers such that E^A^ = λ( |G| - 1), is an arrangement of the non-iden-

tity elements of a group G (each used λ times) into s cyclic sequences (of

distinct elements) of lengths kl9 k2,...,ks, say

(gll #12 * S\k)(S2l S22 " Slk2) ' ' ' (Ssl Ssl ' ' ' gsks)>

such that the elements g/^g/j+i (where i = 1,2,...,s\ and the second

suffix j is added modulo kt) comprise the non-identity elements of G each

counted λ times.

A (k, λ ) near complete mapping, where K = {A1? h2,... ,hr\

kl9 k2,. ..,ks) and the ht and k3 are integers such that Σr

i==1hi + Σfj=λkj =

λ|G|, is an arrangement of the elements of G (each used λ times) into r

sequences with lengths hv h2,. ..,hr and s cyclic sequences with lengths
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kl9k29...9ks9 say,

[gn Sl2 ' " S'lh\ ' ' [g'rl Sr2 ' " Srh](Sll Sl2 ' ' ' glk)

'"(gslSsl ' " Ssk)

such that the elements (g'^^g-j+i and g^glJ + 1 together with the ele-

ments g~frga comprise the non-identity elements of G each counted λ

times. (We have Σ(ht - 1) + Σkj = λ(\G\ — 1) so it is immediate from

the definition itself that r = λ.)

Definitions of a (k, λ) complete mapping and a (k,λ) near complete

mapping (Definition 2.5 of part I)

A (/c, λ) complete mapping is a (K, λ) complete mapping such that

K= { £ , £ , . . . , £ } . For such a generalized complete mapping, s =

λ(\G\-l)/k.

Similarly, a (k,λ) near complete mapping is a (K, λ) near complete

mapping such that K = {h, h9...9h; k, k,...9k} and k — h = 1.

5. Block designs of Mendelsohn type. In this section we show how the

concepts of (K, λ) complete mapping and (K, λ) near complete mapping

can be used to construct block designs of Mendelsohn type whose

automorphism group contains a specified group G as subgroup. For this

purpose it is convenient to use additive notation for cyclic groups.

DEFINITION 5.1. A block design of Mendelsohn type comprises a set

G of v elements and a collection of b cyclically ordered subsets of G called

blocks of cardinalities kv k2,...,kh, respectively, with the property that

every ordered pair of elements of G are consecutive in exactly λ of the

blocks. We call such a design a (υ, K, λ) Mendelsohn design, where K is

the set formed by the distinct integers among kv k2,... ,kb. More briefly,

we shall write it as a (v9 K, λ)-MD and denote the set of blocks by B. (See

Examples 1-3.)

DEFINITION 5.2. A(υ,k9 λ)-MD is a (υ9 K, λ)-MD such that kλ = k2

= = kh = k. (See Examples 2-5.)

In Example 2 of the Appendix the mapping a: i -> / + 1, oc -> oo

maps Btj onto Bi+ιj9 where B = U}io{ BlJ: j = 1,2, 3,4), and defines an

automorphism of the Mendelsohn design (G, B), which permutes both the

objects and blocks, each in a cycle of length 13. This example and also

Example 4 suggest the following concept.
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DEFINITION 5.3. Let D = (G, B) be a (v, K, λ)-MD and let L be a

group of v permutations al9 a2,...,aυ of G such that G = (J^=1ai(g),

where g is any fixed element of G. Suppose further that there exists a

subset s* = {Bl9 B29. . . ,Bf} of blocks of B such that B =

U?βi{α f (2*i), ai(B2)9...9ai(Bf)}. Then it follows that each permutation

of L permutes the blocks of B among themselves and is an automorphism

of D. We say that D admits L as a regular group of automorphisms with the

blocks of B* as basis blocks.

We observe that, in Examples 2 and 4 of the Appendix, the elements

of G are themselves elements of a group. In each case the left regular

repesentation LG of this group has the properties required by Definition

5.3 and the basis blocks are the sets {(1 4 3 12 9 10), ( 2 6 4 1 1 7 9), (5 2 10

8 11 3), (6 1 8 7 12 5)} and {a a2 ba2 ba ba3 a3 b)}, respectively. More-

over, in each case, the basis blocks define the cyclic sequences of a (K, λ)

complete mapping of the group defined on the set G.

We may state the following:

THEOREM 5.1. Let LG be the left regular representation of a group (G, •)

of order v and suppose that there exists a (v, K, λ)-MD defined on the set G

which admits LG as a regular group of automorphisms with the blocks

(#11 gl2" SlkX (#21 #22 ' Slk2) ' ' ' (Ssl 8s2 " Ssk)

as basis blocks, where K = {kv k2,... ,ks} and where one element x of G

does not occur at all among the elements of the basis blocks but every other

element of G occurs exactly λ times, then the cyclic sequences

form a(K,λ) complete mapping of the group (G, ).

Conversely, if

is a (K,λ) complete mapping of a group (G, •) of order v with K

{kl9 k2,..., ks} then the blocks of the set

B= U {(ggnggii '" ggikJΛggnggn ••• gg2k2)> >

form a (v, K, λ)-MD which admits the left regular representation LG of
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(G, •) as a regular group of automorphisms such that the cyclic sequences

which define the (K,λ) complete mapping of G are its basis blocks.

Proof. For the first part, we wish to show that the elements (x~ιgij)~1

9

(x~ιgij+ι)9 where i = 1,2,...9s and the second suffix7 is added modulo

ki9 comprise the non-identity elements of G each counted λ times. We

know that each of the ordered pairs (g, gu), where u is an assigned

element of G and g varies through the set G, occurs as a pair of

consecutive elements λ times among the blocks of the set

B= U {(ygnygn- ygikJΛygnygn- yg2k2)> >

Suppose that the ordered pair (ygiJ9 ygij+%) is one of these occurrences.

Then g = yg.j and gu = ygiJ+ι. So

No two of the ordered pairs (ygij9 ygij+i) which are equal to (g, gu) can

involve the same giJ since otherwise they would also involve the same y. It

follows that the element u of G appears λ times among the elements

(x^gijV^x^gij+i)* ^ required.
For the converse, we wish to show first that each ordered pair of

elements of G occurs consecutively λ times among the blocks of the set B

defined in the statement of the theorem. Let (w, v) be an ordered pair of

elements of G. In the given (K, λ) complete mapping of the group (G, •),

the element u~ιw occurs λ times in the form g^gt y + 1 for suitable values of

/ and j . Define / as the solution of the equation ggtj = u. Then w =

u(u~ιw) = ggiJ+1 so the ordered pair (ggip ggitJ+ι) for this value of g is

the pair (w, w). It follows that the pair (w, w) occurs λ times among the

blocks of B and so (G, B) is a (v, K, λ)-MD. The remaining statement of

the theorem follows immediately from Definition 5.3.

COROLLARY. If the group (G, •) of order v is R-sequenceable then there

exists a (v, v — 1,1)-MD which admits the group LG of permutations of the

left regular representation of (G, •) as a regular group of automorphisms.

(See Example 6.)

THEOREM 5

[Sii 812

.2.

•••[g'u g'λ2 ••• g'λhλ](gugi

• • • (gsl gs2
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is a (AT, λ ) near complete mapping of a group (G, •) of order υ — 1 with

K = {hv A 2,. . .,Aλ; kl9 k2,. . .,&5} then the blocks of the set

= U { t e i ggί2 " SSuλ °°)> U«2i ££22 * ' SSih

* * 88\hx °°)> (s&i SSu *

form a (υ, k*9 λ)-MD on the set G* = G U {oo}? where K* = {Ax 4- 1,

A 2 4- 1,... ,Aλ + 1; fc1? A:2' > ĵ} Moreover the group of permutations

Si Si ••• Sv-l °°
S82 ••• ffl.-i 00

as a regular group of automorphisms on this design with basis blocks

( S ί l S U ' ' S ' l h , 0 0 ) , . . . , ( g ' λ ι g χ 2 ••• g ^ λ 0 0 ) , ( g u g 1 2 ••• g 1 Λ j ) , . . . ,

Proof. It is easy to check directly that each ordered pair (g, 00) and
also each ordered pair (oo, g) occur λ times as a pair of consecutive
elements among the blocks of the set B. The remainder of the proof is
exactly similar to that of the second part of Theorem 5.1.

COROLLARY. If the group (G, •) of order v — 1 is sequenceable then

there exists a (v, v, \)-MD which admits the group of permutations

Si Si ••• Sv-i °°
g g l SSl "" gSυ~ι °°

as a regular group of automorphisms.

Examples 7 and 8 illustrate Theorem 5.2.
As special cases of Theorems 5.1 and 5.2, we see that a (/c, λ)

complete mapping of a group of order y and a (k,λ) near complete
mapping of a group of order i; — 1 each give rise to a (ϋ, A:, λ)-MD. We
consider next the question of when such a design is resolvable.

Since the number of blocks in a (v, k, λ)-MD is λv(v — ΐ)/k9 which
must be an integer, we have v( v — 1) = 0 mod k in the case when λ = 1.

DEFINITION 5.4. If the blocks of (v, k, 1)-MD for which v = 1 mod k
can be partitioned into v sets each containing (v — l)/k blocks which are
pairwise disjoint (as sets), we say that the (v, k, 1)-MD is resolvable and
any such parititon is called a resolution of the design.
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Each set of (v — l)/k pairwise disjoint blocks together with the

singleton which is the only element not in any of its blocks is called a

parallel class of the resolution. Any resolution of this kind has v parallel

classes.

These definitions were first given in [2].

DEFINITION 5.5. If the blocks of a (υ, k, 1)-MD for which v = 0 mod k

can be partitioned into υ - 1 sets each containing υ/k blocks which are

pairwise disjoint (as sets), we shall again say that the ( u , ^ l ) - M D is

resolvable.

Each set of υ/k pairwise disjoint blocks will be called a parallel class.

A Mendelsohn design which is resolvable in either of the above senses

will be denoted as a (t>, k, 1)-RMD.

By Theorem 5.1, Theorem 5.2 and the above two definitions, we have

THEOREM 5.3. Every (v, k, 1)-MD obtained from a (/c, 1) complete

mapping in the manner of Theorem 5.1 is resolvable. Likewise, every

(v, /c, 1)-MD derived from a (k,l) near complete mapping in the manner of

Theorem 5.2 is resolvable.

Note that by Theorems 5.1 and 5.3, a (v, k, 1)-MD derived from a

(k, 1) complete mapping of a cyclic group must be cyclic1 and resolvable.

It is proved in [2] and [3] that a (v, 3,1)-RMD exists if v = 1 (mod 3) and

in [4] that a (υ, 3,1)-RMD exists if v = 0 (mod3). On the other hand, it is

proved in [5] that a cyclic (v, 3,1)-MD exists if and only if v = 1 or 3

(mod 6), v Φ 9. It is conjectured (see [7] and [8]) that (3,1) complete

mappings of the cyclic group Cυ exist for all v = 1 (mod 6). If this were

proved, we should then have that cyclic (v, 3, l)-RMD's exist if and only if

v = 1 (mod 6) (the other direction of the implication is easy to see). We

shall give a general account of the construction of complete mappings and

near complete mappings in the next section.

DEFINITION 5.6. Let S be a given set and let Bι = (aa aι2 aιk) be

a cyclically ordered subset of k elements of S. Then the elements air and

air+n where addition of the second suffix is modulo k, are said to be

t-apart in the cyclic k-tuple Br

A (v, k, λ) Mendelsohn design (G, B) is said to be l-fold perfect if

each ordered pair (x, y) of elements of G appears t-apart in exactly λ of

1 That is, it admits a regular group of automorphisms which is cyclic.
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the blocks of B for all t = 1,2,...,/. If / = k - 1, the design (G, 5 ) is said

to be perfect. We call such a design a (y, /c, λ)-PMD.

We show next that Mendelsohn designs which are /-fold perfect can

be constructed with the aid of generalized complete and near complete

mappings which have appropriate properties and we give a number of

examples of such constructions.

DEFINITION 5.7. Let

(gn £12 8ik)(g2i 822 ' " Sik) ' ' (Ssi Ssi * Ssk)

be a (&, λ) complete mapping of a group (G, •) of order t; such that for

each value of t, t = 1,2,...,/, the elements g^glyJ+t (where / = 1,2,... ,5;

and the second suffix 7 is added modulo k) comprise the non-identity

elements of G each counted λ times. Then the complete mapping is said to

be an l-f old perfect (&, λ) complete mapping. If / = k — 1, the mapping is

said to be a,perfect (k,λ) complete mapping.

We note that a 1-fold perfect (k, λ) complete mapping is a (k,λ)

complete mapping as given in Definition 2.5 of [10].

DEFINITION 5.8. Let

U ί i 8u * * 8ih] * * Uλi £λ2 " ' £λ*](£n £12 β" £ u )

•" (Ssi 8s2 ' * * g*k)> w h e r e * - * = 1,

be a (/:, λ) near complete mapping of a group (G, •) of order υ and let 2?*

denote the set of λ H- s A -tuples

(gίi 812 ' £ ί * ) ( g 2 i S22 " £ 2 * ) * (gχi g'xi' ' g\k)(gn 812'" 8ik)

'"(gsι8s2 ••• g , Λ ) , w h e r e g / Λ = 00 f o r / = l , 2 , . . . , λ .

If, for each value of ί, / = 1,2,...,/, the elements of the set

( U U V W = 1,2,...,Λ-i}u(u{gr/g,,y+(;y = 1,2,....

comprise all the non-identity elements of the set G U {00} each counted λ

times where we define g~λoo = 00, then the near complete mapping is

called l-f old perfect. If / = k — 1, the mapping is called perfect.

A 1-fold perfect (k, λ) near complete mapping is a (/c, λ) near

complete mapping as given in Definition 2.5 of [10].

THEOREM 5.4. If there exists an l~fold perfect (k,λ) complete mapping

of a group (G, •) of order v then, by the construction of Theorem 5.1, there

exists a (v, k, \)-MD which is l-fold perfect and on which the left regular

representation LG of G acts as a regular group of automorphisms. Likewise,
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if there exists an I-fold perfect (k,λ) near complete mapping of the group

then, by the construction of Theorem 5.2, there exists a (υ + 1, k, λ)-MD

with these same properties.

Proof. The proof is closely similar to that of Theorems 5.1 and 5.2.

We shall prove the second statement of the theorem.

We wish to show that each ordered pair of elements of the set

G U {oo} occur /-apart (for / = 1,2,...,/) λ times among the blocks of

the set

B = U {(ggn ggn '" ggίk-i <*>)Λgg2igg22 '

(gg'xi ggχi ' ' gg'\,k-i °°)> (ggn ggn * * * ggik)>

{ggllggll '•• gg2k)>' Aggslggs2 '" ggsk)}'

Let (w, w) be an ordered pair of elements of G. In the given /-fold perfect

(/c, λ) near complete mapping of the group (G, •), the element u~ιw

occurs λ times in the form gi~ιg- J+t or g^gt J+t for suitable values of / and

y, where the second suffix is added modulo k. Define g as the solution of

the equation ggfj = u where g* is the first member of one of the products

which is equal to u~ιw. Then w = u(u~ιw) = gg*J + t where gfj+t is the

second member of the product. It follows that, for this value of g, the

ordered pair (ggfj, gg*J+t) is the pair (w, w). So, the pair (ι/, w), for each

choice of w, w e G, occurs λ times among the blocks of B. We have also

to show that each ordered pair (w, oo) and each ordered pair (oo, u) for

u G G occur /-apart λ times. To see this, define gt as the solution of the

equation gιg[^t = u (i = l ,2 , . . . ,λ) . Then ( ^ g ^ . , , oo) is the ordered

pair («, oo). Since / can take λ values, we get λ occurrences of this ordered

pair in the set of blocks B. Finally, define gi as the solution of the

equation gtg'ιt = u (i = 1,2,...,λ). Then (oo, gtg[t) is the ordered pair

(oo, u). Again / can take λ values so we get λ occurrences of this ordered

pair in the set of blocks B.

The general problem of constructing /-fold perfect generalized com-

plete mappings turns out to be a difficult one. Even for cyclic groups, the

problem is not trivial. However, we have obtained a number of examples;

in particular, Examples 9,10, 11 and 12 of the Appendix.

We remark that any (3, λ) complete mapping must be perfect. See

Theorem 5.6 below.

In [12], an /-fold perfect (υ — 1,1) complete mapping of a group

(G, •) of order v has been called an Rrsequencing of the group (see also

Definition 6.2) and it has been shown in [6], page 237, Theorem 7.4.1, and

[11] that if a group G is i?z-sequenceable then it is possible to construct at
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least / + 1 mutually orthogonal latin squares based on the Cayley table of
G. Unfortunately, the problem of deciding which groups are Rr

sequenceable for a particular value of / seems not to be a simple one.
However, we have

THEOREM 5.5. The elementary abelian group of order pn has a(pn — 1,1)
complete mapping which is perfect.

Proof. This follows from the fact that such groups are Rpn_2-
sequenceable. (See [12].)

Computer searches reported in [12] have shown that no 2-fold perfect
(8,1) complete mapping of the cyclic group C9 exists, that no 3-fold
perfect (14,1) complete mapping of the cyclic group C15 exists but that
this latter group has 32 isomorphically distinct 2-fold perfect (14,1)
complete mappings. (Three of these latter were used to construct our
Example 9.)

From Definition 2.5 of [10], it follows that, for an /-fold perfect (k, λ)
complete mapping of a group (G, •) of order v, k divides λ(υ — 1).
Consequently, for the corresponding /-fold perfect (v, k, λ)-MD con-
structed as in Theorem 5.4 we must have λ(υ — 1) = 0 (mod A:). The
analogous result for an /-fold perfect (k,λ) near complete mapping of a
group of order v — 1 is λv = 0 mod k since in this case we have λ(k — 1)
+ sk'= λ(v — 1), where s is as in Definition 2.4 of [10]. So, for the
corresponding /-fold perfect (v, k, λ)-MD constructed as in Theorem 5.4,
we have λv = 0 mod k in this case.

In [2], a (v, k, 1) resolvable perfect Mendelsohn design is constructed
for all sufficiently large υ with v = 1 (mod k). Also, in [13], Mendelsohn
has obtained (υ, k9l) perfect Mendelsohn designs with v(v — 1) = 0
(mod k) for the case when k is an odd prime and v is sufficiently large.
Theorem 5.4 enlarges the spectrum of (v, k, λ) perfect Mendelsohn de-
signs in both these cases. Moreover, the designs obtained admit a regular
group of automorphisms and, when λ = 1, they are resolvable.

THEOREM 5.6. Every (3, λ) complete or near complete mapping is

perfect.

Proof. Let ( g n g1 2 gu)(g2l g22 g2 3) --(gsι gs2 gss) b e a (3> λ )
complete mapping of a group (G, •) of order v. Each pair of elements are
either 1-apart or 2-apart.



300 D. F. HSU AND A. D. KEEDWELL

Since g[J

1giJ+2

 = (glj+igij)'1* where the second suffix is added mod-
ulo 3, and since the elements g^J+2gιJ comprise the non-identity elements
of G each counted λ times by definition of a complete mapping, the
complete mapping is 2-fold perfect and so perfect.

Next let [gn g[2] [g'λl g'λ2](gn g12 g13) ' ' * ( g Λ gs2 gss) t>e a (3, λ)

near complete mapping. The elements g'^g'n and g~fgiJ+ι (for j = 1,2)
together with the elements g^giλ comprise the non-identity elements of G
each counted λ times. Consequently, so also do the elements g-2

ιg'n and
g~]+ιgjj for (7 = 1,2) together with the elements gJig^ From this, we see
at once that the set B* of λ + s triples (g[x g[2 00) (g'λι g'λ2 oo)(gn g12

£13) ''' (Ssi Ss2 8*3) satisfies the condition given in Definition 5.8 for the
near complete mapping to be 2-fold perfect and so perfect.

From Theorem 5.6, it follows that sufficient conditions for the
existence of a (v,3y λ)-PMD are the existence of a (3, λ) complete
mapping of a group of order v or of a (3, λ) near complete mapping of a
group of order υ — 1. In either case the perfect Mendelsohn design admits
the group G as a regular group of automorphisms. (See Example 13.)

6. Constructions for generalized complete mappings. In this final

section, we provide a number of different constructions for generalized
complete and near complete mappings.

We begin with the following simple observations:
(i) If we repeat the cycles and sequences of a {K, λ) generalized

complete or near complete mapping h times, we get an (hK, hλ) gener-
alized complete mapping. Such a construction is called trivial and the
generalized complete mapping so obtained is called trivially decomposable.

(ii) If we reverse the order of the elements in all the cycles and
sequences of a generalized complete or near complete mapping, we get
another such mapping. Moreover, if

[g\i S i ! ' " SΊh] '' [g'xi g ' λ i ' g \ h λ ] ( g n S n ' " 8 i k J

' " (gslSsl ' " gsks)

is a (K, λ) near complete mapping which satisfies the condition

then the mapping

[βίi g'12 ' * g'lh] " * [gλi g\2 ' *"

is another near complete mapping. (See Example 14.)
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(iii) If we adjoin a (K, λ) generalized complete mapping to its reverse,

we get a (2ΛΓ,2λ) generalized mapping. A mapping which can be so

constructed is called patterned.

A generalized complete mapping obtained from a given generalized

complete mapping by the methods of (ii) above has the parameters K and

λ unchanged. However, this invariant property is combinatorial rather

than algebraic because this type of transformation does change the

properties of the corresponding neofield. (See Examples 15 and 16.)

A construction very similar to that of (ii) which yields a (u + 1,2)

generalized near complete mapping of a group G of order v if G is

quasisequenceable is the following. Suppose that Z>0, bl9 b2,... ,bv_x is the

terrace associated with the quasisequencing (see [1] for the definitions). It

has the property that the v — 1 elements b^b^ b~^b2,... ,b~\2bυ_ι contain

each element of order 2 of G once and, for each other non-identity

element of G, either g twice or g"1 twice or both g and g"1. Consequently,

[b0 bλb2 bv_1][bv_1 bv_2 b0] is a (v + 1,2) generalized near com-

plete mapping of G. It can be expressed in canonical form by multiplying

the elements of the first sequence by b^1 and those of the second by b~*v

Moreover, if b~\ xb0 = bjιbi+ι then

[b0 bχ b2 bv_λ] [bt bt_x b0 bv_λ bυ_2 bi+2 bι+ι]

also is a (v + 1,2) generalized complete mapping. (Compare page 329 of

[1].)
A slightly less obvious way of constructing new generalized complete

mappings comes from the observation that, if a group G can be expressed

as a direct product G = Gλ X G2 then a complete mapping of G can be

constructed from complete mappings of its direct factors Gτ and G2.

Precisely, we have

THEOREM 6.2. // there exists a (kv λ x) complete mapping of the group

Gλ and a (A:2, λ 2 ) complete mapping of the group G2, then there exists a

(K, λ) complete mapping of the group Gλ X G2, where λ = λτ λ 2, K =

{k, k>...9k9 kv kl9...,kl9 k2, k2,...,k2} andk is the least common multi-

ple of kλ and k2.

Proof. Suppose that

°i~ \g\\ 8l2 SlkjySn 622 82/cJ \6S[,l3Sι,2 Ssltkt)

is a (ki9 λ f ) complete mapping of Gz, / = 1,2. Let G* denote the set of

non-identity elements of Gt. Then we may regard σz as a permutation from

\tG* to λ G* with cyclic structure {/:2, ki9...9kt} and such that o^g^1))

= gjj+v Here, the second suffix is added modulo kι and λ Gf is a set
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which consists of the non-identity elements of Gz each counted λ times.

The permutation σi satisfies the extra condition that the set {g^σ^g):

g G λ ,.(?,*} coincides with the set λfi*.

We shall obtain the desired (K,λ) complete mapping of Gλ X G2 by

constructing its associated permutation σ.

We define o^e^ = eo where et is the identity element of Gr Let σ be

the permutation from λ(G1 X G 2 )* to λ(G1 X G 2 )* defined by σ(g1? g2)

= (<Ί(*i), σ2(g2)) where (g1 ? g2) e λ(G x X G 2)*. Thus,

and

From this it is immediately clear that if (g1 ? g2) is an element of

λ(Gλ X G 2 )* for which gx ^ eλ and g2 ¥= e 2 then each of the λ = λx λ 2

cycles in which (g l 5 g2) appears is of length k = [kv k2], where [kv k2]

denotes lowest common multiple. If gλ = el9 g2 Φ e2, then each of the λ

cycles in which (gx, g2) appears is of length k2 and these cycles comprise

λx copies of a set of cycles isomorphic to those of the generalized complete

mapping σ2. A similar remark applies to the case gλ Φ el9 g2 = e2. Finally,

it is easy to check that there are all together (k1k2/k)s1s2 cycles of length

k = [kv k2], λ2sλ cycles of length kλ and λλs2 cycles of length /c2, whence

the set {g~ισ(g): g G λ(Gι X G2)*} has cardinal sιs2kιk2 + λ2s1kι +

λλs2k2. It is also easy to check that this set coincides with the set

λ(Gλ X G 2 )* and so σ is a generalized complete mapping of Gλ X G2.

[Note that ord G, = 1 4- ̂ Λ/λ,, whence

ordG* = (1 + s^/λjil + s2k2/λ2) - 1

and so λG* has cardinality (λ x + ̂ i^χ)(λ 2 4- s2k2) — λ 1 λ 2 .]

Since the direct product of two cyclic groups is cyclic if and only if

the orders of the two cyclic groups are relatively prime, we can use

Theorem 6.1 to construct generalized mappings of a cyclic group Cn from

those of cyclic groups of smaller orders provided that these orders are

relatively prime factors of n.

In the Appendix, we give two illustrations of the theorem which

emphasize this (Examples 17 and 18).

The investigation of methods for constructing (K,λ) generalized

complete mappings with λ > 1 was first initiated in [9], page 43, where

certain (K, 2) generalized complete mappings of a cyclic group Cn were

constructed. It was shown (in Chapter 3 of [9]) that there exist (6,2)

complete mappings of Cn for n = 1,7 or 13 (mod 18); that there exist
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(K,2) complete mappings of Cn for n = 3 (mod 18) with K =
{2,2,6,6,... ,6} and that there exist (K, 2) near complete mappings of Cn

for n ΞΞ 2, 8 or 14 (mod 18) with A" = {2,2; 6,6,... ,6}. It was also shown
that the cyclic neofields associated with these generalized complete map-
pings (see Theorem 1.46 in [9]) all have the XIP-property. (A cyclic
neofield N is said to have the crossed-inυerse property (XIP-property) if
(x + y) + (-x) = y, for all x9 y e N). For illustration, see Examples 19
to 23.

Example 19 is different from Examples 20 and 22 in the sense that if
we consider the cyclic sequences in each example as subsets of the
respective groups then each of Examples 20 and 22 has two equal subsets.
This suggests the following definition.

DEFINITION 6.1. A (K, λ) generalized complete mapping, λ > 1, of
the group G is said to be tight if, when we ignore the cyclic order in each
cyclic sequence (i.e. treat the sequences as subsets of the group G), all of
the cyclic sequences are distinct.

The generalized complete mappings of Examples 20 and 22 are clearly
not tight. The general problem of obtaining tight (and consequently
non-patterned and not trivially decomposable) generalized complete map-
pings for a given group is difficult. So far, the only known family of tight
generalized complete mappings are (6,2) complete mappings of the cyclic
group Cn for n = 1,13 (mod 18) (see [9], page 80).

One method of obtaining (λK,λ) tight generalized complete map-
pings is to construct λ distinct (in the sense implied by Definition 6.1)
(K, 1) generalized complete mappings and then adjoin them. Here λK is
obtained from K by repeating each element of K λ times. As an example,
we have that

[e a 4 a3][e a 2 a3][e a a3][e a 5 a 3 ] ( a a 2 a s ) ( a a 5 a 4 ) ( a 2 a 5 a 4 ) ( a a 2 a 4 )

is a tight (4K, 4) near complete mapping of the cyclic group C6 obtained
by putting four (K, 1) near complete mappings together, where K = {3; 3}
a n d 4 # = {3,3,3,3; 3,3,3,3}.

The following theorem gives a construction which always yields tight
generalized complete mappings. We first need a definition. In part I we
defined an /{-sequencing of a group. The following generalization was first
introduced in [12].

DEFINITION 6.2. A group (G, •) of order n is said to be R^sequencea-
ble if n — 1 of its elements (which we may take to be the non-identity
elements) can be arranged in a sequence cv c2, ...9cn_ι in such a way that
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the set of elements c[1ci+ι for / = l,2,...,/i — 1, are all distinct (where

arithmetic of suffices is modulo n — 1) and likewise the sets of elements
cΓ1<:/+2> c Γ l c i + 3> >c7lci+i- I n particular, a group which is i? rsequencea-

ble is i?-sequenceable with a0 = e, and ax = c " ! ^ , a2 = cf1^? α 3 =

c2

ιc3,... ,an_λ = c~\2cn_v (Compare Definition 2.2 of [10].)
An Rt -sequencing of a group is the same as an /-fold perfect (v — 1,1)

complete mapping of that group as we mentioned in the previous section.

THEOREM 6.2. // a group (G, •) of order n is RΓsequenceable then it

possesses a tight (K,λ) complete mapping where λ is equal to the number of

integers in the set {(n — ϊ)/i: i = 1,2,...,/}.

Proof. In the notation of Definition 6.2, the mapping σ = (cλ c2

cn_x) is an (n - 1,1) complete mapping of G. (Compare Theorem 2.1 (iii)

of [10].) Since G is l?Γsequenceable, σ2, σ3,...,σι are also complete

mappings of G. The cyclic sequences of σ* and σJ are different from each

other and from the cyclic sequences of σ provided that / and j are distinct

divisors of n — 1. By adjoining these complete mappings, we get a tight

generalized complete mapping of the kind described in the theorem.

It was shown in [12] that an elementary abelian group of order/?" is

i?Γsequenceable for / = 1,2,...,/?" — 2. Making use of this fact, we obtain

Examples 24 and 25.

We remark that, for any elementary abelian group of order pn

9

Theorem 6.2 also provides a simple method of constructing (&, 1) com-

plete mappings where k is any integer which divides n — 1.

DEFINITION 6.3. A (K, λ) complete mapping ( g u gl2 glki)(g2l

S22'" Slk2) ' * (gsl Ss2 * gsk) θ f a § Γ O U P (G> *) ί S S a ί d t O b e StWnS i f

the elements gtJ gltJ+ι (where / = 1,2,...,5 ; and the second suffix j is

added modulo /cz) comprise the non-identity elements of G each counted λ

times. Similarly, a (K, λ) near complete mapping

ίi g'12' ' g[h\ ''' [g'xi Sx2'" g\hλ](gn Sn- Sik)

of the group is said to be strong if the elements g'tj gr

iJ+ι and gtJ giJ+ι

together with the elements gik ga comprise the non-identity elements of G

each counted λ times.

The concept of "strongness" of a complete mapping was first intro-

duced in [8], where (among other things) a special case of the following

theorem applicable only to cyclic groups and to the particular value k = 3

was proved.
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THEOREM 6.3. Let (G, •) be a finite group. If there exists a strong

(2/c, λ) complete mapping of G which satisfies the condition that, for each

cyclic sequence (g f l gi2 gι2k\ g;j

1ghJ + ι = gιJ+2 where the second suffix

is added modulo 2/c, then there exists a(k, λ) complete mapping of G.

Proof. Let σ = ( g n g12 g l f 2 Λ) (g s l g j 2 gJ f 2 Λ) be a strong

(2/c, λ) complete mapping of the group G such that giJ

1gi^J + 1 = g, ,y+2

Then the mapping

σ 2 = (gllSn '•' 8l,2k-l)(gl2glΛ ••* g l , 2 * ) "ΛgslSsA ' " 8s,2k)

is the desired (A:, λ) complete mapping because we have that

SιjSiJ+2 ~ \8ιj 8iJ+l)\8ι,j+l8ι,j + 2) ~~ 8ι,j + l8iJ+3

and, because σ is strong, the products gltJ + 28ij+3 comprise the non-iden-

tity elements of G each counted λ times. (Arithmetic of all second suffices

is modulo 2k.)

We remark that if (G, -f) is an elementary abelian group of order/?",

we may regard it as the additive group of the Galois field GF[pn]. If ω is a

primitive element of GF[pn] then σ = (1 ω ω1 ωp"~2) is an i?Γse-

quencing of (G, + ) , where I = pn — 2. So, if 2/c is any even divisor of

pn - 1, and / = (pn - I)/2k we have that

σr = (1 ωr ω2t co ( 2 ^ Γ ) 0(ω ωt+ι ω2t+ι • ω(2k~l)t+ι)

- (ω'-W'1 - ωlkt~ι)

is a (2/c, 1) complete mapping of (G, + ) . Also σ' is strong because the

elements 1 + ω\ ω + ωt+\. . . , ω ί " 1 + ω 2 ' " 1 , ωr + ω2 r, ω ί + 1 4-

ω 2 ' - * - 1 , . . . ^ 2 ' " 1 + ω 3 ' " 1 , . . . , ^ } ^ " 1 ^ " 1 + ω 2 ^ " 1 are the non-identity ele-

ments of G. It satisfies the further condition required by Theorem 6.3 if

and only if ωt — 1 = ω2'(mod p). However, in this special case, σ2ΐ is a

(/c, 1) complete mapping of (G, + ) even when this extra condition is not

satisfied.

Example 26 is constructed by the method just described and satisfies

the additional condition ω' — 1 = ω2t (mod 13) where ω = 2 and t = 2.

Example 27 is constructed from the Galois field GF[9] by the method just

described but does not satisfy the additional condition ω' — 1 = ω2t. That

is, a2 — 1 ^ aΛ (mod 3).

A final observation concerning Theorem 6.3 is that, if the group G is

abelian, the condition g~^gιJ+ι = gij+i c a n o n t y ^old when k = 6. Let

a, b be two elements of such a group. Then the cyclic sequence (a b )

must continue as follows: a, b, a~ιb, b~x(a~ιb) = a'1, (a~ιb)~ιa~ι = b~ι,

ab~ι,a9 b. That is, it has length six.
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The following is an analogue of Theorem 6.3 for near complete

mappings.

T H E O R E M 6.4. Let ( G , •) be a finite group and let

σ = [ e g ί Π e g ί ] ••• [eg'xligngn '" Siβ) '"(gsiSsi '" gsβ)

be a (K, λ ) near complete mapping of ( G , •), where K= { 2 , 2 , . . . , 2 ;

6, 6 , . . . , 6 } . If o is strong and satisfies the condition that, for each cyclic

sequence (g # 1 gl2 g / 6 ) , g^1 gι/ + ι = gιj + 2 where the second suffix is

added modulo 6, then there exists a (3, λ ) near complete mapping of G.

Proof. The mapping

is the desired (3, λ) near complete mapping because for the cyclic se-

quences we have

S g '-1 e ) = 2 e
>l,/ + \C>l,J + 2J o / , y + 2 O / , y + 3

and because σ is strong the products glJ + 2gl,J + 3 together with the

products eg[, egf

2,...,eg'λ comprise the non-identity elements of G each

counted λ times.

APPENDIX- EXAMPLES.

(1) Let G = C 1 4 U {oo} and B = Uίio{(ί 7 + / oo), (1 + i 2 + /

6 + ι 11 + / 3 + /), (4 + / 12 + / 9 + / 5 + /), (8 + / 10 + i

13 + /)}, where all addition is modulo 14. Then (G, B) is a (15, K, 1)-MD

w i t h ^ = {5,4,3}.

(2) Let G = C1 3 and B = U)i o{(l + i 4 + / 3 + ί 12 + / 9 + /

10 + /), (2 + / 6 + / 4 + / 11 + / 7 + / 9 + /), (5 + / 2 + /

11 + / 7 + / 9 + /), (5 + / 2 + ι 10 + / 8 + / 11 + / 3 + /),

(6 + / 1 + / 8 + / 7 + / 12 + / 5 + /)}, where addition is

modulo 13. Then (G, 5 ) is a (13, K, 2)-MD with # = {6}. That is, it is a

(13,6,2)-MD.

(3) Let G = {a,b,c,d} and 5 = {(b c d),(a d c)7(d a b),(c b a)}.

Then (G,£) is a (4, K, 1)-MD with ^ = {3}. That is, it is a (4, 3,1)-MD.

(4) Let G be the dihedral group D4 of order 8 with generating

relations a4 = b2 = e and ab = ba~ι, and let 5 = Uχ(=G{(xa xa2 xba2 xba

xba3 xa3 xb)}. Then (G, £) is an (8,7,1)-MD.



GENERALIZED COMPLETE MAPPINGS, ETC. 307

(5) Let G = C 8 U { o o } and B = U/=0{0' 4 + ί °°)> 0' 4 + /
oo), (l + i 2 + / 7 + /), (3 + i 6 + i 5 + i), (1 + / 7 + i
6 + i),(2 + i 3 + i 5 + /)}, where addition is modulo 8. Then (G, B)
is a (9,3,2)-MD.

(6) The i?-sequencing e a b a3 a2 ba2 ba3 ba of the dihedral group D4

defines the (8,7,1)-MD whose blocks are given by left-multiplying the
elements of the basis blocks by each of the eight elements of D4 in turn.
Here there is exactly one basis block (a a2 ba2 ba ba3 a3 b) by Theorem
2.1(iii) of [10] and hence we get a design with eight blocks.

(7) The (K, 2) near complete mapping of the dihedral group D3 given
in Example 2.6 of [10], where K= {2,2; 4,4}, defines a (7, P,2)-MD
with K* = (3,4} whose blocks are

(eba oo), (e ba2 oo), (a2 b ba2 a), (abba a2)

(a boo), (abaoo), (eba2baa2), (a2 ba2 b e)

(a2 ba2 oo), (a2 boo), (a babe), (ebaba2a)

(baoo), (ba2oo), (ba2ea2ba), (baeaba2)

(baeoo), (baaoo), (ba2 aba2), (ba2 a2 e b)

(ba2aoo), (ba2eoo), (baaeb), (b a a2 ba)

The design admits a regular group of automorphisms isomorphic to

(8) The sequencing 0 3 2 1 of the cyclic group C4 defines the
(5,5,1)-MD whose blocks are (0 3 1 2 oo), (1 0 2 3 oo), (2 1 3 0 oo) and
( 3 2 0 1 oo). (See Theorem 2.2 of [10].)

(9) The (14,3) complete mapping of the cyclic group C15 given below
is 2-fold perfect.

(1 2 13 4 11 10 3 6 8 5 9 14 12 7) (1 3 8 14 13 2 11 4 5 12 9 7 10 6)

(1492 3 14 8 107 5 116 13 12).

(10) The (6,2) complete mapping (1 3 2 6 4 5) (1 5 4 6 2 3) of the
cyclic group C7 is perfect.

(11) The (7,1) near complete mapping [0 2 1 4 5 3] of the cyclic group
Q is perfect.

(12) The (3,2) near complete mapping of the cyclic group C14 given
below is perfect

[0 7] [0 7] (1 2 5) (3 9 4) (6 10 12) (8 13 11) (111 9) (2 13 12)

(3 6 8) (4 5 10).
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(13) The existence of the following (3,2) near complete mapping of

the quaternion group Q = gp{#, b: a4 = e, a2 = b2, ab = ba'1} allows

the construction of a (9,3,2)-PMD admitting this group as a regular

group of automorphisms.

[ea][e a3](ba ba3 a)(b ba2 a3)(ba a2 ba2)(b a2 ba3).

(14) [e ba4](a2 a aA)(a3 ba2 ba6)(aβ b ba)(a5 ba3 ba5) is a (3,1) near

complete mapping of the dihedral group Z>7 = gp{a, b: a1 = b2 = e,

ab = ba~1}. By reversing the cyclic order of the elements in each cyclic

sequence, the following is also a (3,1) near complete mapping of DΊ\

[e ba4](a2 a4 a)(a3 ba6 ba2)(a6 ba b)(a5 ba5 ba3).

(15) (a a4 a2)(a3 a5 a6) is a (3,1) complete mapping of the cyclic

group CΊ. By observation (ii) of §6, (a a2 a4)(a3 a6 a5) is also a (3,1)

complete mapping of C7. By Theorem 3.1 of [10], their associated neo-

fields of order 8 are:

and
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One can easily check that the former neofield hs only the commutativity

property: x + y = y 4- JC, while the latter has only the right inverse

property: (x + y)(-y) = x (see [9]).

(16) The following two cyclic neofields of order 9 (associated with two

near complete mappings of the cyclic group C8 related as in observation

(ii)of§6):

and
z
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z
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1

0

1

1
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a
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a

both have the left inverse property: (-JC) 4- (x + y) = y. However the first

neofield also possesses the commutative property. In fact, it is the Galois

field of order 9.

(17) From the (2,1) complete mapping ox = (a a2) of the cyclic group

C3 = gp{#} and the (3,1) complete mapping σ2 = (b b2 b4)(b3 bβ b5) of
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the cyclic group C7 = gp{6}, we can construct the following (K,ϊ)

complete mapping of the direct product C3 X C7 ? where K = (6,6,3,3,2}.

We can conveniently express this in the form of a complete mapping of

C 2 1 = gp{ c) by means of the mapping (<?*, by) -» cΊx+3y.

((a, b)M\ b2)M, b4)Λa\ b)9(a9 b2)9(a2

9 Z>4))

((a, b%{a\ b*),(a, Z>5),(*2, b*)9(a, &6),(α2, b5))

((a,e)9(a2

9e))

(18) From the (2,1) complete mapping σx = (a a4)(a2 a3) and the

(4,2) patterned complete mapping σ2 = (b b3 b4 b2)(b2 b4 b3 b) of the

cyclic group C5, we can construct the following (K, 2) complete mapping

of the non-cyclic group C5 X C5, where K = {4,4,... ,4,2,2,2,2}.

((*, * ) , {a4, b3), {a, b4), {a4, b2))((a, b), (a4, b2), (a, b4), (a4, b3))

((a2, b), (a3, b3), (a2, b4), (a3, b2)){(a2, b),(a3, b2), {a2, b4),(a3, b3))

{(a3, b),{a\ b3),{a\ b4),{a\ b2)){(a3, b),{a\ b2),{a3, b*),(a2, b3))

{(a4, b), (a, b3),(a4, b4), (a, b2)){(a4, b), (a, b2), (a4, b4), (a, b3))

{(e, b),(e, b3),(e, b4),{e, b2))((e, b),(e, b2),(e, b4),{e, b3))

((a, e),(a4, e))((a2, e), (a3, e))((a, e), (a4, e))((a2, e), (a3, e))

(19)

( f l a5 a4 a1* a14 a15)(a2 a1 a5 a17 a12 au)(a3 a9 a6 a16 a10 a13)

(a9 a a11 a10 au a*)(a* a2 a13 a11 a17 a6)(a7 a3 a15 a12 a16 a4)

is a (6.2) complete mapping of the cyclic group C1 9.

(20)

(a7 au)(a7 au)(a2 a10 a* a19 a11 au)(a4 a9 a5 a17 a12 au)(a6 a a16 a15 a20 a5)

(a9 a3 a15 a12 au a6)(a a4 a3 a20 a17 ais)(aw a2 a13 a11 a19 as)

is a (K, 2) complete mapping of the cyclic group C2 1 with K —

{2,2,6,6,6,6,6,6}.

(21)

[e a7][ea7](aa4a3 a13 a10au)(a6a a9a* a13 a5)

(a2 a6 a4 a12 α 8 alo)(a5 a2 a11 a9 a12 a3)
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is a (K, 2) near complete mapping of the cyclic group C14 with K =
{2,2; 6,6,6,6}.

(22)

(a a6 a5 a24 a19 a20)(a2 a9 a6 a23 a11 a19)(a4 a12 as a21 a13 a17)

(a12 a au a13 a24 an)(an a2 a16 a14 a23 a9)(a9 a4 a20 a16 a21 a5)

(a3 a10 a7 a22 a15 a18)(aw a3 au a15 a22 a7)

is a (6,2) complete mapping of the cyclic group C25.
(23)

[e ba3} [e ba4](a2 a a4)(a2 a a4)(a3 ba ba5)(a3 ba2 ba6)(a6 baβ b)

(a6 b ba)(a5 ba2 baΛ)(a5 ba3 ba5)

is a (3,2) near complete mapping of the dihedral group DΊ.

(24) Since 2 is a primitive root of 13, the following sequence provides
an i?11-sequencing of the cyclic group C13 when written additively. (See
[12] for a proof.)

σ = (1248 3 6 12 119 5 107)

We find that

σ2 = (14 3 12 910)(2861157)

σ3 = (18 12 5)(2 3 1110)(4 6 9 7)

σ4 = (1 3 9(2 6 5)(4 12 10)(8 11 7)

σ6 = (1 12)(2 11)(4 9)(8 5)(3 10)(6 7).

When these five mappings are adjoined they define a (K,5) tight
generalized complete mapping of the cyclic group C13, where K =
{12,6,6,4,4,4,3,3,3,3,2,2,...,2).

(25) Since a root a of the equation α2 = α + 1 is a primitive element
of the Galois field GF[9], the following sequence provides an R 7-sequenc-
ing of the additive group of the field.

σ = (1 α a + 1 -α + 1 -1 -a -a — 1 a — 1)

We find that

σ2 = (1 a + 1 -1 -a- l)(<x -α + 1 -α α - 1)

σ4 = (1 -l)(α + 1 -a- l)(α -a)(-a + 1 a - 1).
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When these three mappings are adjoined they define a (K,3) tight

generalized complete mapping of the group G = gp{a: a3 = e] X

gp{b: b3 = e) which we can write in the form

(a b ab ab2 a2 b2 a2b2 a2b)(a ab a2 a2b2)

(b ab2 b2 a2b)(a a2)(ab a2b2)(b b2)(ab2 a2b).

(26) (a a4 a3 a12 a9 alo)(a2 a* a6 a11 a5 a1) is a strong (6,1) complete

mapping of the cyclic group C 1 3 which satisfies the additional condition

required by Theorem 6.3.

(27) (a ab a2 a2b2)(b ab2 b2 a2b) is a strong (4,1) complete mapping

of the group C3 X C3 = gp{α: a3 = e) X gp{Z>: b3 = e}.

(28) (a a4 a3 a12 a9 al0)(a2 a6 a4 a11 a1 a9)(a5 a2 a10 a* a11 a3)(a6 a a*

a1 a12 a5) is a strong tight (6,2) complete mapping of the cyclic group C 1 3

which satisfies the additional condition required by Theorem 6.3.

(29) (a a5 a4 a6 a2 a3)(a a2 a4)(a3 a6 a5) is a stong tight (K92)

complete mapping of the cyclic group C 7 constructed by the methods of

Theorem 6.2, where K = {6,3,3}.

(30) [e ba3](a2 a a4)(a3 ba ba5)(a6 ba6 b)(a5 ba2 ba4) is a strong

(K, 1) near complete mapping of the dihedral group DΊ = gρ{#, b: a1 =

b2 = e,ab = ba-1}, where K = {2; 3,3,3,3}.
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