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We study algebras of differentiable functions on a reflexive Banach
space, defined by polynomial approximation on bounded sets. We find
the spectra of such algebras and we investigate the structure of their
closed ideals. In relation to this, we treat also an approximation problem
of functions/such that/, /*,... , / ( w ) vanish on a weakly compact set by
a method involving radical algebras and the Ahlfors-Heins theorem.

Introduction. We denote by E a complex reflexive Banach space
with closed unit ball Ω, by E' its topological dual, and by m a fixed
non-negative integer. If S is a subset of E and Y a Banach space, a
function g: S -> Y is said to be weakly continuous if it is continuous with
respect to the weak topology on S and the norm topology on Y. We
denote by C^(Ω) the algebra of the m times continuously differentiable
complex valued functions whose m derivatives can be extended by con-
tinuity to the boundary of Ω and, moreover, these derivatives are weakly
continuous on Ω. Let τ m be the topology on CJ^(Ω) of m-uniform
convergence on Ω. Equipped with τ w , C^(Ω) becomes a Banach algebra.

We are interested in functions obtained by polynomial approxima-
tion. For this, we consider Am(Ώ), defined as the τm-completion of Pf in
C^(Ω). Here Pf denotes the algebra of the polynomials of finite type on
E, i.e. the ones generated by the elements of E' and their conjugates, and
the constant functions; it is clear that Pfa C^(Ω). We may define also
the spaces A°°(Ω)9 A

m(E), A°°(E) in a similar manner to Am(ίl) (defini-
tions below). In fact, the functions of type of Am(Ω,) have been introduced
in the literature in relation with approximation questions ([1], [2], [16]).
For instance, when E' has the bounded approximation property, Am(Ώ) =
Q^(Ω) for every m (see [2]). Also, the weak continuity has been treated
recently in great detail (see [3]), for instance). Here we study the spaces
Am(Ω), Λ°°(Ω), Am{E\ A^iE) as topological algebras.

In §1 the Gelfand's theory in the Banach algebra Am(£l) is given: we
show that Ω is the spectrum of Am(Ω) and the identification between the
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Gelfand topology and weak topology on Ω is obtained (we call spectrum
of a topological algebra the set of its non-zero complex continuous
homomorphisms). Also, Am(Ω) is a regular algebra. We begin the study of
the structure of the closed ideals in Am(ίl). The minimal primary closed
ideals are characterized and it allows us to prove—in §2—in this context
a generalization of a BorePs classical result about formal series. The
spectral synthesis problem is raised and some partial results are given.

In §2 we discuss the case of the algebras Λt°°(Ω), Am(E\ A°°(E).
We study in §3 a problem of approximation. Let/ ^ Am(Ώ) such that

/, Df,... ,Dmf vanish on a weakly compact subset K of Ω. Does there exist
a sequence { /„}£=! of elements of Am(ίi) vanishing over a weak neighbor-
hood of K (depending on n) such that Mm^^^ = / for τ m in Am{Ώι)Ί
This question is obviously related with spectral synthesis. We do not solve
completely this problem, but we obtain some consistent partial results.
The method consists in considering the map t -* f* (Ret > m) in case
when / > 0. We obtain an analytic map from the half-plane {t Ξ C|Re t
> m) into Am(ίi) which clearly defines a semigroup and has exponential
growth on vertical lines. Using the Ahlfors-Heins theorem as in [7] we see
that / ' ^ Ker φ for Re t > m if φ is any continuous homomorphism from
{g e Am(Ω)\g(K) = 0} into a radical algebra. For m = 1, this shows in
particular that the answer to the approximation problem is positive in the
case where/ > 0 or/~1(0) = K(f real-valued).

Sections 1 and 2 of this paper are parts of the author's doctoral thesis
(Zaragoza, Spain, 1980). The content of §3 was obtained in collaboration
with Jean Esterle during the stay of the author in the Universite de
Bordeaux I (France), the academic year 1981-82, supported by a Beca del
Plan de Formaciόn de Personal Investigador del M.E.C., Spain.

1. Gelfand theory in Am(Ω). The space C^(Ω) is a Banach algebra
with the norm defined by | |/ | | m = s u p ^ Σ J . o l l ^ / W I I ( / e C^(Q)),
and Am(Ώ) is a Banach subalgebra. We observe that ψ <> / e Am(Ω) if
/ e Am(Ω) and ψ is any m times continuously differentiable function ψ:
U -> C, with U some open subset of C, such that /(Ω) c U. It is a
consequence of the polynomial approximation and routine calculations on
the formulae for high derivatives ([8], p. 161). So, if f <= Am(ίi) and
f(x) Φ 0 for all x e Ω, the function (l//)(x) = l/f(x), (x e Ω) is in
Am(Ώ) (it suffices to consider 1//= α°/ ) W i thα(z) = z~\ifz e C\{0}).

PROPOSITION (1.1). Let E be a reflexive Banach space. Then Ω is the

spectrum of the Banach algebra Am(ίl) and the Gelfand topology equals the

weak topology on Ω.
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Proof. According to the general rule of [9], p. 22, 23, the spectrum of
Am(Q>) is Ω. Moreover, Ω is a weakly compact subset of E and the
functions in Am(Ώ) are weakly continuous on Ω. Thus, in accordance with
[9], p. 40, Th. Γ, the Gelfand topology equals the weak topology on Ω. D

PROPOSITION (1.2). If E is a reflexive Banach space, Am(Ω) is a regular
algebra.

Proof. If x0 e Ω and S is a Gelfand-closed subset of Ω with x0 & S
we may assume that S = { X E Ω : \g(x)\ > 1} for some g e Am(Ώ) such
that g(x0) = 0. Therefore, by the observation above to proposition (1.1),
it suffices to take ψ verifying ψ(0) = 1 and ψ(z) = 0 for \z\ > 1, and
consider ψ ° g. •

The Shilov's theory of ideals shows that for any Gelfand-closed
S c β there exists an ideal J(S) in ^"XΩ), minimal among all ideals /
satisfying Z(I) = S (Z(/) denotes the zero set of /) . The ideal J(S) is
formed by the functions g e Am(Ώ) vanishing on some Gelfand-neighbor-
hood of S in Ω. If S = { x0}, x0 e Ω, J(x0) is the minimal primary closed
ideal corresponding to x0. We are going characterize J(x0) by means of
the derivatives of its elements. Henceforth in this section E denotes a
separable Hubert space with a fixed orthonormal basis {en}™=1 and
{Pn }^=1 designating the sequence of projections associated to this basis.

LEMMA (1.3). Let Kbe a weakly closed subset ofΩ. Let f e Am(Q) such
that Drf(K) = 0 for every r = 0,1,... ,m. Then, for ε > 0 given there exists
p > 0 such that ||/>r/(x)|| < ed(x, K)m~r whenever d(x, K) < p, (x e Ω).
(d(x, K) denotes the distance in norm from x to K.)

Proof. The derivative Dmf: Ω -> Lm(E; C), Lm(E\ C) being the space
of continuous m-linear mappings on is, is weakly continuous and Ω is
weakly compact, so Dmf is uniformly weakly continuous and, moreover,
uniformly continuous (in norm). Therefore we can find p > 0 such that
d{x, K) < p, (x €Ξ Ω) implies | |Dw/(x) | | < ε. Now, if y e K,

/)^-i/(x) = Dm~ιf(x) - Dm~ιf{y)

= f1 D>"f{y + t(x-y))(x-y)dt.

We have

p ^ - Y O O H * sup \\D">f(y + t(x-y))\\\\x-y\\
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and \\Dm~1f(x)\\ < εd(x, K) is easily obtained. By repeating this process,
we have \\Drf{x)\\ < εd(x, K)m~r (r = 0,1,... ,m). D

We note that, if f <Ξ Am(Ω), then l i m ^ ^ / o Pn = / in Am(Ώ). (See
[16]. The proof is similar for m > 1 and functions defined on Ω.)

THEOREM (1.4). // x0 e Q_and_I(x0) = {/e Λm(Ω): Drf(x0) = 0
(r = 0,1,...,w) A

. We choose an infinitely differentiable function h on E such
that h(x) = 1, for ||JC|| < | and Λ(JC) = 0 for ||x|| > c; ξ, c being positive
real numbers. For every n e N, we put hn = h° Pn, fn= f ° Pn, where
/ e ^ m (Ω), and if x e £, w, ^ e TV, Λn y(jc) = hn(v(x - xo)) We have
*„,,(*) = 1 if and only if \\Pnx - Prtx0|| < ζ/v, hΛt9(x) = 0 iff \\Pnx -
Pnx0\\ ^ c/v. In this last case, Drhnv{x) = 0 (r = 0,1,... ,m).

We choose «(*>) such that \\Pn{v)x0 — xo | | < c/^, for each v e iV. If
/ ^ /(^o)' there exists p > 0 such that ||JC — xo | | < p implies

\\DJ(x)\\<ε\\x-xof~
r (r = 0,l,...,m).

We take Ϊ' such that 2c/v < p. Then, if

\PnWx - Pni»xo\\ * c/p9 Dkhn{v),v(x) = 0 (k = 0,1,. . . 9m)

and if | |PΛ ( ϊ ; )x - Pn(v)x0\\ < c/v,
Ύc

U P v — v II < r II p v — p v I I - i - U P *- _ v l l < r
IK «(»')Λ; Λ θ | | ^ \\Γn{v)x Γn(v)X0\\ ^ \\Γn(j>)X0 Xθ\\ ^ >

and so

( 2c \ mn~r+k

)

It follows that, for every x e Ω,

Σ

where c' is a constant number.
We have proved that l i m ^ ^ hn{v) Jn(p) = 0 in Am(Ώ). But

because the sets {x e Ω: ||PΠJC - PΠΛ 0 | | < v}η>otneN a r e Gelfand-neigh-
borhoods. So,/e /(x 0 ) . D
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The problem of spectral synthesis for ^4m(Ω) consists in knowing if
each closed ideal / c Am(Ω,) is the intersection of primary closed ideals
which contain it. An equivalent formulation is to pose if the equality

(•) /- n

is true. When E is finite-dimensional the equality is satisfied (Whitney
theorem; see [19], p. 89, for instance). Indeed, the Whitney theorem in
finite dimensions states that / = ΠxeZ{I)I + /(*), for every ideal / of
Am(Ώ). The following counterexample of [11], p. 173, shows that this last
equality is not verified in Hubert space case: we consider / as the ideal
generated in ̂ 41(Ω) by the functions {gn: n = 1,2,...} defined as gn(x) =
(x\en) (x e E), where ( | ) is the inner product in E. We have / + 1(0)
= {/ e ^ ( Ω ) : /(0) = 0} whereas / + /(0) Φ {/ e A\Q): /(0) = 0}. In
general, we observe that (*) is true when / = I(xo)9 for some x0 e Ω. Let
AT be a weakly closed subset of Ω. We define

UK) = {f e A"(Q): D'f (K) = 0 (r = 0,1,...,p)}

If J(K) = Im(K), then J(K) = ΠxeKI(x) and (*) is also true for J{K).
On the other hand, if J(K) Φ Im(K) the spectral synthesis is not possible
in Am(Ω,). Thus, to know if any m-null function on a weakly compact
subset of Ω can be approximated in ^4m(Ω) by functions vanishing on
some weak neighborhood of the weakly compact is an approximation
problem, previous to synthesis problem. The proof of J(K) = Im{K)
(and also the one of synthesis), in the case finite-dimensional depends
substantially on the dimension and we have not been able to find a proof
of a different nature, valid for any weakly compact subset of Ω. Neverthe-
less, certain partial results can be stated. For example, when K is such that
Pn(K) c K for n sufficiently large, Im(K) = J(K) is obtained, by reduc-
ing the question to finite dimensional case. Another type of result can be
proved by using the ideas of Theorem (1.4).

PROPOSITION (1.5). Let K be a convex norm-compact in Ω. Then

Proof. Let h be a function in C°°(Rn) such that h(a) = 1 for | |α| | < £,

h(a) = 0 for | |α| | > c, a e R, ξ,c>0 fixed. We define hnv(x) =

h(vd(Pnx, Pn(K)))9 for every x e Ω, where d(Pnx9 Pn(K)) =
infyGPΛK)\\Pnx - y\\. This last function is differentiable in Pn(E)\Pn(K)
and, Pn(K) being closed convex, there is a continuous mapping πn such
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that d(xn, Pn(K)) = | K - <πn{xn)l for all xn e Pn(E) Also,
Dd( , Pn(K))Xn = Z>|| \\Xn-πΛXrι), || || denoting the euclidean norm in Pn(E)

(see [21], p. 140).

We choose n(v) such that sapy^κ\\Pn(v)y - y\\ < c/v for each v e N.
Iίd(Pn(v)x, Pn(v)(K)) < c/v, then

| ^ A - ( ^ ( * ) | | = v\Dh(vd{Pn(v)x,Pn(v){K)))\\,

\\D\\ \\pmwX-^,)(Pml,J\ < HlΛlli

Let ε > 0. If / e I^K) there exists p > 0 such that d(x, K) < p imphes
||£) r/(x)|| < εd(x, K)λ~r (r = 0,1), according to Lemma (1.3). Therefore,
choosiing v to have 2c/v < p, we obtain

r

y = 0
J

for every x e Ω (r = 0,1). So

) = 0 in^(Ω) and fej(K). D

2. Gelfand theory in the algebras ^4°°(Ω), Am(E\ A°°(E). The space
C^,(Ω) = n^ = 0 C^(Ω) equipped with the topology τ°° of uniform conver-
gence on Ω of the functions and their derivatives is a Frechet algebra. We
are also interested in functions defined on all of E. Thus, we consider
C™b(E), the space formed by the m times continuously differentiable
functions on E whose m derivatives are weakly continuous on the bounded
subsets of E. With the topology τ̂ m of m-uniform convergence on the
bounded subsets of E, C™b{E) is also a Frechet algebra. Finally, if
C?b(E) = f T = 0 C ^ ( £ ) we define obviously the topology τ™ on C?b(E)
and C™b(E) is again a Frechet algebra. Now, we define Λ°°(Ω), Am(E\
A°°(E) as the Frechet subalgebras obtained by completing Pf in the
respective C~6(Q), Cfb(E), C~b{E).

In the following proposition we denote by TJ (0 < q < oo) the Gelfand
topology on E defined by Aq(E), and by r the topology on E defined by
"S c E is τ-closed iff S Π Ω̂  is weakly closed in Ω̂  = {x e E: \\x\\ <p),
for every/? > 0".

PROPOSITION (2.1) Let E be a reflexive Banach space. Then, (i)
Spec^4°°(Ω) = Ω and the Gelfand topology equals the weak topology on Ω.
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(ii) SpecAm(E) = E, Spec4°°(£) = E and if mv m2e N with mx < m2,
then

σ(E, E') < T- < rg* < φ < τ° = r < β(E, E').

Proof, (i) Each x e ί l defines a φ , G Spec4°°(Ω) as φx(f) = /(*) , for
every/ G Λ°°(Ω). Conversely, if φ G Spec^°°(Ω) there exists n G JV U {0}
such that φ is a τn-continuous homomoφhism on 4̂°°(Ω) and, A°°(ίl)
being dense in An(Q), there is a ψ G Specv4"(Ω), T "-continuous extension
of φ. According to the proposition (1.2) it follows that, for some x0 G Ω,
φ(g) = Ψ(g) = g(*o) whenever g G ̂ 4°°(Ω). Moreover, the Gelfand and
weak topologies on Ω are equal since the functions of A°°(Ω) are weakly
continuous on Ω and, on the other hand, E' c ^4°°(Ω).

(ii) The algebra Am(E) is the protective limit of the system formed by
the Banach algebras Am(Ωp) (/> = 1,2,...) together with the natural
restriction mappings. Therefore, it follows that the mapping Γ: x G limΩ^
= E i-* Γ(JC) G Spec4m(£) such that Γ(JC)(/) = f(x) (x G £,"/^G

ylm(£)), is bijective and continuous ([12], p. 160). The case ^°°(£) is
similar.

Now, the topology T defined as above is the one of E considered as
limΩ^, with the weak topology in each Ω .̂ If C(ET) = {g: E -> C: g
τ-continuous} and / G ^[O( JE), then / = / ° Γ e C( £ τ ) . Conversely, if / G
C(Eτ)9f is weakly continuous on each tip(p <= N). So,/ G A°(E) ([2], p.
203), and C(ET) = A°(E). Finally, T is compatible with the vectorial
structure of E ([18], p. 151), whence Eτ is a completely regular topological
space; in particular, T equals the topology on E defined by the functions
of C(ET). In short, T^ = T.

The inequalities between the several topologies of the statement are
evident. D

REMARK, (i) We do not know whether the topologies τ °̂, TJ, T<?, n e TV,
are identical or distinct on E. Nevertheless, it is immediate that T^ Φ
β(E, E') (there are β(E, JS '̂CC^ înuous functions on E which are not in
A°(E)) and σ(E, E') Φ r™: if E is infinite dimensional, then there is
always a sequence of norm one linear functionals (φn) on E such that
φn -> 0 for the *-weak topology ([15]). Thus, the function Σ^=1<f>y2w is
not weakly continuous on E but is in ACO{E), and σ(E, E') < τ<f.

The same reasoning as above in §1 shows that A°°(Ώ), Am(E), A°°(E)
are regular algebras. Henceforth E denotes a separable Hubert space with
{ en)™-i> { pn)™=ι a s indicated in Lemma (1.3). A result as Theorem (1.4)
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can be obtained for the algebras ^°°(Ω), Am{E), A°°(E). Moreover, if
E = Rp a classical result of E. Borel identifies the algebra A°°(RP)/I(x)9

Λ; G J?^, as the algebra formed by all formal power series in p variables.
We shall generalize this proposition in our context, by means of Theorem
(1.4) and a known theorem about suqectivity between Frechet spaces. Let
S?wb(E) = Π%.QPwb(

mE), Pwb(
mE) being the set of the m-homogeneous

polynomials which are weakly continuous on the balls of E. With the
usual operations and the topology determined by the seminorns family
σn(β) = s u p o ^ j j β j , for every β = (ft,,.. .,&,...) e ST^E\ STwh{E)
is a Frechet algebra.

THEOREM (2.3). Letxo<=E be. If β = (ft,,... ,βn9...) e STwh(E) there
exists f e A°°(E) such that dj(xo) = βn{n = 0,1,2,...).

Proof. We consider Nk = Πj>kPwh(
JE) and u: A°°(E) -> STwb(E)

defined by

u{f) = (f(xo)>4f(xo)>-Jnf(xo), .) ^Kb(E),
if ftΞA~(E). For fc = l,2,... fixed and β = (β0, βl9.. .,βn9...) e
Kh(E), the function /(*) = Σ ^ l / / ^ ^ " x0) (χ G £ ) U e s ^°°(^)'
Jrf(xo) = βrφ <r <k-l), and iι(/) - β^Nk. Let || ||π ̂  be the con-
tinuous seminorm on A°°(E) defined by

= sup sup \\dj{x)l p,neN,feA">(E).
0<r<π \\x\\<p

If k = n + 1 and / e ^°°(£) is such that w(/) e Λ ,̂ then Z)Γ/(x0) = 0
(0 < r < n). On account of Theorem (1.4) the sequence {gv}™=v where
gv = (1 - hn{v)v)fn{v) (v e TV) converges to/for || ||n?/?. Also w(gj = 0 for
all v. So, the hypotheses of Th. 37.3,IV, of [20] are satisfied and u is
surjective. D

Results of the same kind of the above theorem are found in [6], in a
different context.

3. Approximation of m-null functions by a complex variable method. In
this section we set up certain approximation results related with the
problem of knowing when Im{K) is equal XoJ(K).

We recall that a commutative Banach algebra A9 normed by || ||, is
radical when all its elements are quasinilpotent, i.e. lim^^Hα"!! 1/" = 0
for every a e A\ or, equivalently, A has not non-zero homomorphisms. In
all of §3, £ is a separable Hubert space with {en}™=l9 {Pn}™=ι as above,
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and K denotes a weakly compact subset of Ω. We put Ip = Ip(K)
(p = 0,1,...,m),Jm = J(K), inA>

Observation. For every p = 0,1,. . . ,m, /Ae quotient algebra Ip/Jm is

radical. Indeed, for each ideal L in Am(ίl), if φ is a non-zero homomor-
phism on L, there exists a unique extension φ on Am(Ω) of φ defined by
Φ(f) = φ(g)~V(/g)> f o r / G ^m(Ω) and g e L such that φ(g) # 0. Now,
a homomorphism φ on / ^ / ^ is identified to a homomorphism on Ip9 null
on / w . If φ is its extension to Am(Ω,), we have φ(/) =/(x) for all
/ e ΛΓ(Ω), for some X E Ω fixed. It follows that g(x) = 0 for every
g e / w and, because ^4m(Ω) is regular, X G I Really, if x £ K and
d = 5(JC, .ίΓ) — δ( , •) being the metric defining the weak topology on Ω
([17], p. 61), Kd/2 = {x G Ω: δ(jc, K) < d/2) is a weakly closed subset of
Ω, with x £ Kd/2- The regularity of Am(Ώ) imphes that there exists
g e ^ W (Ω) such that g(x) # 0 and g{Kd/2) = 0, so g e /m, g(x) # 0.
Thus, φ(/) = /(x) = 0 for every / G 7̂ , and / ^ / ^ is radical.

Let / e ^°(Ω) such that /(x) > 0 for every J C G Ω . If Z G C and
Re z > 0, we define

exp(zlog/(*)), i f / ( x ) > 0

o,

It is immediate that / z G yl°(Ω) whenever Rez > 0, and it is a routine
exercise, based upon the uniform continuity of each D r /(r = 0, l,...,m)
and the mean value theorem, to verify that really fz e Am(Ω,) whenever
Rez > m a n d / e Λ

LEMMA (3.1). Iff G Am(Ω) andf > 0, then the map

{z G C: Rez > m) -> ̂ ίm(Ω)

is analytic.

Proof. (1) The map is continuous. If ε > 0 and z0 e Ω are given we
choose a, 8X > 0 such that Re z0 > α and Re z > a if |z - zo | < δx. There
exists n e TV which verifies 2 exp(-αw) < ε and so

< exp[Re(zlog/(.x))] + exp[Re(z0log/(x))] < 2exp(-α«),
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whenever log/(x) < -n. If log/(;c) > -n, then |log/(x)| < C for every
x e Ω and some constant C Then we choose a suitable δ2 > 0 to have

|exp[(z - z0)log/(x)] - 1| < (sup |/z°(

It is clear that if 8 = inf{ 8l9 82) and |z - zo\ < δ, we obtain

For the derivatives the discussion is analogous.
(2) The map is analytic. It is enough to apply the Morera's theorem

for the triangle, in Banach-valued functions case. D

We are going to see below the main result of this section. We shall use
the Ahlfors-Heins theorem ([5], p. 116).

THEOREM (3.2). / / / e Ip9 (p = 0,1,... ,m) andf > 0, thenfm+ε e Jm9

for all ε > 0.

Proof. It suffices to prove the theorem for Jo. Let Λ be a continuous
linear form on I0/Jm. L e t / e Jo. The function φ(z) = Λ ( / w + ε + z + Jm\
Re z > 0, satisfies the hypotheses of [5], p. 116. By using the fact that

lim |φ(«)Γ A < lim | |Λ| | 1 A | | r + ε + " + Jmf
n-* oo n—*oo

< lim | ( / + / W ) Λ | " = 0 (since I0/Jm is radical)
n—* oo

together with the Ahlfors-Heins theorem in a similar way as it is shown
in [7], p. 94, we obtain φ(z) = 0 for every z such that Rez > 0. So
A(fm+ε + Jm) = 0, for each Λ e (I0/Jm)', whence/w + ε e Jm. D

THEOREM (3.3). /// e / 1 ? / > 0, αwJϋ: = /^({O}), /Λe«/W
 G / W .

Proof. Let / = m 4- ε. According to Theorem (3.2) it suffices to prove
that limf__>„,+ / ' = / in ^4m(Ω), and, for this, a close observation of the
expressions of each derivative Djf\x), Djfm(x) {x e Ω; 0 <j < m) tell
us that it is enough to verify the uniform convergence on x G Ω of
P{t)ft~m{x) Dfx® ® Dfx to m! Dfx ® Θ /)£, where
/(/ — 1) (/ — m 4- 1). For this, we put

r ( t , x ) = \ [ m \ - P(t)ft~m{x)]Dfx ® ••• Θ Z)/J,

if x e Ω, m < / < m + 1;

c2 = supίl,^}, c3 = sup |P(0l
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If η > 0 is given we take ηλ = (η/(m\ + c2c3))ι/m and we obtain

τ(t, x) < [ml + \P(t)\ |/'-"(x)|] \\Dfxf < [ml + c3c2]η? = η9

if ||Z)/(x)|| < ηv Moreover, the set S = (x G Ω: ||D/(x)|| > τ?i} is weakly
compact in Ω and / is never zero on S. So, μ = mix^sf{x) > 0 whence
|log/(x)| < c4, c4 constant, for every * G S. Then, we choose 0 < δ < 1
such that t - m < 8 implies \ft~m{x) ~ 1| < η/2c3c? and, on the other
hand, |m! - P(ί) | < η^cf . It follows that

τ(/, x) < [\ml - P(t)\ + \P(t)\ \Γ"{x) - 1|] ||D/Jf

< [(η/2c?) + C3(η/2c3c^)]c^ = TJ, if / - m < δ and* G 5.

We have deduced that sup x e Ω τ(t, x) < η whenever t — m < δ. D

We examine more closely the case where m = 1.

PROPOSITION (3.4). Let m = 1. /// ̂ Ivf> 0, thenf G /1#

We construct g e / j , g > 0, such that f'\{0}) = K. For
« e TV, we choose a function grt > 0 at least of class C1 on Pn(E) = Cn =
R2\ and g HίO}) = PΛ(ΛΓ), Dgn(Pn(K)) = 0. We put

gW β Σ (l/iigJOίg^Pjίx), foreveryxGΩ,

where

{gΛ(y),\\DgΛy)\\}

We have g G ^ X ( Ω ) 5 g (^) = 0, and Dg{K) = 0. Moreover, if x G Ω with
g(x) = 0 it imphes gn(Prtx) = 0 for every n G TV. Thus, Pnx G Pn(K),
and so there exists a sequence {j>n}£Li c K such that Pnx = Pnyn for
every n. AT being a weak compact set, we can suppose that {yn}™=ι
converges weakly to a point y e K. If ω e £ ' ,

ω(Pn7n) - ω(^) = ω(Pn7n) - ω(j;J + ω(yn) - ω(y)

= [PΛ*(ω)-ω](yn) + ω{yn-y)

converges to zero when n goes to infinity, since {yn}™=ι is bounded and
kmn_+ooP*(ω) = ω in norm (Pn* denotes the dual projection of
P , n e N). We have proved that [Pnyn}™=ι converges weakly to
y. As l im^^P^x = l i m ^ ^ P ^ , x = y G ί:. Finally, / + g e / 1 }

(/ + g)"X({0}) = ̂  a n d

? account of Theorem (3.3) / + g G /, and / G /.
D
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COROLLARY (3.5). If f<Ξ Iλ c Λ\Q) is real valued andf~\{0}) = K,
thenf <Ξ Jv

Proof. If / is an in the statement, / + e ^(Ω), where f+(x) =
sup{/(jc),0} for x G Ω. A1SO,/+<E Ix and from Proposition (3.4), /+<Ξ JV

If / - = / + _ fy then /~€Ξ ^(Ω), /-G Il9 f~> 0 and so f~e Jl9 i.e., / =

REMARKS. (1) By operating as for m = 1, we can prove that I0/Jm is a
nilpotent algebra for any finite m, i.e., there is an integer power/?, p > m,
such that fp G / w for every / G /O. The power /? can be improved if, for
instance,/ G /W, but it remains greater than m.

(2) We note that when m = 0, the mapping z *-> / z is, really, an
analytic semigroup of {z e C: Rez > 0} into ^4°(Ω), and, in general, for
each compact Hausdorff space Jf this method gives a new proof of the
verification of spectral synthesis in C( Jf), space of continuous functions

Acknowledgment. I want ot thank the referee for this valuable sugges-
tions.
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