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RANDOM PERMUTATIONS AND
BROWNIAN MOTION

J. M. DELAURENTIS AND B. G. PITTEL

Consider the cycles of the random permutation of length n. Let
Xn(t) be the number of cycles with length not exceeding n', t e [0,1].
The random process Yn(ί) = (Xn(t) — tin n)/\rl/2 n is shown to con-
verge weakly to the standard Brownian motion W(t),t e [0,1]. It follows
that, as a process, the empirical distribution function of "loglengths" of
the cycles weakly converges to the Brownian Bridge process. As another
application, an alternative proof is given for the Erdόs-Turan Theorem: it
states that the group-order of random permutation is asymptotically e®,
where ^ i s Gaussian with mean In2 n/2 and variance In3 n/3.

1. Introduction. Results. Consider Sn9 the symmetric group of per-
mutations of a set {1,...,Λ} endowed with the uniform distribution,
P(σ) = \/n\ for each σ e Sn. Since a pioneering work by Goncharov [10],
[11], a considerable attention has been paid to the asymptotic study of the
order sequence of cycles lengths for the random permutation (r.p.), and of
components sizes for the random mapping (Kolchin, et al. [13], [14],
Shepp and Lloyd [20], Balakrishnan, et al. [1], Stephanov [21], Vershik and
Shmidt [22]). Let Xns = Xns(σ) designate the random number of cycles of
length s in the r.p. σ. It is known [11] that Xn, the total number of cycles,
it asymptotically normal with mean and variance In n. A similar result
holds true for the total number of cycles whose lengths are divisible by a
given number, [4], [20]. In this paper, we study the asymptotical behavior
of the joint distribution of Xnl,... 9Xnn.

For each t e [0,1], consider

(1.1) Xn{t)= Σ X*,, Yn{t) = {Xn{t)

so, Xn(t) is the total number of cycles of the r.p. with lengths not
exceeding n*. Clearly, each sample function of Yn(-) belongs to D[0,1] the
space of functions on [0,1] which are right-continuous at each t e [0,1)
and have left limits at each t e (0,1]. Introduce W(t), t e [0,1], the
standard Brownian motion defined on a complete probability space with
continuous sample paths. Let ^fbe a class of functional on D[0,1]
continuous in the sup-norm metric.
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THEOREM. Yn(-) converges to W( ) in terms of finite dimensional
distributions. Moreover, for each H eJίf, the random variable H(Yn( ))
converges weakly to H(W()); in short, Ύn => W.

Notes. Since (Xn — lnn)/ln 1 / 2 n = ΓM(1), the Goncharov result is a
direct corollary of the theorem.

(2) To each cycle of the r.p., let us assign its "loglength" which is the
logarithm of the cycle length with base n. Clearly, all the loglengths are in
[0,1]. Introduce the empirical distribution function (e.d.f.) Fn(t), t e [0,1],
of the loglengths, that is, Fn(t) = Xn(t)/Xn. The theorem yields, after
simple manipulations, that, as a process, ln i / 2«(F r t(t) — t), t ^ [0,1],
converges weakly (=>) to W(t) - tW(l), t e [0,1]. Thus, the asymptotical
behavior of the loglengths is very nearly the same as of that for a sequence
of [In n] independent random variables each uniformly distributed on [0,1],

[9].
(3) Consider Zn and Pn respectively the order and the product of the

cycle lengths of the r.p. Erdόs and Turan [5] proved that In Pn and In Zn

are relatively close in probability, as n -> oo. Later [6], they established,
via very complicated argument, asymptotic normality of In Pn, whence of
In Zn. Best [4] found a simpler proof of closeness of In Pn and In Zw, but
his proof that In Pn is nearly normal remains rather technical. We are
aware of, but have not seen, two other published proofs (Kolchin [15],
Pavlov [18]) of the Erdόs-Turan theorem.

Let us show how this theorem follows from our result.
First, we prove that, for each a > 2,

(1.2) P ( Δ n > ln«(lnlnπ) α ) ^ 0 , n -> oo,

where Δrt = In Pn — In Zn. (Our proof resembles the Best argument, but is
much simpler.) Introduce

Dnk=tθs{k)Xns, B,{k) = [\ **'*'.
s=ι 10 otherwise.

Since E(Xns) = 1/j, E{Xns(Xns, - «„,)) = W , * + *' ^ n, a simple
computation leads to

(i 3) η „ 2

E(Dnk(Dnk - 1)) < I Σ *.(k)/ή = O(\n2n/k2),

the estimates being uniform in k < n.
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Denote D*k — min(l, Dnk). Since the multiplicity of a prime factor p
in Pn (resp. Zn) is ΣsStl DnpS (resp. Σs^D*ps), we have

lnPn = Σ ΣDnpslnp, In Z, = £ Σ ^ V l n ^

so that

Δ,< Σ

As Δ ^ < Dnk, Δnk < Dnk(Dnk - l)/2, we obtain (see (1.3)),

/ [In«] \

E(Δn)<c\lnnΣ lnk/k + \n2n Σ In k/k2\ = θ(lnn(lnlnn)2).
\

Since ΔM > 0, the last estimate implies (1.2).
Second, we prove that In Pn is asymptotically normal with mean

2~ιh^ n and variance 3-1ln3 n. (Then, in view of (1.2), In Zn has the same
limiting distribution.) Introducing tns = lns/ln «, 1 < s < «, and sum-
ming up by parts, we have (see (1.1))

In P . - Σ XnMs = \n2n\l- Σ tns(tn,s+1 - tj]
l<s<n L l<s<n-l J

( ) ] n()fn(t) dt\.

So, by the theorem,

(in Pn - 2-ιln2n)/ln3/2 / !=>/* (W(ΐ) - W{t)) dt = C W(t) dt.

It remains to observe that the last integral is normal with zero mean and
variance 3"1.

(4) For σ ̂  Sn, let i < iλ < < iv < n, v = ̂ (σ), be the locations
of all the (upper forward) record values in σ. Consider the inter-record
times Δy = iJ+ι - ip 1 <j < v, Δv+1 = n 4- 1 - i¥, and let Rns = Rns(σ)
stand for the number of Δ's equal to s, 1 < s < n. Since there exists a
one-to-one mapping T of Sn onto itself such that

([12], [16]), the sequences {Rns}"=ι and {Xns}"=i a r e equidistributed.
Thus, with no other proof needed, we could have formulated the ana-
logues of the theorem, and the statement in (2), in terms of the inter-re-
cord times. The correspondinig results appear to be new, though the
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(inter)record times have been studied by many authors, [2], [8]. (For
example, Neuts [17] proved asymptotic normality of the nth interrecord
time in the (infinite) r.p. associated with a sequence of independent
random variables with a common continuous distribution function.)

2. Proof of the theorem. The joint distribution of Xns, 1 < s < n,
is given by Cauchy's formula [3]:

(2.1)

otherwise.

Introduce a bounded sequence z — {zs}f=1 and the sequence of generat-
ing functions (g.f.) fn(z) = E(Π^sSnz^), n > 1, fo(z) s 1. It follows
from (2.1) that, for |/| < 1,

(2.2) Σ tnfn(z) = expf
n>0 [

z,t'/s\
J

[19], (cf. [20]). Fix the positive integers r, lv...,lr, and introduce the
r-dimensional g.f. gn(y) = E(Πr

v=1 yv

x"<*), (Xn/ = 0, for / > n). Choosing
in (2.2) zs = yv, if s = /„ (1 < v < r), and zs = 1 otherwise, we obtain that

(2.3) Σ t"gn(y) =
n<0

= exp

Σ y/'/K + Σ t°/s

Σ

Hence, by Cauchy's integral formula,

(2.4) gn(y) = (27Γ/)-1 ί exp
Jc

Σ (Λ -

where C is any circle with radius less than one surrounding the origin in
the complex plane. It is important that (2.4) holds for each set of positive
integers n, r, ll9...,lr.

Introduce a process

(2.5) Y*(t)=

SinceΣ ι<s<vl/s — In v = 0(1), p -> oo, it suffices to prove that Y*
(Centering of Xns by 1/5 is natural since E{Xns) = l/s, 1 < s < n.)
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LEMMA 1. For each fixed k and 0 = t0 < < tk = 1, the random
vector { Yn*(tJ)}j==1 converges to {W(tJ)}j=:l in distribution.

Proof. For 1 <j < k, let ny = [Π'J] so that n0 = 1, nk = «. Denote

#* = Σ Z 3C = V 1A

We have to show that {(#*„, - ^ y )/ln1 / 2n}j= 1 converges weakly to the
Gaussian vector with k independent components having parameters

Introduce Xj = exp(wy/ln1/2«), Uj > 0 and is fixed, 1 <j<k. Set-
ting r = n, ls = s for each 5, and ^ = jcy for Λ^..], + 1 < v < ny in (2.4),
and choosing the radius of C equal to p = 1 — /i"1, we have

(2.6)

where

(2.7) / = JΓ

(2.8)

Σ (*, - i) Σ

e-"*bn(φ) dφ, bn(φ) = (1 - pe^

Σ (ιf/s)(e"*-ι).

To estimate /, we proceed as follows. Break [-π, 7r) into [-φ0? ΦoY>
[-φ0, φ0], φ0 = n~3/4; let the corresponding integrals be Iv I2. First, we
estimate Iv In /2, we replace bn(φ) by έw(Φ), which is close to bn(φ) for
φ G [-φ0, φ0], and nicely manageable if φ e (-oo, oo). The resulting in-
tegral 72 is a difference of two integrals Jx and /2, over respectively
(-00, oo) and (-oo, oo) — [-φ0, Φo] We estimate/2. /1? whose contribution
in the value of / is dominant, is asymptotically evaluated by means of the
inversion formula for an Lrintegrable characteristic function.

The proof follows.
(1) Show that

(2.9) lx = O{n~1^).

Integrating once by parts, we have

f e-inφbn(φ) dφ < n
- 1

0,π]

K(φ)\dφ[
I
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Here, (see (2.7), (2.8)),

\bn(π)\=

since

k j

*„(<*>)) ^ Σ {xj " 1) Σ (psΛ)(cossφ - 1) < 0,
7 = 1 s — τij_ι + l

(xj> l,y = l,...,k). Also,

(2.10) |όπ(Φo)| <|1 - pe'*f' = [(1 - P)2 + 2p(l -

Further, since

b'n(φ) = pi(l -

estimate

\K(φ)\<\l - pe'>

1] = O(φ-2),

for φ e [φ0,77]. Therefore

and, together with (2.10), it yields

/
e~in^bn\φ) dφ

The case of [-π, -φ0] is similar.
(2) To estimate 72, compare it with

(2.11) 7 2 = (

bn(φ) = [1 -
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Since p = 1 - n~ι and \eiφ - (1 + iφ)\ < 2~ιφ2,

< 2-ιn2φ2 + |l - p(l + iφ)\'l\l -

< 2-ιn2φ2

Subsequently (φ0 = «~3/4),

(2.12) |/2-/2|</
*Ί-Φo>Φo]

<2~ιn2ί φ2dφ + n\ \φ\dφ

Thus, it suffices to estimate ϊ2. Notice first that bn(-) e L^-oo, oo); (one

reason why the factor (1 — iφ)~ι is included in bn(φ) is to have this

happen). If so,

(2.13) J2 = / e->"%{φ) dφ- ί e-%(φ) dφ
^(-00,00) [-ΦQ*ΦOY

e-iubn(u/n) du - n'1 f e-ubn(u/n) du= n~ι

= JX-J2.

(2a) Evaluate^. By (2.8), (2.11), we have

(2.14) n-\{u/n) = (1 - m ^ Γ ^ l - m2W)-1exp[α/ ί(t/A)]

k n,

= (1 - m^Γ^l - /α^)-1 Π Π exp[A,.,(*""/" - 1)]
y = i ^ = " , - 1 + 1

where

(2.15) «! = p = 1 - /i"1, α 2

 = w"1*

(2.16) Λ,v = (Xj - l)Pys.

Notice that

(1 - iu)~ι = E[exp(iuV)], exp[Λ(e/M - 1)] = E[exp(iu0>(A))]9

where V > 0 is exponentially distributed with parameter 1, and ^(Λ) is

Poisson distributed with parameter Λ. Hence, a crucial observation:

(2.17) n-lbn(u/n) = E
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(2.18) Mn = axVx + a2V2 + £ Σ (s/n)0>(AJS),
7 = 1 s = nJ_1 + l

where Vl9 V2, {ίP(AJS)}j^ are all independent. Since n~ιbn(u/n) e

L^-oo, oo), Mn has a (bounded) continuous density/^ (of course, it is

seen directly from (2.18)). Moreover, by the inversion formula [7], for

each JC

fM(x) = (277Γ1 / e-"xE[exp(iuMn)] du,
Λ-oo,oo)

so

J, = / I " 1 / e-"bn(u/n) du = 2τ7/Wn(l).(!)
^(-00, 00)

The density of α1K1 is α1exp(-α1x), x > 0; denote Fn the distribution

function of

k n,

Σ Σ (s/n)P(AJS).

Then

(2.19) fM(l) = f αx

Now (see (2.18)),

E{Mn) = a2+ Σ Σ

<n~ι +\ max (JC. - l)!/?' 1 Σ Ps

Li<y<^ J s>χ

= Oin'1 + max (JC, - l) = O{\nι/2n).
V 1<7<& /

Therefore, for each ε > 0,

(2.20) lim [Fn(ε) - Fn(-e)] = 1.
n —* oo

Since aλ -> 1 as Λ -> oo, we get from (2.19), (2.20) that

lim fM(l) = lim α1exp(-α1) = e~ι.
n-> oo " w—>• oo

Thus, Jx -> 27τe"1. More precisely, since αx = 1 - n~ι and E(Mn) =

(2.21) /x = 27Γ6*-1 + O(ln' δ«), Vδ «= (0,1/2).
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(2b). Estimate/2. Integrating by parts, we have (Bn(u) = n~ιbn{u/n))

f e-iuBn(u)du <L\Bn(n<h)\ +f \B'n{u)\du.

Here (see (2.8), (2.14)),

(2.22) \Bn(nφ0)\ = θ(|l - m^oΓ) = O^nφ^1) = O{n^),

= O(u'2 +\a'n(u/n)\u-2),

and

(2.23)

(2.24)

Σ ( ^ - i ) Σ {pe "/n)
7 = 1 s =

< 2k max (xj —

- peιu/"\~l < [n~2 - h i - cos(u/n)]~l/2

- peιu/n -1

_ (θ(nu-1), ύu/n < 77,

\ θ ( « ) , always.

Putting together (2.22)-(2.24), we obtain

B'n(u)\du = θ[f u-2du
\Ju>nφ{)

+ O max (x - l) \n j u~3 du
l^J^k \ J[nφ0,nπ]

u~2du

+ max {x, - l)) = O{\nx/2n).

Therefore (the case u < ~nφQ is similar),

(2.25) J2 = O(ln^2n).

(3) Combining (2.9), (2.12), (2.13), (2.21) and (2.25), we can conclude:

7 = ̂  +[/j + ( / 2 - ϊ2) -J2] =2πe~ι + O(\n~sn), 8 e (0,1/2).
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Hence, by (2.6) and p" = e~\\ + 0(fΓx)),

= exp Σ ft/* O(lnsn)).

What remains is to evaluate the first factor on the right. Since

Xj-1 = expfu/ln1/2 n) - 1 = w/ln1 / 2 n + «2/21n n + O(ln"3 / 2 n),

(2.26)

(2.27)

(2.28)

we have

I (In Πj - In Πj^) - (ίy - / ^ J In n\ < 1,

= exp uj Σ v* /In1/2 n

xexp 2"1 E«)(r7. - tj
O ( h r s n ) ) .

So, by definition of 9CnJ9

lim £<exp
n-+oo y

It follows from this relation that {(&nj ~ SCny)/ln1/2 π}JLi converges in
distribution to {W (̂/y) — W(f/_i)}/-i Lemma 1 is proven.

To complete the proof of the Theorem, it suffices to show [9] that the
processes Yn*(-) are equicontinuous, or more precisely, that for each
ε > 0,

Urn limsuppf sup |Γn*(//r) - Y*(t')\ > ε) = 0.
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A method we shall use to prove it is inspired by a proof of equicontinuity

of the e.d.f. processes £„(•) on [0,1] for a sequence of n independent

random variables uniformly distributed on [0,1] (see Introduction), which

is given in [9].

By definition of Yn*( ) (see (2.5), (2.6)), Y*{t) + (Σ[

sί[ l/s)/ln1/2 n is

a nondecreasing function of /. Hence, for 0 < tλ < t2 < t3 < t4 < 1,

(2.29) ~An(tχ, U) < Y*(t3) - Y*(t2)

Σ i/

where (see (2.27), (2.28)),

(2.30) Δn(tl9 tΛ) < (t4 - r j ln 1 / 2 r,

The proof quoted above is based only on (2.29) (with £„(•) instead of

Y*{ -), of course), where

9̂ oi \ A (t t λ < (t - t λn1/2

and an inequality

(2.32) E[{ξH(t + h)-tn(*))4]zch2

9 ϊoτh>n-\

No changes would have been necessary, had the inequality (2.31) con-

tained on its right-hand side an extra term o(l), which is present in (2.30).

Thus, in our case it would be sufficient, (compare (2.30) with (2.31),

(2.32)), to prove an inequality analogous to (2.32) with restriction on h of

the form: h > In"1 w. Fortunately, it is exactly the case here.

LEMMA 2. There is

(2.33) E[(Y*(t + h) ~ Y*(ή)4] < 174/z2, ifh > \nιn.

Proof. Fix 1 < vγ < v2. Introduce Σ%VιXns9 the total number of

cycles with lengths from vλ to v2. Denote it just Cn, for simplicity of

subsequent expressions. We shall prove

(2.34)

where

(2.35)

- E(Cn)Y

E(Cn) =

| ^ 15£2(Cn

Σ
{s<n: v1<s<v2)
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But let us show first how (2.34), (2.35) lead to (2.33). We have:

(2.36) Y*(t + h) - Y*(t) =
[»'+*]

[n'} + \

/In1/2*

with vx = [nι] + I,v2 = [n'+h]. Then, (see (2.27), (2.28)),

+ 2 = lnn(Λ + 21n"1«) < 3/ilnn,
* = [n'] + l

if h > In"1 n. Since (2.34), (2.36), we conclude that

E[(Y*(t + h) - Y*(t)Y] < (135Λ2ln2n + 39ΛIn n)/ln2 n

= 135Λ2 + 39* In"1/! < 174*2.

In order to prove (2.34), notice first that by (2.3),

Σ t"E{yc") = exp Σ (y - / ( i - t).

Taking theyth order derivative of both sides of this relation at y = 1, we
obtain

(2.37)

where

Σ t"mψ = /(i - 0,

m\J} =

is they th order factorial moment of Cn. Equating coefficients by the same
powers of / on both sides of (2.37) yields

(2.38) Π 1/V
1

(here and everywhere below, the restrictions vλ < sμ < v2 (1 < μ <y), are
silently assumed; the same goes for sμ < n (1 < μ < j), though in this case
these restrictions are redundant). In casey = 1, (2.38) gives (2.35). A direct
corollary of (2.38) is
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or, more generally,

(2.40) m<*> < m « ( « i " ) r J l , h * Λ * l

Now, a simple argument shows that

E[(CH - E(Cn))4\ =EX + E2 + E2 + E4,

(2.41) Ex-m*\ { ) \

(2.42) £ 3 = 6m<?> -

(2.43) £ 4 = m<4> - 4MP>M

Estimate E2, E3, E4. By (2.39), (2.41),

(2.44) E2<3(

Then, by (2.40), (2.42),

E3 = 6(m<3> - m?mV)

here (see (2.38)),

Sι+s2>n S1S2 Sι+s2>n

SO

(2.45) £ 3

Consider finally £"4. Write (see (2.40), (2.43))

(2.46) EΛ = («<<> - «,?>!«?>) + 3(my
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Here (see

(2.47)

(2.38))

Σ =

—

< n

J. M.

Σ
+ s2<n

Σ
s-tt2

s-tf3"
-1 ^

I

Sι+s2

DELAURENTIS AND

S S S ^

(*1 + *2 + SlY1

I

>n

Γ l + 211-1

+ s3>n

B. G. PITTEL

1

Γ l l l
j ,5 s s s2s3

Y 1

SΛ ~\~ S2 ^ W

5i+52-F53>«

Since in Σ r, for each (sl9 s2), s3 can assume at most sλ + s2 values,

(2.48) Σ'^"- 1 Σ ^ i = 2«-1 Σ f
5 i + 5 2 < W A λ S1+S2<Π

¥ 3

S
s

similarly,

(2.49) Σ " £ 2 » . Σ M

Hence, (see (2.46)-(2.49)),

(2.50) E4 < 12(m^) 2.

Collecting together (2.44), (2.45), and (2.50), we arrive at (2.34) (re-
member, E(Cn) = m<p).

The theorem is proven.
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