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CARDINALITY CONSTRAINTS FOR

PSEUDOCOMPACT AND FOR

TOTALLY DENSE SUBGROUPS OF COMPACT

TOPOLOGICAL GROUPS

W. W. COMFORT AND LEWIS C. ROBERTSON

Let K be a compact, Hausdorff topological group, &(K) the set of
dense, pseudocompact subgroups of K, and m(K) = min{|G|: G e
&(K)}. We show: (1) m(K) is a function of the weight of K (in the
sense that if Kf is another such group with w(K) = w(K'), then
m{K) = m(K'))\ and (2) if AT is connected then every totally dense
subgroup D of K satisfies |D| = | JΓ|. With these results in hand we
classify (a) those cardinals a such that m(K) < \K\ when w(K) = a and
(b) those cardinals a such that some compact K with w(K) = a admits a
totally dense subgroup D with \D\ < \K\. The conditions of (a) and (b)
are incompatible in some models of ZFC (e.g., under GCH) and are
compatible in others. Thus the following question, the origin of this work,
is undecidable in ZFC: Is there a compact, Hausdorff, topological group
K with a totally dense, pseudocompact subgroup G such that \G\ < \K\Ί

1. Notation and conventions. We denote the least infinite cardinal
number by the symbol ω.

Let a be an infinite cardinal. We denote by a+ the least cardinal β
such that β > α, and we denote by cf(α) the least cardinal γ such that
there exists a family {«,: i e / } with |/| = γ for which each αz < a and
ΣiGrat = a.

The symbols Z, Q, R and T denote respectively the sets of integers, of
rational numbers, of real numbers, and of complex numbers of modulus 1.
In each case we assume when convenient the usual algebraic and topologi-
cal properties.

By a space, or a topological space, we mean a completely regular,
Hausdorff space, i.e., a Tychonoff space. By a topological group we mean
an ordered triple G = (G, °, &~) such that

(i) (G, o> is a group,
(ii) (G, y > is a topological space, and

(iii) the function (JC, y) -> xy~λ is continuous from G X G to G.
It is well known (see for example [28] (8.4)) that if (G, °, ^) satisfies

(i) and (iii) and the Γo separation property, then (G, &~) is a Tychonoff
space.
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For a space X = ( X, f), we denote by PX or by P( X) the set X
with the smallest topology SΓ' such that SΓf D F and every Gδ of y is
^""'-open; the topology^"' is defined by the requirement that

{Π^: ^ c ^ a n d |Φ| < ω}

is a base for &*'. It is not difficult to check (see for example [9] (page 31))
that when (X, SΓ) is given the pair (X, έΓ') is indeed a space, i.e., a
completely regular, Hausdorff space. Among other notations used in the
literature for what we here call PX are Xm [8], Xω+ [9], and pX [55].

For a space X = ( X, y ) we denote by w( JQ and d( X) the weight
and the density character of X, respectively.

Some of the results of this paper have been announced in [10], [6], [13]
and [5].

2. Pseudocompact topological groups. A topological space X is said

to be pseudocompact if every real-valued continuous function on X is
bounded. It is a well-known result of Bagley, Connell and McKnight [2],
exposed also by Engelking [18] (3.10.22), that X is pseudocompact if and
only if every locally finite family of open subsets of X is finite. It was
noted by Hewitt [27] in a fundamental paper in which inter alia pseudo-
compact spaces were first introduced and studied, that if a pseudocom-
pact space X is dense in a (Tychonoff) space 7, then X is Gδ-dense in Y in
the sense that X meets every non-empty Gδ subset of Y.

A topological group G is said to be totally bounded if for every
nonempty, open subset U of G there is finite F c G such that G = FU. It
is a theorem of Weil [53] that every totally bounded group G embeds as a
dense subgroup of a compact group G; further, G is unique in the sense
that if G is a compact group in which G is dense then there is a function
φ, simultaneously an algebraic isomorphism and a topological homeomor-
phism, from G onto G, such that φ(x) = x for all x e G. The group G is
called the Weil completion of the (totally bounded) group G.

One checks easily [11] that if G is a pseudocompact topological group
then G is totally bounded, i.e., that G is defined.

In the following theorem we collect from the literature several results
needed below. Among the references cited the interested reader will find
not only primary sources but also (i) related expository works and (ii)
theorems strengthening the original statement(s), and arguments simpler
than those given originally.

We give the statements of 2.1 in approximately their historical order.
As has been remarked in [5] and elsewhere, however, the relatively recent
results 2.1(c) and 2.1(d) combine to yield quick and easy proofs of 2.1(a)
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(as well as of other identities concerning cardinal numbers associated with

compact topological groups).

For a cardinal number a > ω, the symbol log(α) is defined by

log(α) = min{β: 2β > a).

2.1. THEOREM. Let K be a compact topological group such that w(K) =

a > co, and let G be a dense subgroup. (Thus K = G.) Then

(a) ([37], [26], [33], [29] (28.58)) \K\ = 2" andd(K) = log(α).

(b) ([11], [51]) G is pseudocompact if and only if G is Gδ-dense in K.

(c) ([11], [51], [16]) G is pseudocompact if and only if the Weil

completion K of G is equal to the Stone-Cech compactification βG of G.

(d) ([41], [34], [50], [28] (25.35, 9.15), [18] (3.12.12(b))) There is a

continuous function from (0, l}a onto K.

(e) ([45], [36] (3.18), [19], [20], [21], [3]) There is a continuous function

from K onto [0,1]α.

The following consequence of 2.1 is given in [12]. See also [31], [32],
[56] and [57] for 2.2(b), and [44] (6.4) and [5] (7.6) for generalizations.

For a compact group K the symbol m(K) is defined as in the

Abstract.

2.2. COROLLARY. Let K be a compact topological group with w(K) = a

> ω. Then

(a) K contains a dense, countably compact subgroup G such that

\G\ = (log(α))ω; and

(b)m(lθ<(log(α)r.

Proof, (a) For every subset 5Όf K we define S" and [S] as follows: S'

is a set formed by adjoining to S an accumulation point (in K) of each

countably infinite subset of 5, and [S] is the subgroup of K generated by

S. We note that | S ' | < | S | ω , and that |[S]| = \S\ if \S\ > ω.

From the Hewitt-Marczewski-Pondiczery theorem (cf. [18] (2.3.15))

there is a dense subset D of {0, l}a such that |Z>| < log(α). Let / be

continuous from (0, l}a onto K and set E = f[D]; we have \E\ < log(α).

From

log(α) < (log( α ) ) ω < α ω < a" = 2* = \K\

it follows that there is F a K such that FD E and \F\ = (log(α))ω. For

ordinals £ < ω+ we define subgroups Gξ of K as follows: Go = [F],
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Gξ+ι = [G ]̂ for £ < ω+, and Gξ = [(Uη<^Gτ?)
/] for limit ordinals £ < ω+.

An easy induction shows \Gξ\ = (log(α))ω for all £ < ω+. The countably
compact group G = Gω+ is then as required.

(b) Since every countably compact space is pseudocompact, this is a
consequence of (a).

In 2.7 below we collect all the information known to us concerning
the cardinal numbers m(K) for compact topological groups K. With no
claim for novelty, in the interest of completeness we include here the
proofs of three lemmas which prepare the way.

We use the symbol « to denote homeomorphism.

2.3. LEMMA. If a is an infinite cardinal, then P({0, l}α) « P([0, l]α).

Proof. Let D be the discrete space such that |Z>| = 2ω. For every space
X in which each point is a G8 and 2 < \X\ < 2ω we have \Xω\ = 2ω and
P(Xω) » A so that

P(JT) * P ( ( * T ) - P ( ( P ( J T ) Π « P{Da).

A topological space ^ is said to be a Baire space if the countable
intersection of dense, open subsets of X is dense in X.

2.4. LEMMA, (a) If X is a compact (Hausdorff) space, then PX is a
Baire space.

(b) A G8-dense subspace of a Baire space is a Baire space.

Proof, (a) The set 3S of compact Gδ-sets of X is a base for the topology
of PX. Let B e SS and let {Un: n < ω} be a sequence of dense, open
subsets of PX with Un 3 Un+V We show (Γ\ Un) n B Φ 0. Choose x 0 e
ί Π ί / 0 and then Bo e ^ such that x0 e 5 0 c 5 Π ί/0 and recursively, if
xk and 5 Λ have been defined, choose xk+ι^ BkΠ Uk+ι and then Bk+1 e
^ so that xA:+1 e ^A:+i c ^ n ^4+i' s i n c ^ each Bk is X-compact we have
0 * Πrt 5M c (ΠM C/J Π 5, as required.

(b) Let Y be Gδ-dense in the Baire space X, let U be a non-empty
open subset of F and let Un be dense and open in Y. There are open sets
U9 Un in X such that i7 = U Π y and Un = ί/Λ Π y. Since X is Baire and
Un is dense in X we have (Γ)nUn) n U Φ 0, and since Yis Gδ-dense in X
we then have

0
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2.5. LEMMA. Let G be a non-discrete pseudocompact topological group.
Then

(a) \G\ > 2ω;
(b) d(PG) > 2ω; and
(c) cf(d(PG)) > ω.

Proof, (a) Let λ denote left Haar measure on the Weil completion G
of G. Since λ({e}) = 0 and λ is regular, for n < ω there is a neighborhood
Un in G of e such that λ(Un) < 1/n. According to a well-known theorem
of Kakutani and Kodaira [38] (see [28] (8.7), [25] §64.G) or [5] (3.7) for
expository treatments) there is a compact, normal, Gδ subgroup N of G
such that N c Πn Un; the λ-measurable set N satisfies λ(N) = 0, so from
λ(G) = 1 follows \G/N\ > ω. Since G is compact and N is a Gδ, the
quotient G/N is metrizable. It follows that \G/N\ > 2ω. The group G
meets each coset of N in G (by 2.1(b)), and (a) follows.

(b) Since d(PG) > ω, there is a dense subgroup H of PG such that
\H\ = d(PG). Now H is Gδ-dense in G, hence in G. From 2.1(b) it follows
that H is pseudocompact in the topology it inherits from G, so that

(c) The conclusion holds in case d(PG) = 2ω, so we assume that
d(PG) > 2ω and ci(d(PG)) = ω. Let D = ΌnDn be dense in PG with
ω <\Dn\< d{PG) for each «, and let £„ be the closed subgroup of PG
generated by Dn. Now the topology of PG is the topology inherited by G
from PG, and the set G is Gδ-dense not only in G but in PG as well; it
follows from 2.3 that PG is a Baire space. Like every Fσ in PG, the dense
set ΌnEn is closed in PG; thus \JnEn = PG and there is n such that
intpc? En φ 0 Since 2sn is then PG-open, there is a sequence { L :̂ k < ω}
of G-open neighborhoods of e such that ( l \ Uk) Π G c En. Again by the
theorem of Kakutani and Kodaira [38] there is a closed, normal subgroup
N of G such that N czΠkUk and G/N is metrizable, and from

\G/En\ < \G/(N Π G)\ < \G/N\ < 2ω < d(PG)

and d(En) < d(PG) we have the contradiction

d(PG)<d(En)-\G/En\<d(PG).

2.6. REMARK. Here we make three comments concerning the question:
"Does every infinite compact topological group K contain a dense,
pseudocompact subgroup G such that \G\ < \K\l (Restated: Is m{K) < \K\
for such KΊ)
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(a) It is not difficult to show (see for example [22] (3D)) that a
pseudocompact, normal space is countably compact. Thus a pseudocom-
pact metric space is compact. It follows that m(K) = \K\ for every
compact metrizable group K.

(b) It is clear from 2.5(a) that if 2ω = 2 ( ω + ) then the compact group
K= {-1, + l} ( ω + ) satisfies m(K) = \K\. Indeed, as noted in [5], from
2.1(a) it follows that under this hypothesis the relation m(K) = \K\ holds
for all compact groups K with w(K) = ω+.

(c) it is a consequence of 2.7(e) below that compact groups K with
m(K) = \K\ can arise in circumstances unlike those of (a) and (b)—namely
with w(K) > ω and in the presence of the generalized continuum hy-
pothesis (GCH). Indeed, it is enough to assume the so-called singular
cardinals hypothesis (SCH): κλ < 2λ κ+ for all infinite cardinal numbers
K and λ. The relevance of SCH to these topics came to our attention from
Cater, Erdδs and Galvin [4]; our 2.7(e) ίoτ K = {— 1, + l } α is a special
case of their Theorem 2.5. Concerning this axiom they write (here we
paraphrase slightly): "Clearly, SCH follows from the generalized con-
tinuum hypothesis, but is much weaker. In fact, models of set theory
violating SCH are not easy to come by; Prikry and Silver (see Jech [35]
(Section 37) and Magidor [42], [43]) have constructed such models assum-
ing the consistency of very large (e.g., supercompact) cardinals, and
Devlin and Jensen [14] have shown that some large cardinal assumption is
necessary."

In order that 2.7(e) be not vacuous or nugatory, it is necessary to
know that the existence of uncountable cardinals a such that (log(α))ω Φ
2α is consistent with SCH. In §3 we characterize such cardinals a and we
show that they exist in profusion in all models of ZFC.

2.7. THEOREM. Let K and Kr be compact topological groups with
w(K) = w(K') = a > ω. Then

(a) m(K) = m(K')—that is, the cardinal m(K) depends only on the
cardinal a = w(K), not on the algebraic structure of K.

(b) m(K) > 2ω andcΐ(m(K)) > ω.
(c)log(α) < m(K) < (log α)ω.
(d) //(log a)ω < 2α, then m(K) < \K\.

(e) Assume SCH. Then m(K) = (log(α))ω (and hence m(K) = \K\ if

(log(α)Γ = 2«).

Proof. By 2.1(d) and 2.1(e) there are continuous functions from
(0, l } α onto K and from K onto [0, l] α . Since the inverse image under a



CARDINALITY CONSTRAINTS 271

continuous surjection of a Gδ is a G8, these functions remain continuous
when {0,1}", K and [0, l]a are replaced by P({0, l}β), PUT, and P([0, 1]*),
respectively. Since P({0,l}α) ~ P([0,l]α) by 2.3, it follows from elemen-
tary properties of continuous function sthat

Theorem 2.1(b) is essentially the statement that m(K) = d{PK). Part
(a) is now immediate; and from 2.5, so is part (b). The inequalities of (c)
are given by 2.2(b) and 2.1(a) (together with the observation that d(K) <
d(PK)), and (d) follows from (c) and 2.1(a). Thus it remains only to prove
(e). We assume m(K) < (log(α))ω and we consider two cases.

Case 1. logO) < 2ω. We then have the contradiction 2ω < m(K) <
(log(α))ω < 2 ω (log(α)) + = 2 ω .

Case 2. log(α) > 2ω. Then from

log(α) <m(K)< (log(α))ω < 2ω .(log(α)) + = (log(α)) +

follows m(K) = log(α) and hence cf(log(α)) > ω. Then for every counta-
ble subset A of log(α) there is £ < log(α) such that A c ξ; hence

) ) ω < Σ I«Γ^ Σ 2« |£| +

= log(α)<(log(α))ω,

a contradiction. The proof is complete.

2.8. NOTATION. For every cardinal a > ω, we set m{ά) =
m({— 1, +l} α ) . (This cardinal is denoted Δ(α, ω) in [4].) According to
2.1(b) and 2.7(a) we have

m(a) = m(K) = d(PK)

for every compact group K with w(K) = a. The condition that some
(equivalently: every) compact group K with w(K) = a contains a dense,
pseudocompact subgroup G such that \G\ < \K\ is equivalent to the
condition m(a) < 2a.

2.9. REMARKS, (a) While our statement and proof in 2.5(a) are
probably those which are appropriate to a paper dealing with topological
groups, the inequality \X\ > 2ω is valid for all infinite, homogeneous,
pseudocompact spaces X. For a proof of this general statement and of
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other inequalities concerning cardinal invariants associated with homoge-
neous, pseudocompact spaces, see van Douwen [16].

(b) In the argument above concerning Theorem 2.7, we indicated that
the space PK is "caught between" the homeomorphic spaces P({0, l}α)
and P([0, l]α). Although the following conjecture, suggested by this situa-
tion, is probably of little importance or utility in its own right, we find
mildly annoying our inability to prove or disprove it. Conjecture: If K is a
compact topological group with w(K) = a > ω, then PK « P({0, l}a).

(c) We know of no cardinal a—in any model of ZFC—for which the
relation m(a) = (log(α))ω fails.

3. Cardinals a such that (log(α))ω Φ 2a. We use the notation an t
to indicate that {an: n < ω} is a strictly increasing sequence of cardinal
numbers; we write an | a if an t and Σ n < ω an = a.

For ordinal numbers £, the Beth cardinals 1^ are defined as usual by
the rules l 0 = S o = ω, 1^+1 = 2n* for all £, and 1^ = Σf<pf f°Γ limit
ordinals ξ > 0. We note that the class of Beth cardinals is cofinal in the
class of all cardinals. For a > ω the least ordinal ζ such that l f > a
cannot be a limit ordinal; hence for all a > ω there is a (unique) ordinal £
such that 1^ < a < ^ξ+v

We use below the fact that if £ is a positive limit ordinal then
cf(£) = cf(lc). The proof of Tarski [48] is recorded also in [9] (1.25).

3.1. THEOREM. Let a be an infinite cardinal and let £ be the ordinal such
that 11̂  < a < ^£+1- Then the following conditions are equivalent,

(a) (log(α))ω = 2*;
(b) (1) 2a = 1€+1, and (2) either ξ = 0, or ξ is a positive limit ordinal

such that ci(ξ) = ω.

Proof, (a) =* (b). (1) Clearly 2a > S^+1. If 2a > 2ξ+1 then from log(α)
< 1^ follows the contradiction

l t + 1 < 2" = (log(α))ω < ^ < 2* = 1 { + 1 .

(2) If there is ζ such that ζ = ζ + 1 we have the contradiction

H ί + 1 = 2- = (log(α))ω < a4» = 2V« = 2^ = a { .

Thus either ξ = 0 or ξ is a positive limit ordinal. Suppose now that £ > 0
and cf(£) > ω. Since cfp^) > ω and 1^ = sup^Π^, for every countable
A c 2^ there is f < £ such that >4 c 1 ?; this yields the contradiction

))ω < aj < £ a? <
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(b) => (a). It is enough to prove (i) l£ = 2ξ+1 and (ii) log(α) = 1 .̂
For £ = 0 both statements are clear so we assume that £ is a positive limit
ordinal with cf(£) = ω and, using cf(l^) = ω, we choose /?„ Tl^. For (i) we
write

n ξ + 1 = 2* = 2 Σ A = Π2& < a? < 23* = a€+1,

and we note that if (ii) fails then there is ξ < £ such that log(α) < 1^ and
we have the contradiction

a < 2loδ(«) < 2^ = a r + 1 < ^ < a.

The proof is complete.

We emphasize that 3.2(a), a consequence of 3.1, is valid in every
model of ZFC.

3.2. Let β be an infinite cardinal.
(a) There is a limit cardinal a > β such that m(a) < 2a.
(b) Assume SCH. There is a limit cardinal a > β such that m(a) = 2α.

, (a) By 2.7(d) it is enough to choose α > β such that (log(α))ω

< 2a and for this, according to 3.1, it is sufficient to take a = 1^ > β with
£ a positive limit ordinal such that cf(£) > ω.

(If the condition that a be a limit cardinal is omitted, the cardinal
a = βω is as required. For in this case one has m{a) < (log(α))ω < αω =
a < 2α.)

(b) Set α 0 = β, recursively for n < ω define α n + 1 = 2a% and set
α = supw απ. Then α = log(α) and

< αω < 2α,

so (log(α))ω = 2a\ the required conclusion then follows from 2.7(e).

3.3. The infinite compact groups K which are metrizable are exactly
those for which w(K) = ω. We have remarked in 2.6(a) in effect that
m(ω) = 2ω. We do not know whether the conclusion of 3.2(b) remains
valid when the hypothesis SCH is omitted; we do not even know whether
there is in every model of ZFC an uncountable cardinal a such that
m(a) = 2α.

4. Connected groups and products of simple groups. For G a group,

we denote by Z(G) the center of G. In this section we combine an elegant
result of van der Waerden [52] with a structure theorem of Weil [54] to
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shaφen the following structure theorem of Varopoulos [49] (4.1): If G is

compact and connected then the quotient G/Z(G) is (topologically iso-

moφhic to) a product Π, Gt with each Gt metrizable. Our result, given in

4.2, is used in 5.6 below in our study of totally dense subgroups.

The symbol — may be read "is topologically isomoφhic to".

For G a group and N a normal subgroup of G, we denote by <p̂  the

canonical homomoφhism of G onto G/N.

4.1. LEMMA. Let G be a compact, connected group such that {e} is the

only normal Abelian subgroup of G/Z(G), and let N be a closed, normal,

totally disconnected subgroup of G. Then the quotient group K = G/N has

the property that K/Z(K) ^ G/Z(G).

Proof. For a e N the function G -> N given by x -> xax~ι has

connected range containing the point a. Thus xax~ι = a for all (a, x) e

N X G and we have N c Z(G). With H = φN[Z(G)] we have

K/H - (G/N)/(Z(G)/(Z(G) Π N))

= (G/N)/(Z(G)/N) - G/Z(G),

so it is enough to show H = Z(K). The inclusion c is clear. The function

φ^: K -> K/H takes Z(K) to a normal, Abelian subgroup of K/H, so

ίτomK/H = G/Z(G) follows φH[Z(K)] = {e} and hence Z(K) c H, as
required.

The following statement may be compared with the result cited above

of Varopoulos [49].

4.2. THEOREM. Let K be a compact, connected group. Then K/Z(K)

has the form K/Z(K) =* Yli^IHi where each Hi is a compact, connected,

non-Abelian Lie group which is {algebraically) simple.

Proof. According to the structure theorem of Weil [54] (pp. 89-91)

there are a compact group G = A X Σ* and a continuous homomoφhism

ψ from G onto K such that

(i) A is a compact, connected Abelian group,

(ii) ker ψ is a totally disconnected subgroup of A X Z(Σ*), and

(in) Σ* is a product of the form Σ* = ΠieIGi with each Gt a

compact, connected, simply connected, non-Abelian Lie group with a

simple Lie algebra and a finite center.

We note that

G/Z(G) = (AX Σ*)/A X Z ( Σ * ) = Σ*/Z(Σ*)9
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the "cancellation of A" being justified by the fact that the natural

suqective homomorphism sequence

A X Σ* -* Σ* -> Σ*/Z(Σ*)

has kernels X Z(Σ*).

We set //,. = Gi/Z{Gi). It is a theorem of van der Waerden [52] that

the connected Lie groups Hi are algebraically simple. (In particular, each

is non-Abelian.) It is clear that Z(Σ*) = Πι Z{Gt). Every normal Abelian

subgroup S of YΊiHi satisfies \S\ = 1, since otherwise there is / such that

Kj[S] is a non-trivial normal Abelian subgroup of Ht. The group G then

satisfies the hypotheses of 4.1, and (taking N = ker ψ there) we have

K/Z(K) - G/Z(G) - Σ*/Z(Σ*) - Π # ; ,
ie/

as required.

For a topological group G we denote by C(G) the component of the

identity in G.

4.3. COROLLARY. LetKbe a compact, connected group. Ifw(C(Z(K)))

< w(K), then w(K/Z(K)) = w{K).

Proof. Suppose first that w(K) = ω. UK is Abelian then C(Z(K)) =

K, and if K is non-Abelian then K/Z(K) is infinite (so that ω <

w(K/Z(K)) < w(K) = ω). We assume therefore in what follows that

w(K) > co, we retain the notation of the proof of 4.2, and we assume

without loss of generality, replacing if necessary A X {e} by^4X

{ e} /(ker ψ), that ψ is an isomorphism on A X { e}.

FromΛl c C(Z(G)) followsψ[A] c C(Z(K)). Hence w(A) < w(Σ*),

since otherwise we have the contradiction

w(K) < w(A X Σ*) = w(A) = w(φ[A]) < w(C(Z(K))) < w(K).

But then from

ω < w(K) < w(A X Σ*) = w(Σ*) =

and the fact that w(G() = ω for each i e / follows |/ | = ^(Π^/G1,), so

that

w(K) <\I\ = w(TlHi) = w(K/Z(K)) < w(K)9

as required.

5. Totally dense subgroups. A subgroup G of a topological group K

is said to be totally dense (in K) if, for each closed subgroup H of K, the

set G Π H is dense in H. Of course, every totally dense subgroup is dense.
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The concept has been studied in its own right [46], [24], [13], [39], and in

connection with the problem of characterizing those topological groups

(G, &~) for which ^is minimal among (Hausdorff) topologies making G a

topological group [47], [23].

5.1. NOTATION. For K a group, we denote by t(K) the subgroup of K

generated by the set of torsion elements of K.

In a topological group K, every x e t(K) belongs to a finite subgroup

H(x) of K. Since H(x) has no proper dense subsets, every totally dense

subgroup G of K satisfies x e H(x) c G. This observation proves the

following simple statement.

5.2. LEMMA. If K is a topological group and G is totally dense in K, then

G 3 t(K).

We saw in 2.7(a) that the question of the minimal cardinality of a

dense, pseudocompact subgroup of a compact group K depends only on

the cardinal number w(K) and is quite insensitive to algebraic properties

of K. As Lemma 5.2 suggests, and as will become clear in Theorem 5.8

below, the analogous cardinality question concerning totally dense sub-

groups commands a very different kind of response: For every a > ω

there are compact groups K with w(K) = a such that K has no proper

totally dense subgroup. Indeed, as 5.2 makes clear, { — 1, + l } α is such a

group.

Let us say for simplicity that a subgroup G of a group K is small if

\G\ < \K\. Our objective in this section is to classify those cardinal

numbers a for which some compact group K with w(K) = a contains a

small, totally dense subgroup. (We show inter alia that such a group K,

when it exists, may be chosen totally disconnected and Abelian.)

5.3. LEMMA. Let K be a compact group and G a totally dense subgroup.

Ifφ is a continuous homomorphism from K onto a (compact) group K\ then

φ[G] is totally dense in K'.

Proof. If H' is a closed subgroup of K' then G Π φ~\H')is dense in

φ~ι(H'); hence φ[G] is dense in H'.

Next we characterize in set-theoretic terms those cardinals a which,

according to 5.8 below, have the form a = w(K) for some compact group

K with a small totally dense subgroup. We extend the list beyond the
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demands of strict economy and the requirements of 5.8 in the belief that
the indicated equivalences are of independent interest.

It is a well-known theorem of Konig [40], for which proofs are
recorded (for example) in [1] and [9] (1.19), that if / is an index set and
cardinal families (α,: i e /} and {&,.:/€/} satisfy at < bt for all / e / ,
then Σz at < Π, bt. In what follows we use two immediate consequences of
Kόnig's theorem: If a is an infinite cardinal number then α c f ( α ) > a and
(hence) cf(2α) > a.

5.4. LEMMA. Let a be an infinite cardinal such that cf(α) = ω, let {an:
n < ω} be any set of distinct cardinals such that an< a {all n) and
Σ α n = α, and define β = Σ2a". Then the following conditions are equiva-
lent.

(a) a = log(2«);
(b)2α» < 2a(alln < ω);
(c)2α« < β(alln < ω);
(d) there is a sequence n(k) such that 2α"(*> | β\
(e) {2an: n < ω} has no largest element, and
(f) β < 2a.

Proof. The conditions are all true, hence equivalent, if a = ω. We
assume therefore that a > ω and that an > ω for all n < ω.

(a) => (b). This is obvious.
(b) => (c). If (c) fails then β < 2a and βω = β. But

2« = 2Σ»«» = Π 2 α " < Γίβ = βω £ (2 α ) ω = 2a

n n

and hence β = βω = 2a.
(c) =» (d). From 2a- < β and β = Σ2a- follows cf(̂ 8) = ω so if (d)

fails then there is γ < β such that 2"n < γ for all it < ω. But then
Λ» < Σ Y = ω γ < β.

(d) => (e). From (d) follows cf(β) = ω and hence β < βω.lt follows
that if thereisN < ω such that 2α" > 2α" for all w, then 2ttjv < β. But then

£ Σ2"N = o) 2a» < β.

(e) => (f). From (e) follows 2α" < )S for all n < ω, for otherwise there
are m, n < ω such that

β>2a>»> 2a» > β.

Thus again cf(β) = ω, while if (f) fails then cί(β) > a.
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(f) => (a). If there is γ < a such that 2γ > 2a then from an < a and
a = Σ oίn it follows that there is n such that γ < an < a. But then

2a < 2y < 2a» < β < 2".

5.5. REMARKS, (a) When the conditions of 5.4 are satisfied we have

2« = 2Σ«* = γ\2a» < (2a)ω = 2a

and hence 2a = Π2α«.
(b) The conditions of 5.4 are in addition clearly equivalent to the

condition a = log(β).
(c) With focus on condition 5.4(b), we say that for cardinals a as in

5.4 the function γ -> 2γ is "discontinuous at α".
It was noted in [13] that a compact, connected Abelian group K with

w(K) = a > ω can have no small totally dense subgroup. (Proof. There is
[13] a continuous homomorphism φ from K onto Tα, and since t(Ύa) D
{ — 1, + 1 } a any totally dense subgroup G of K must satisfy

The following theorem strengthens this result by removing the hypothesis
that K is Abelian.

5.6. THEOREM. Let K be a compact, connected group with w(K) — a >
ω. Then K has no small totally dense subgroup.

Proof. Suppose that G is a small totally dense subgroup of K. Since
GΠC(Z(K)) is totally dense in the connected, Abelian group C(Z(K))
we have w(C(Z(K))) < a by the result cited just above from [13] (for
otherwise

\G Π C(Z(K))\ < \G\ < \K\ =2«= \C(Z(K))\).

Hence from 4.3 and 4.2 we have w(K/Z(K)) = a and K/Z(K) = n / G / i / z

with each Ht a compact, connected, non-Abelian Lie group. As is well-
known, each such group Hi contains a non-degenerate compact, connected
Abelian subgroup At. (For example, according to Hochschild [30] (p. 150
ff.) every x e Hi lies along a one-parameter subgroup, i.e., there is a
continuous homomorphism /: R -> Hi such that /(I) = x. One may take
At = clflr/[R]; such a choice of A t is in fact a topological subgroup of Hi

isomorphic to a torus Ύn with 0 < n < ω.) We set A =ΠierAi. Accord-
ing to 5.3 the homomorphism φ: K -> K/Z(K) takes G onto a totally
dense subgroup of K/Z(K), and again from w(Yli^IHi) = a > ω and
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each w(H
i
) = ω we have |/| = a and hence

We have: A is a compact, connected Abelian group; w{A) = a > ω; and

φ[G] Π A is a small totally dense subgroup of A. This contradiction

completes the proof.

5.7. REMARK. It is interesting to notice (though logically inessential to

our principal concern) that for non-Abelian groups the conclusion of 5.6

is valid even when a = ω. Specifically, we have

(a) there exist compact, connected, Abelian metrizable groups with a

small totally dense subgroup, and

(b) there is no compact, connected, non-Abelian metrizable group

with a small totally dense subgroup.

For (a), it is enough to consider the topological groups T" for

0 < n < ω. To prove (b), let G be a totally dense subgroup of a compact,

connected, non-Abelian metrizable group K and write K/Z(K) = Πi^IHi

as in 4.2. With φ: K -> K/Z(K) the canonical homomorphism and ττ :

K/Z(K) -> //. the projection, the group IT. ° φ[G] is totally dense in Ht.

Thus to prove |G| = \K\ = 2ω it is enough to show that every totally dense

subgroup D of a compact, connected, non-Abelian, metrizable, algebrai-

cally simple Lie group H satisfies |D| = \H\ = 2ω. We have noted already

in the proof of 5.6, with Hochschild [30] (p. 151), that H contains a

topological subgroup isomorphic to T. Thus there is x e H such that

x Φ e and x2 = e. Since the subgroup S = {x, e) is not normal in H, its

normalizer N(S) is not equal to H; thus the (compact, connected) coset

s p a c e H / N ( S ) sa t i s f ies \H/N(S)\ = 2ω. N o w hSh'1 Π kSk~ι = {e}

whenever A, k ^ H and hN(S) Φ kN(S), and D contains each of the

subgroups hSh'1. Thus

\D\>\H/N{S)\=2«,

as required.

5.8. THEOREM. For each infinite cardinal number α, the following

conditions are equivalent.

(a) cf(α) = ωanda = log(2α).

(b) Some compact, totally disconnected group K with w(K) = a has a

small, totally dense subgroup.

(c) Some compact group K with w(K) = a has a small, totally dense

subgroup.
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Proof. We show (a) «=> (b) and (b) <=> (c).
(a) => (b). Here we show that in fact K may be chosen Abelian. Let

{pn: n < ω] be an enumeration of the positive primes in their usual
order: p0 = 2, pλ = 3, Using 5.4 we choose an | a such that 2a" | , and
we set K(n) = Z(pn)

a% K=Un K(n), and G = ®n K(n). Since 2β« T we
have from 5.4 or directly from Konig's theorem that

|G| = Σ2α- < ΓΪ2α- = ΠI*(ΌI = 1*1

The other assertions of (b) being now obvious, let us summarize from [13]
(5.5) the proof that G is totally dense in K. Since G = t(K) it is enough to
show for every closed subgroup H of K that t{H), which is G Π H, is
dense in H. The dual group K of K satisfies K - ®n<ω[®ξ<Cί

z(Pn)] a n d
hence its homomorphic image H satisfies H — ®n<ω[®l<a F(nΛ)]
where for each («, £) either F(n, ξ) = Z(pn) or F(n, ξ) = {ό}. Since
F(n, ξ) = F(n, ξ) we have

τj ~ ir „ TΊ

n - n - i i

so that H is (isomorphic to) a product of finite cyclic groups. It is then
clear that t{H) is dense in H, as required.

(b) => (a). Since (a) is clear when a = ω, we assume here that a > co.
As is well-known [28] (7.6), for e Φ x e K there is an open, normal
subgroup iV(jc) of G such that x £ N(x). This furnishes a continuous
isomorphism φ from .SΓ onto a closed subgroup of Π x K/N(x)9 with each
|J£/JV(jt)| < co. Noting that up to topological isomorphism there exist just
countably many finite topological groups, say [Fn: n < ω}, and identify-
ing K with its image ψ[K], we have for suitably chosen cardinal numbers
yn the topological group inclusion

Let τrn be the projection from F onto FJ% and set Qn = πn[K] and
an = w(Qn). Since a continuous function defined on a compact space
cannot raise weight [18] (3.7.19), we have an < a; and from K <zΠnQn we
have

and hence a = Σnan.
We claim next that 2a" < 2a for all n < ω. Indeed if some N < co

satisfies 2"N = 2a and G is a small totally dense subgroup of K then since
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is totally dense in QN and QN = t(QN) we have from 2.1(a) and 5.2

that

a contradiction. Thus 2α* < 2α, and hence an < α, for all n < ω. The
condition cf(α) = ω now follows from a = Σnan, while a = log(2α) is
given by 5.4.

(b) => (c). This is obvious.
(c) => (b). Let G be a small, totally dense subgroup of K.
It is well-known and easy to prove, using the fact that weight equals

local weight (that is: character) in compact groups, that w(K) <
w(C) - w(K/C) for every closed normal subgroup C of K. In the pre-
sent case, taking for C the component of the identity in K, we have
w(K/C) = a. (For otherwise w(C) = a and from

\GnC\<\G\<\K\=2«=\C\

it would follow that G Π C is a small, totally dense subgroup of the con-
nected group C, contrary to 5.6.) Now by 5.3 the canonical homomor-
phism φ from K onto K/C takes G to a totally dense subgroup of K/C
such that

\φ[G] \<\G\< \K\ =2« = 2"<*/c> = \K/C\,

and the proof is complete.

6. Small, totally dense, pseudocompact subgroups. Here we re-
capitulate the cardinality constraints of the preceding sections with a view
to determining the existence of such subgroups. As was indicated above in
our Abstract this question, which was raised in [13] and which provoked
the present investigation, cannot be settled on the basis of the axioms of
ZFC.

6.1. THEOREM. Assume GCH. No compact topological group has a
small, totally dense, pseudocompact subgroup.

Proof. Let K be a counterexample and let a = w(K). Since a > ω we
have cf(α) = ω from 5.8, so there is a sequence {an: n < ω] of cardinals
such that each an < a and an ΐ α. From GCH we have

and hence α = log(α), so from

Π <aω <2
follows 2" = (log(α))ω. But GCH implies SCH, so from 2.7(e) we have
m(K) = \K\—i.e., Khas no small, dense, pseudocompact subgroup.



282 W. W. COMFORT AND LEWIS C. ROBERTSON

6.2. THEOREM. It is consistent with the axioms of ZFC that there exists

a compact topological group with a small, totally dense, pseudocompact

subgroups in fact this condition is compatible with SCH.

Proof. It is enough to demonstrate the consistency of the existence of

a compact group K which contains a small totally dense subgroup Go and

a small, dense, pseudocompact subgroup Gλ; for then (as is clear from the

definitions of the concepts in question) the subgroup G of K generated by

Go U Gx is small, totally dense and pseudocompact.

According to 2.7(d) and 5.8, it is enough to arrange for a cardinal a

such that cf(α) = ω and a = log(2ft) and (log(α))ω < 2a. The theorem of

Easton [17] asserts, roughly speaking, that any phenomenon concerning

exponentiation not obviously interdicted by Kδnig's theorem is compati-

ble with ZFC. In particular we may choose 1^ < a < 1 { + 1 so that

cf(α) = ω and with an chosen so that an

/[ a and in addition 2α* t . (Write

β = Σn2
a» . From Kόnig's theorem and SCH follows βω = β+, so from

5.5(a) we have

2« = γ\2a» < βω = β+< 2a

and hence β+= 2a.) Schematically, then,

^ < an T a < ^ + 1 < 2«« t β < β + = 2".

From this configuration the three conditions cf(α) = ω, a = log(2α), and

(log(α))ω < 2α are obvious.

For a specific example, as in [4] (§3), assume l x < N ω < 1 2 and

2 s " < 2*n+ι for all n < ω, and set a = S ω . For (sufficiently large) n we

have l x < S n = an and 1 2

 < 2 s ", as required.

In summary, we have this result.

6.3. THEOREM, (a) The following two questions are undecidable in ZFC.

(1) Is there a compact group with a small, totally dense, pseudocompact

subgroup!

(2) Is there a compact, totally disconnected Abelian group with a small,

totally dense, pseudocompact subgroup!

(b) In any model of ZFC, the answer to question (1) is "Yes " if and only

if the answer to question (2) is "Yes".

Proof. Statement (a) follows from 6.1 and 6.2, and (b) is immediate

from 5.8.
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