A UNIFIED APPROACH TO CARLESON MEASURES AND A_p WEIGHTS. II

FRANCISCO J. RUIZ AND JOSÉ L. TORREA

In this note we find for each p, $1 , a necessary and sufficient condition on the pair <math>(\mu, v)$ (where μ is a measure on $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times [0, \infty)$, and v a weight on \mathbb{R}^n) for the Poisson integral to be a bounded operator from $L^p(\mathbb{R}^n, v(x) dx)$ into $L^p(\mathbb{R}^{n+1}_+, \mu)$.

1. Introduction. In this note we find for each p, $1 , a necessary and sufficient condition on the pair <math>(\mu, v)$ (where μ is a measure on $\mathbb{R}^{n+1}_+ = \mathbb{R} \times [0, \infty)$ and v a weight on \mathbb{R}^n) for the Poisson integral to be a bounded operator from $L^p(\mathbb{R}^n, v(x) dx)$ into $L^p(\mathbb{R}^{n+1}_+, \mu)$.

Our proof follows the ideas of Sawyer [7] and the condition we find is

$$(F_p) \quad \int_{\tilde{Q}} \left[\mathscr{M} \left(v^{1-p'} \chi_Q \right)(x,t) \right]^p d\mu(x,t) \le C \int_Q v^{1-p'}(x) \, dx < +\infty$$

for all cubes in \mathbb{R}^n (cube will always means a compact cube with sides parallel to the coordinate axes).

For \mathcal{M} we denote the maximal operator

(*)
$$\mathcal{M}f(x,t) = \sup_{Q} \frac{1}{|Q|} \int_{Q} |f(x)| dx, \quad x \in \mathbb{R}^{n}, t \ge 0,$$

where the supremum is taken over the cubes Q in \mathbb{R}^n , containing x and having side length at least t.

As usual \tilde{Q} denotes the cube in \mathbb{R}^{n+1}_+ , with the cube Q as its basis.

Carleson [1] showed that \mathcal{M} is bounded from $L^{p}(\mathbb{R}^{n}, dx)$ into $L^{p}(\mathbb{R}^{n+1}, \mu)$ if and only if μ satisfies the so-called "Carleson condition"

(1)
$$\mu(\tilde{Q}) \leq C|Q|$$
 for each cube in \mathbb{R}^n .

Afterwards, Fefferman and Stein [2] found that

(2)
$$\sup_{x \in Q} \frac{\mu(\tilde{Q})}{Q} \le Cv(x) \quad \text{a.e. } x$$

is sufficient for \mathcal{M} to be bounded from $L^{p}(\mathbb{R}^{n}, v(x) dx)$ into $L^{p}(\mathbb{R}^{n+1}, \mu)$.

Recently F. Ruiz [6] found the condition

(3)
$$\frac{\mu(\tilde{Q})}{|Q|} \left(\frac{1}{|Q|} \int_{Q} v^{1-p'}(x) \, dx\right)^{p-1} \le C$$

to be necessary and sufficient for the boundedness of the operator \mathcal{M} from $L^{p}(\mathbb{R}^{n}, v(x) dx)$ into weak- $L^{p}(\mathbb{R}^{n+1}, \mu)$. The condition (3) will be denoted by (C_{p}) as in [6].

The paper is set out as follows: in §2 we give results and some consequences, whilst §3 contains detailed proofs.

2. Results. Throughout this paper, Q will denote a cube in \mathbb{R}^n with sides parallel to the coordinate planes. For r > 0, rQ will denote the cube with the same centre as Q diameter r times that of Q. $|Q|_v$ will denote $\int_Q v(x) dx$.

We shall say that Q is a dyadic cube and we shall write $Q \in \mathcal{D}$, if Q is a subset of \mathbb{R}^n of the form $\prod_{i=1}^n [x_i, x_i + 2^k)$, where $x \in 2^k \mathbb{Z}_+^n$, with k in **Z**. We define the dyadic maximal operator \mathcal{N} associated with the Poisson integral by

(**)
$$\mathcal{N}f(x,t) = \sup_{Q} \frac{1}{|Q|} \int_{Q} |f(x)| dx, \quad x \in \mathbf{R}^{n}, t \ge 0,$$

where the supremum is taken over the dyadic cubes in \mathbb{R}^n containing x and having side length at least t.

The main results in this paper are the following:

THEOREM A. Given a weight v in \mathbb{R}^n , a positive measure μ in \mathbb{R}^{n+1}_+ , and p, 1 , the following conditions are equivalent.

(i) The operator \mathcal{M} defined in (*) is bounded from $L^{p}(\mathbb{R}^{n}, v(x) dx)$ into $L^{p}(\mathbb{R}^{n+1}, \mu)$; i.e.

$$\int_{\mathbf{R}^{n+1}_+} \left[\mathscr{M}f(x,t) \right]^p d\mu(x,t) \le C \int_{\mathbf{R}^n} \left| f(x) \right|^p v(x) dx$$

(ii) The pair (μ, r) verifies (F_p) .

THEOREM B. Given a weight v in \mathbb{R}^n , a positive measure μ in \mathbb{R}^{n+1}_+ , and p, 1 , the following conditions are equivalent.

(i) The operator \mathcal{N} defined in (**) is bounded from $L^{p}(\mathbb{R}^{n}, vx dx)$ into $L^{p}(\mathbb{R}^{n+1}, \mu)$.

(ii) The pair (μ, v) verifies

$$\int_{\tilde{Q}} \left[\mathscr{N}\left(v^{1-p'} \chi_{Q} \right)(x,t) \right]^{p} d\mu(x,t) \leq C \int_{Q} v^{1-p'}(x) \, dx < +\infty$$

for all dyadic cubes Q in \mathbb{R}^n .

The above results have certain consequences. (I) In the particular case in Theorem A where $v(x) \equiv 1$, the condition (F_n) reduces to

$$\int_{\tilde{Q}} \left[\mathscr{M}(\chi_{Q})(x,t) \right]^{p} d\mu(x,t) \leq C \int_{Q} dx = C |Q|$$

and since $\mathcal{M}(\chi_Q)(x, t) = 1$ for $(x, t) \in \tilde{Q}$, we see that Theorem A gives us Carleson's result mentioned in the introduction.

(II) If the measure μ in $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times [0, \infty)$ is of the form d(x) = u(x) dx concentrated in $\mathbb{R}^n \times \{0\}$, then (F_p) is equivalent to Sawyer's condition

$$(S_p) \qquad \int_Q \Big[M \Big(v^{1-p'} \chi_Q \Big)(x) \Big]^p u(x) \, dx \le C \int_Q v^{1-p'}(x) \, dx < +\infty$$

where Mf denotes the Hardy Littlewood maximal operator.

Since $\mathcal{M}f(x,0) = Mf(x), x \in \mathbb{R}^n$. Then from Theorem A we obtain

THEOREM (Sawyer [7]). Let $1 . Given weights u and v in <math>\mathbb{R}^n$ the following statements are equivalent:

(i) (u, v) satisfies the (S_p) condition

(ii) $\int_{\mathbf{R}^n} (Mf(x))^p u(x) \, dx \le C_p \int_{\mathbf{R}^n} |f(x)|^p v(x) \, dx.$

(III) Hunt, Kurtz and Neugebauer [3] have shown by a direct proof that if a weight v belongs to the A_p class, 1 , of Muckenhoupt, i.e.

$$\sup_{Q}\left(\frac{1}{|Q|}\int_{Q}v(x)\,dx\right)\left(\frac{1}{|Q|}\int_{Q}v^{1-p'}(x)\right)^{p-1}\leq C$$

then v satisfies the (S_p) condition in (II) with u = v.

In our case it can be shown, see [6], that if the pair (μ, v) satisfies the (C_p) condition, $1 , and v belongs to the class <math>A_p$ of Muckenhoupt, then the operator \mathcal{M} is bounded from $L^p(\mathbb{R}^n, v(x) dx)$ into $L^p(\mathbb{R}^{n+1}, \mu)$ and this tells us that in particular (μ, v) will satisfy the (F_p) condition.

In the particular case considered in (II), this suggests that for a pair of weights (u, v) satisfying the A_p condition, 1 , of Muckenhoupt, i.e.

$$\sup_{Q}\left(\frac{1}{|Q|}\int_{Q}u(x)\ dx\right)\left(\frac{1}{|Q|}\int_{Q}v^{1-p'}(x)\ dx\right)^{p+1}\leq C$$

the fact that $v \in A_p$ is sufficient for (u, v) to satisfy the S_p condition.

(IV) If a weight v is given and we call $F_p(v)$ (respectively $C_p(v)$) the set of measures μ on \mathbb{R}^{n+1}_+ such that (μ, v) satisfies the F_p condition (respectively the C_p condition) we can state that for 1

$$C_1(v) \subset F_p(v) \subset C_p(v) \subset \cdots \subset F_q(v) \subset C_q(v) \subset \cdots$$

The inclusion $C_p(v) \subset C_q(v)$ is proved in [6]. To see that $F_p(v) \subset C_p(v)$ let us observe that for $(x, t) \in \tilde{Q}$

$$\mathscr{M}\left(v^{1-p'}\chi_{Q}\right)(x,t) \geq \frac{1}{|Q|} \int_{Q} v^{1-p'}(y) \, dy$$

and this implies for $\mu \in F_p(v)$

$$\left(\frac{1}{|Q|}\int_Q v^{1-p'}(x)\,dx\right)^p\mu(\tilde{Q})\leq C\int_Q v^{1-p'}(x)\,dx.$$

So $\mu \in C_p(v)$.

Now, given p < q, and $\mu \in C_p(v)$, using the Marcinkiewicz interpolation theorem between the boundedness of \mathcal{M} from $L^p(\mathbb{R}^n, v(x) dx)$ into weak- $L^p(\mathbb{R}^{n+1}_+, \mu)$ and the trivial L^{∞} boundedness, we obtain $\mu \in F_q(v)$.

REMARK. If, for a given p, v belongs to the A_p class of Muckenhoupt, then it can be shown that $C_p(v) = C_q(v)$, $p \le q \le \infty$, see [6]. This fact and the fact that for $v \in A_p$ there exists $\varepsilon > 0$ such that $v \in A_{p-\varepsilon}$ allows us to obtain that

$$F_p(v) = C_p(v) = C_q(v) = F_q(v), \qquad p \le q \le \infty.$$

3. Detailed proofs. The proof of the implication (i) \Rightarrow (ii) is the same in both Theorems A and B, the only difference being the use of non dyadic or dyadic cubes.

Firstly, let us see that $\int_O v^{1-p'}(x) dx < +\infty$ for all cubes. If

$$\int_{Q} v^{1-p'}(x) \, dx = \int_{Q} \left(v^{-1}(x) \right)^{p'} v(x) \, dx = \infty$$

this would imply the existence of a function $f \in L^{p}(v)$ such that

$$\int_{Q} f(x) dx = \int_{Q} f(x) v^{-1}(x) v(x) dx = +\infty,$$

and in particular $\mathcal{M}f(x, t) = +\infty$ for $(x, t) \in \mathbb{R}^{n+1}_+$ which contradicts the hypothesis:

$$\int_{\mathbf{R}^{n+1}} \left[\mathscr{M}f(x,t) \right]^p d\mu(x,t) \leq C \int_{\mathbf{R}^n} f^p(x) v(x) \, dx < +\infty.$$

To show the inequality in (ii) it is sufficient to choose $f(x) = \chi_0(x)v^{1-p'}(x)$ in the hypothesis.

Proof of (ii) \Rightarrow (i) *in Theorem B*. In order to handle a Calderón-Zygmund decomposition we introduce the operators

$$\mathcal{N}^{R}f(x,t) = \sup_{Q} \frac{1}{Q} \int_{Q} |f(x)| dx, \quad x \in \mathbf{R}^{n}, t > 0,$$

the supremum being taken over all dyadic cubes in \mathbb{R}^n containing x and having side length at least t and at most R.

Observe that $\mathcal{N}^R f(x, t) = 0$ for t > R and that

$$\lim_{R\to\infty}\mathcal{N}^R f(x,t)=\mathcal{N}f(x,t)$$

with increasing limit.

Let Ω_k be the set

$$\Omega_k = \{(x, t) \colon \mathscr{N}^R f(x, t) > 2^k\}, \quad k \in \mathbb{Z}.$$

LEMMA. For each $k \in \mathbb{Z}$ there exists a family $\{Q_j^k\}, j \in J_k$, of dyadic cubes in \mathbb{R}^n such that

(i) $1/Q_j^k \int_{Q_j^k} |f(x)| dx > 2^k$. (ii) The interiors of \tilde{Q}_j^k are disjoints (iii) $\Omega_k = \bigcup_{j \in J_k} \tilde{Q}_j^k$.

Proof of the lemma. If $(x, t) \in \Omega_k$ it means that there exists a dyadic cube with $x \in Q$, $l(Q) \ge t$, $l(Q) \le R$ and $1/|Q| \int_Q |f(x)| dx > 2^k$. This implies the existence of a dyadic maximal Q_j^k such that $Q \subset Q_j^k$, $l(Q_j^k) \le R$, $l(Q_j^k) \ge t$ and

$$\frac{1}{|\mathcal{Q}_j^k|}\int_{\mathcal{Q}_j^k}|f(x)|dx>2^k.$$

In particular, $(x, t) \in \tilde{Q}_j^k$. The fact that the interiors of \tilde{Q}_j^k are disjoint is an obvious consequence of the same property for the \tilde{Q}_i^k 's.

Now let us consider the sets

$$E_j^k = \tilde{Q}_j^k \setminus \{(x,t) \colon \mathscr{N}^R f(x,t) \ge 2^{k+1}\}.$$

Then we have a family of sets $\{E_j^k\}_{j,k}$ with disjoint interiors and

$$\int_{\mathbf{R}^{n+1}} \left[\mathscr{N}^{R} f(x,t) \right]^{p} d\mu(x,t) \leq \sum_{k,j} \int_{E_{j}^{k}} \left[\mathscr{N}^{R} f(x,t) \right]^{p} d\mu(x,t)$$
$$\leq \sum_{j,k} 2^{(k+1)p} \mu\left(E_{j}^{k}\right) \leq 2^{p} \sum_{j,k} \mu\left(E_{j}^{k}\right) \frac{1}{|Q_{j}^{k}|} \left(\int_{Q_{j}^{k}} |f(x)| dx \right)^{p}.$$

Following the ideas of Sawyer [7] and Jawerth [4], we introduce the following notations:

$$\sigma(x) = v^{1-p'}(x), \qquad \sigma(Q) = \int_Q \sigma(x) \, dx$$

$$\gamma_{jk} = \mu \left(E_j^k \right) \left(\frac{\sigma(Q_j^k)}{Q_j^k} \right)^p,$$

$$g_{jk} = \left(\frac{1}{\sigma(Q_j^k)} \int_{Q_j^k} \frac{|f(x)|}{\sigma(x)} \sigma(x) \, dx \right)^p$$

$$X = \{ (k, j) \colon k \in \mathbb{Z}, j \in J_k \} \quad \text{with atomic measure } \gamma_{jk}.$$

$$\Gamma(\lambda) = \{ (k, j) \in X \colon g_{jk} > \lambda \}.$$

Then we can write

$$\begin{split} \int_{\mathbf{R}^{n+1}} \left[\mathscr{N}^{R} f(x,t) \right]^{p} d\mu(x,t) &\leq 2^{p} \sum_{j,k} \gamma_{jk} g_{jk} \\ &= 2^{p} \int_{0}^{\infty} \gamma\left\{ (k,j) \colon g_{jk} > \lambda \right\} d\lambda = 2^{p} \int_{0}^{\infty} \left\{ \sum_{(k,j) \in \Gamma(\lambda)} \gamma_{jk} \right\} d\lambda \\ &= 2^{p} \int_{0}^{\infty} \sum_{(k,j) \in \Gamma(\lambda)} \mu\left(E_{j}^{k} \right) \left(\frac{\sigma(Q_{j}^{k})}{|Q_{j}^{k}|} \right)^{p} d\lambda \\ &= 2^{p} \int_{0}^{\infty} \sum_{(k,j) \in \Gamma(\lambda)} \int_{E_{j}^{k}} \left(\frac{\sigma(Q_{j}^{k})}{|Q_{j}^{k}|} \right)^{p} d\mu(x,t) d\lambda, \end{split}$$

calling Q_i the maximal cubes of the family $\{Q_j^k: (k, j) \in \Gamma(\lambda)\}$. This is equal to

$$2^{p} \int_{0}^{\infty} \sum_{j} \sum_{\substack{(k,j) \in \Gamma(\lambda) \\ Q_{j}^{k} \subset Q_{i}}} \int_{E_{j}^{k}} \left(\frac{\sigma(Q_{j}^{k})}{|Q_{j}^{k}|} \right)^{p} d\mu(x,t) d\lambda$$
$$\leq 2^{p} \int_{0}^{\infty} \sum_{i} \sum_{\substack{(k,j) \in \Gamma(\lambda) \\ Q_{j}^{k} \subset Q_{i}}} \int_{E_{j}^{k}} \left(\mathcal{N}^{R}(\sigma \chi_{Q_{i}})(x,t) \right)^{p} d\mu(x,t) d\lambda$$

by the disjointness of the E_i^k 's. This is less than

$$2^{p}\int_{0}^{\infty}\sum_{i}\int_{\tilde{Q}_{i}}\left(\mathcal{N}^{R}(\sigma\chi_{Q_{i}})(x,t)\right)^{p}d\mu(x,t)\,d\lambda.$$

Following hypothesis (i) this is less than

$$2^{p} \int_{0}^{\infty} \sum_{i} \left(\int_{Q_{i}} \sigma(x) \, dx \right) d\lambda = 2^{p} \int_{0}^{\infty} \sigma\left(\bigcup Q_{i}\right) d\lambda$$
$$= 2^{p} \int \sigma\left(\bigcup_{(k,j)\in\Gamma(\lambda)} Q_{j}^{k}\right) d\lambda$$

The definition of $\Gamma(\lambda)$ states that

$$\bigcup_{(k,j)\in\Gamma(\lambda)}Q_j^k\subset\left\{x\colon N_{\sigma}\left(\frac{|f|}{\sigma}\right)(x)>\lambda^{1/p}\right\}$$

where

$$N_{\sigma}(x) = \sup \frac{1}{\sigma(Q)} \int_{Q} g(x)\sigma(x) dx$$

the supremum being taken over all dyadic cubes in \mathbb{R}^n containing x.

Then we have

$$\begin{split} \int_{\mathbf{R}^{n+1}} \left[\mathscr{N}^{R} f(x,t) \right]^{p} d\mu(x,t) &\leq 2^{p} \int_{0}^{\infty} \sigma \left\{ x : \left(N_{\sigma} \left(\frac{|f|}{\sigma} \right)(x) \right)^{p} > \lambda \right\} d\lambda \\ &= 2^{p} \int_{\mathbf{R}^{n}} \left(N_{\sigma} \left(\frac{|f|}{\sigma} \right)(x) \right)^{p} \sigma(x) dx \\ &\leq 2^{p} \int_{\mathbf{R}^{n}} \frac{|f(x)|^{p}}{\sigma(x)^{p}} \sigma(x) dx \end{split}$$

since the dyadic maximal operator with respect to any positive measure ν maps $L^{p}(d\nu)$, 1 , into itself.

The proof ends by applying Fatou's lemma and observing that $\sigma^{1-p} = v$.

Proof of (ii) \Rightarrow (i) *in Theorem A*. The proof of this part follows easily from the ensuing lemma due to Sawyer [7].

LEMMA 2. Define for each $y \in \mathbf{R}^n$

$${}^{\mathcal{Y}}\mathcal{N}f(x,t) = \sup \frac{1}{|Q|} \int_{Q} |f(u)| du,$$

the supremum being taken in all cubes Q with $x \in Q$, side length less than t and such that the set $Q - y = \{u - y : u \in Q\}$ is a dyadic cube. Then,

$$\mathscr{M}^{2^{k}}f(x,t) \leq C \int_{[-2^{k+2},2^{k+2}]^{n}} \mathscr{V}f(x,t) \frac{dy}{2^{n(k+3)}}$$

where the constant C depends only on the dimension.

By \mathcal{M}^R we mean the maximal operator obtained considering cubes with side length less than R.

Observe that the proof of Theorem B can be repeated for the operator ${}^{\lambda}\mathcal{N}$ where the dyadic cubes are now of the type $\prod_{i=1}^{n} [x_i, x_{i+} + 2^k]$ with $x - y \in 2^k \mathbb{Z}^n$.

Then, by Lemma 2 we have

$$\begin{split} &\int_{\mathbf{R}^{n+1}_{+}} \left[\mathscr{M}^{2^{k}} f(x,t) \right]^{p} d\mu(x,t) \\ &\leq C \int_{\mathbf{R}^{n+1}_{+}} d\mu(x,t) \left[\int_{[-2^{k+2},2^{k+2}]^{n}} {}^{y} \mathscr{N} f(x,t) \frac{dy}{2^{n(k+3)}} \right]^{p} \\ &\leq C \left[\int_{[-2^{k+2},2^{k+2}]^{n}} \frac{dy}{2^{n(k+3)}} \left(\int |f(x)|^{p} v(x) \, dx \right)^{1/p} \right]^{p} \\ &= C \int |f(x)|^{p} v(x) \, dx. \end{split}$$

By letting $k \to \infty$ we conclude (i) in Theorem A.

The proof of Lemma 2 follows along the lines of the corresponding result in [7] and is therefore omitted.

Acknowledgments. The authors are grateful to José L. Rubio for his helpful suggestions.

References

- [1] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Annals of Math., **76** (1962), 547–559.
- [2] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115.
- [3] R. Hunt, D. Kurtz and C. Neugebauer, A note on the equivalence of Ap and Sawyer's condition for equal weights, Conference A. Zygmund, Chicago 1981.
- [4] B. Jawerth, Weighted inequalities for maximal operators: Linearization, localization and factorization, preprint.
- [5] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 115–121.

- [6] F. Ruiz, A unified approach to Carleson measures and Ap weights, to appear in Pacific J. Math.
- [7] E. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math., 75 (1982), 1-11.

Received November 21, 1983 and in revised form April 4, 1984.

Universidad de Zaragoza Zaragoza, Spain

AND

Universidad Autonoma de Madrid Madrid-34, Spain